2
|
|
|
- りさこ やすもと
- 9 years ago
- Views:
Transcription
1 John Bull Spirit!! -Triumph Board Log #
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
27 27
28 28
29 29
30 30
31 31
32 32
33 33
34 34
35 35
36 36
37 37
38 38
39 39
40 40
41 41
42 42
43 43
「産業上利用することができる発明」の審査の運用指針(案)
1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)
slide1.dvi
1. 2/ 121 a x = a t 3/ 121 a x = a t 4/ 121 a > 0 t a t = a t t {}}{ a a a t 5/ 121 a t+s = = t+s {}}{ a a a t s {}}{{}}{ a a a a = a t a s (a t ) s = s {}}{ a t a t = a ts 6/ 121 a > 0 t a 0 t t = 0 +
概況
2 4 6 2 2 2 3 2 4 22 5 23 27 34 37 44 45 46 2 78.67 85.77 2.6. 7. 2 2, 65 85,464 93,8 65 85.5 93.2 8 56.2 77.9 2 8.87 88.8 3 () 65 3 6 2 2 2 2 2 22 3 2 2 2 2 2 2 2 2 28.58 28.74 29.9 8.8 8.84 2.63 65 28.3
1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n
1 1.1 Excel Excel Excel log 1, log, log,, log e.7188188 ln log 1. 5cm 1mm 1 0.1mm 0.1 4 4 1 4.1 fx) fx) n0 f n) 0) x n n! n + 1 R n+1 x) fx) f0) + f 0) 1! x + f 0)! x + + f n) 0) x n + R n+1 x) n! 1 .
a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552
3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n
Microsoft Word - 触ってみよう、Maximaに2.doc
i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x
1) 2) SNS 3) 1) Insight Signal
a b 1) 2) SNS 3) 1) Insight Signal 3000 1 6 10 50 2010 2 2010 11 12 4) 2) WOMAN 2012 6 3) 2011 8 29 4) http://www8.cao.go.jp/syokuiku/index.html TV TV 5) TV 5) 2012 10 3 SNS 270 TV WEB TV IBM IBM SPSS
さくらの個別指導 ( さくら教育研究所 ) a a n n A m n 1 a m a n = a m+n 2 (a m ) n = a mn 3 (ab) n = a n b n a n n = = 3 2, = 3 2+
5 5. 5.. a a n n A m n a m a n = a m+n (a m ) n = a mn 3 (ab) n = a n b n a n n 0 3 3 0 = 3 +0 = 3, 3 3 = 3 +( ) = 3 0 3 0 3 3 0 = 3 3 =, 3 = 30 3 = 3 0 a 0 a`n a 0 n a 0 = a`n = a n a` = a 83 84 5 5.
gpw96.dvi
MOO An optimal MOO strategy Tetsuro Tanaka, Faculty of Engineering, University of Tokyo [email protected] MOO ( ) (exhaustive search). [1], MOO. MOO,.,, 0.5., MOO. 1 MOO MOO, Hit & Blow, Cow &
Japan Research Review 1998年7月号
Japan Research Review 1998.7 Perspectives ****************************************************************************************** - 1 - Japan Research Review 1998.7-2 - Japan Research Review 1998.7-3
H1-4.eps
CONTENTS INFORMATION BOARD CALENDAR LIST Vol.138 June/2009 TEL.03-3479-4334 2 A B C 1 2 3 4 5 6 7 2 A 6 4 4 4 4 4 4 3 B INFORMATION BOARD 1 2 3 4 C 1 2 3 1 2 3 4 6 5 *000000000000* 4 7 6 5 3 4 5 INFORMATION
自然・人間・社会 第48号-本文/林 博史先生
1945 2 3 3 3 1 10 1 2 2 104 70 71.2 2.26 863 750 86.9 1047 930 88.8 1 995 750 75.4 2.26 1-3 2 1236 1100 88.9 2.11 4-6 5 420 380 90.5 356 330 92.7 129 59 45.7 177 170 95.0 1194 535 44.7 2.10 32 0 0 350
H1
CONTENTS INFORMATION BOARD Magazine for Snowboarders Vol.113 August/2003 CALENDAR LIST SAFETY DIAL TEL03-3479-4334 information board PRO SNOWBOARDER'S ASSOCIATION information board information board information
09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y
09 II 09/12/21 1 1 7 1.1 I 2D II 3D f() = 3 6 2 + 9 2 f(, y) = 2 2 + 2y + y 2 6 4y f(1) = 1 3 6 1 2 9 1 2 = 2 y = f() f(3, 2) = 2 3 2 + 2 3 2 + 2 2 6 3 4 2 = 8 z = f(, y) y 2 1 z 8 3 2 y 1 ( y ) 1 (0,
ローティーン・アパレル市場に対する一考察
1 2 3 10 32 4 3 9 20 3 10 46 3 11 14 3 15 17 3 1 2 1 2 3 3 1 2 3 4 4 1 2 3 4 5 5 4 2003 7 13 6 1 (2) (3) (4) (5) (6) 5 2 1 73 2 (7) (8) 1970 6 HP Excel http://www.stat.go.jp/data/jinsui/tsuki/index.htm#05k2-1
202
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 DS =+α log (Spread )+ β DSRate +γlend +δ DEx DS t Spread t 1 DSRate t Lend t DEx DS DEx Spread DS
TCSE4~5
II. T = 1 m!! U = mg!(1 cos!) E = T + U! E U = T E U! m U,E mg! U = mg!(1! cos)! < E < mg! mg! < E! L = T!U = 1 m!! mg!(1! cos) d L! L = L = L m!, =!mg!sin m! + mg!sin = d =! g! sin & g! d =! sin ! = v
() 3 3 2 5 3 6 4 2 5 4 2 (; ) () 8 2 4 0 0 2 ex. 3 n n =, 2,, 20 : 3 2 : 9 3 : 27 4 : 8 5 : 243 6 : 729 7 : 287 8 : 656 9 : 9683 0 : 59049 : 7747 2 : 5344 3 : 594323 4 : 4782969 5 : 4348907 6 : 4304672
untitled
1 th 1 th Dec.2006 1 1 th 1 th Dec.2006 103 1 2 EITC 2 1 th 1 th Dec.2006 3 1 th 1 th Dec.2006 2006 4 1 th 1 th Dec.2006 5 1 th 1 th Dec.2006 2 6 1 th 1 th Dec.2006 7 1 th 1 th Dec.2006 3 8 1 th 1 th Dec.2006
9104
01 To Our Shareholders 02 03 Consolidated Financial Statements 12,000 8,878 9,039 9,102 9,972 11,300 8,000 5,636 4,000 0 2001/3 2002/3 2003/3 2004/3 2004/9 2,000 1,500 1,600 1,000 500 530 373 334 905 742
春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,
春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an
新興諸国における集団投資スキーム(付:インド投信の概況)
1 IOSCO 2004 2003 42 7,000 5 5 3.3 06 44 1 0.6 49 390 IOSCO 7 Collective Investment Schemes in Emerging Markets IOSCO 2004 78 42 182 Collective Investment Scheme CIS IOSCO http://www.iosco.org/ http://www.amfiindia.com/
チュートリアル:ノンパラメトリックベイズ
{ x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ
muramatsu_ver1.key
229-ThTES α = e 2 /2ε 0 hc (John D. Barrow 2005) Radiationdominated era Matterdominated era Dark energy era 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 Time (years) Time 2 α = e 2 /2ε 0 hc (John D. Barrow
untitled
1 1 1. 2. 3. 2 2 1 (5/6) 4 =0.517... 5/6 (5/6) 4 1 (5/6) 4 1 (35/36) 24 =0.491... 0.5 2.7 3 1 n =rand() 0 1 = rand() () rand 6 0,1,2,3,4,5 1 1 6 6 *6 int() integer 1 6 = int(rand()*6)+1 1 4 3 500 260 52%
P.01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Name Company / Organization Title Chris Abbott Barb Cooksley Morris Heitman Dennis Gengenbach Joel Grams Greg Ibach Gary Marshall Mike Foley Susan Foley Eric Thorn Teri
1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1
2005 1 1991 1996 5 i 1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2 13 *3 *4 200 1 14 2 250m :64.3km 457mm :76.4km 200 1 548mm 16 9 12 589 13 8 50m
WECPNL = LA +10log10 N 27 N = N 2 + 3N3 + 10( N1 + N 4) L A N N N N N 1 2 3 4 Lden Lden Lden Lden LAE L pa pa 2 a /10 LpA = 20 log 10 ( pa = p 10 ) n na p0 p na n an n p0 2 Lp p L p
sekibun.dvi
a d = a + a+ (a ), e d = e, sin d = cos, (af() + bg())d = a d = log, cosd = sin, f()d + b g()d d 3 d d d d d d d ( + 3 + )d ( + )d ( 3 )d (e )d ( sin 3 cos)d g ()f (g())d = f(g()) e d e d ( )e d cos d
FLY Freshers Leave 26
25 FLY Freshers Leave 26 and Program TUJ introduction readout COC dash COC OECD FLY SPIRIT 27 MITMOOC MIT MIT MOOC RED SGU 28 SGU SGU APU ICT 29 30 SGU SGU 31 SGU SGU SGU SGU MARCH SGU 32 SGU Rikkyo Global
清末における中国人日本留学の実態 表 1-1 文部省直轄学校における中国人留学生の在籍者数 (1907 年 12 月 ) 表 1-2 在東京公私立
Graduate School of Policy and Management, Doshisha University 93 日本留学生の歴史的貢献からみた清末留学生派遣政策の効果 あらまし 2012 10 1901-1911 1907 1. はじめに 1896 1911 15 1939 1975 1905 94 1905 2. 清末における中国人日本留学の実態 1905 45 35 10 19
, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,
6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,
