/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology)

Size: px
Start display at page:

Download "/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology)"

Transcription

1 (set) x X x X x X 2. (space) Hilbert Teichmüller 2 R

2 / 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology)

3 / S O S (O1)-(O3) (O1) S O O (O2) m N, O 1,..., O m O = O 1 O m O (O3) Λ λ Λ O O λ O λ Λ O λ O S O O S S O O (open set) S (topological space) 4 S S (point) (O1)-(O3) (O3) Λ (index set) n Z R 2 (n, 0) 1 B n := { (x, y) R 2 : (x n) 2 + y 2 < 1 } B 2 B 1 B 0 B 1 B 2 n Z B n Λ = Z λ = n a R B a := { (x, y) R 2 : (x a) 2 + y 2 < 1 } B a B 0 B 1 a R B a Λ = R

4 / S 3.2:. 5

5 / 5. S (O1)-(O3) O (O1) S 1 O O (O2) (O3) (O2) O O (O1) (O3) O O O O

6 / 6 O (O1) S O. = = 3 S = {,, } O (S, O) 1. O = {, {, }, {, }, S} 2. O = {, { }, { }, { }, S} 3. O = {, { }, {, }, { }, S}. 5 S = {,,,, } O := {, { }, { }, {, }, {, }, {,, }, S} (S, O) 3.3 (O1)-(O3) (O1)-(O3) (O2) (O3)

7 / R n x, y R n d(x, y) 0 1 r B(p, r) := {x R n : d(x, p) < r} p r (open ball) A R n R n (open set) p A r > 0 B(p, r) A 6 R n O(R n ) R n R n O S = R n, O = O(R n ) (O1)-(O3) (R n, O(R n )) (O1) S = R n (O2) O 1,..., O m O O = O 1 O m O (O1) O O O p O p O j (1 j m) r j > 0 B(p, r j ) O j r 1,, r m r B(p, r) O j j B(p, r) O O O O R 2 B n := { (x, y) R 2 : x 2 + y 2 < 1/n } (n = 1, 2,...) (O3) Λ λ Λ O λ O = λ Λ O λ p O λ Λ p O λ

8 / 8 p O λ B(p, r) O λ r > 0 B(p, r) O λ O O (O1)-(O3) R 4 S x, y S 0 d(x, y) (MS1) d(x, y) = d(y, x) (MS2) d(x, y) = 0 x = y. (MS3) z S d(x, y) d(x, z) + d(z, y). d : S S R, (x, y) d(x, y) S (metric, distance) S d (S, d) (metric space) 1. R n d (MS1)-(MS3) (MS1) (MS2) (MS3) R n R n x = (x 1,..., x n ), y = (y 1,..., y n ) d (x, y) = max x i y i 1 i n d (MS1)-(MS3) (R n, d ) 2. I = [ 1, 1] R C 0 (I) f, g C 0 (I) d (f, g) = (C 0 (I), d ) max f(x) g(x) 1 x 1

9 / 9 3. V, d : (x, y) x y, x y 0 V (S, d) p S r B(p, r) := {x S : d(x, p) < r} p r (open ball) A S (S, d) (open set) p A r > 0 B(p, r) A (S, d) O(S, d) (S, d) O (S, d). (O1)-(O3) R n. (R n, d) O (R n, d ) 3.4

10 / 10 (S, O) A S A (closed set) S A O A (interior) A A A A (interior point) A (closure) A A 7 A (boundary) A A A A := A A 3.3: A C 2 A A A 3.3. A S (1) A A = A A = A. (2) A A = A (3) A A = A (4) S z A z A S A S = {,,,, } O (S, O) S A = {,, } A A A

11 / (S, O), (S, O ) f : S S (continuous) S S O O = f 1 (O ) O 8 f : R R ϵ-δ f : R R ϵ-δ f : R R p R ϵ > 0 δ > 0 x p < δ f(x) f(p) < ϵ p R f f. (S, d) (S, d ) (S, d) p S r B(p, r) (S, d ) q S s B (q, s) f : (S, d) (S, d ) p S ϵ > 0 δ > 0 f(b(p, δ)) B (f(p), ϵ) p S f f R d(x, y) = d (x, y) = x y ϵ-δ

12 / : B (f(p), ϵ) B(p, δ) (S, O) (S, O ) O, O f : (S, O) (S, O ) p S f(p) O O p O O f(o) O p S f f (S, O) (S, O ) (S, d) (S, d ) f : (S, O) (S, O ) f O O f 1 (O ) O f

13 / 13. = p S f(p) O O O O := f 1 (O ) O p O f(o) O f = 9 O O p f 1 (O ) f(p) O O p O f(o p ) O O := p f 1 (O ) O p (O3) O O p O p p f 1 (O ) f 1 (O ) O f(o) = p f 1 (O ) f(o p ) O O f 1 (O ) O = f 1 (O ) O f (S, O), (S, O ) f : S S (homeomorphism, topological map) 1. f 1 : S S 2. f f 1 (S, O) (S, O ) (homeomorphic) f : S S f O O = f 1 (O ) O f 1 O O = f(o) O 9

14 / 14 f(o) = O S S f (O1)-(O3) S f S (S, O) (S, O ) f f (S, O) U S (relative topology) O U := {O U : O O} U (U, O U ) R n 1. (mapping) f : X Y f X Y function f a. X 2 Y 1 b. X 1 Y a X f : X Y = R, kg 5.0kg Y (correspondence)

15 / : 3.6: 4. X Y

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp 1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete space T1 T2 =, X = X, X X = X T3 =, X =, X X = X 2 X

More information

untitled

untitled 280 200 5 7,800 6 8,600 28 1 1 18 7 8 2 ( 31 ) 7 42 2 / / / / / / / / / / 1 3 (1) 4 5 3 1 1 1 A B C D 6 (1) -----) (2) -- ()) (3) ----(). ()() () ( )( )( )( ) ( ) ( )( )( )( ) () (). () ()() 7 () ( ) 1

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

l t a2 b c f g or t a2 b c f a2 b c f or l t a2 b c f g t a2 b c f g l t

l t a2 b c f g or t a2 b c f a2 b c f or l t a2 b c f g t a2 b c f g l t o r lt LONDON 70120-770-361 1 BOOK a2 b c f a2 b c f g t MAP -C2 l t a2 b c f g or t a2 b c f a2 b c f or l t a2 b c f g t a2 b c f g l t a2 b c f a2 b c f g a2 b c f a2 b c f o a2 b c f g a2 b c f lr

More information

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 1 ... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 3 4 5 6 7 8 9 Excel2007 10 Excel2007 11 12 13 - 14 15 16 17 18 19 20 21 22 Excel2007

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

A

A A05-132 2010 2 11 1 1 3 1.1.......................................... 3 1.2..................................... 3 1.3..................................... 3 2 4 2.1............................... 4 2.2

More information

http://banso.cocolog-nifty.com/ 100 100 250 5 1 1 http://www.banso.com/ 2009 5 2 10 http://www.banso.com/ 2009 5 2 http://www.banso.com/ 2009 5 2 http://www.banso.com/ < /> < /> / http://www.banso.com/

More information

FX ) 2

FX ) 2 (FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100

More information

n=360 28.6% 34.4% 36.9% n=360 2.5% 17.8% 19.2% n=64 0.8% 0.3% n=69 1.7% 3.6% 0.6% 1.4% 1.9% < > n=218 1.4% 5.6% 3.1% 60.6% 0.6% 6.9% 10.8% 6.4% 10.3% 33.1% 1.4% 3.6% 1.1% 0.0% 3.1% n=360 0% 50%

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

項 目

項 目 1 1 2 3 11 4 6 5 7,000 2 120 1.3 4,000 04 450 < > 5 3 6 7 8 9 4 10 11 5 12 45 6 13 E. 7 B. C. 14 15 16 17 18 19 20 21 22 23 8 24 25 9 27 2 26 6 27 3 1 3 3 28 29 30 9 31 32 33 500 1 4000 0 2~3 10 10 34

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

ワタベウェディング株式会社

ワタベウェディング株式会社 1 2 3 4 140,000 100,000 60,000 20,000 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 5 6 71 2 13 14 7 8 9 10 11 12 1 2 2 point 1 point 2 1 1 3 point 3 4 4 5 6 point 4 point 5 point 6 13 14 15 16 point 17

More information

endo.PDF

endo.PDF MAP 18 19 20 21 3 1173 MAP 22 700800 106 3000 23 24 59 1984 358 358 399 25 12 8 1996 3 39 24 20 10 1998 9,000 1,400 5,200 250 12 26 4 1996 156 1.3 1990 27 28 29 8 606 290 250 30 11 24 8 1779 31 22 42 9

More information

橡■リリース3333333_P1_.PDF

橡■リリース3333333_P1_.PDF 1 15 17 15 1. 17/3 15/3 17/3 1,600 < > 15/3 17/3 15/3 17/3 0.72 0.77 0.69 0.81 79.71 80 76.56 78 ( ) 59.73 52 59.33 50 7,904 1,600 7,392 1,150 9.32 9.98 13,169 4,000 11,672 3,000 2 3.6 26.7 10 283 5,600

More information

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb " # $ % & ' ( ) * +, -. / 0 1 2 3 4 5 6 7 8 9 : ; < = >? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y " # $ % & ' ( ) * + , -. / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B

More information

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) 1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)

More information

製品案内 価格表 2014/4/1

製品案内 価格表 2014/4/1 4 (17) 3 43 5/20370/ 231(504,150) 11 12 10 14-16 10 3 100 17 100kg 5-6 3 13 3 18 18 # # # # #$$ %&$ ' ()* +,-% ' #). +,-%'% / ' # # #$ %&&&'( %)* +'(#$ #$ %&&&'( ++,-). +'(#$ #$ /'( + /0)- +'(#$ %&&&'(

More information

16 41 17 22 12 10

16 41 17 22 12 10 1914 11 1897 99 16 41 17 22 12 10 11 10 18 11 2618 12 22 28 15 1912 13 191516 2,930 1914 5,100 43 1.25 11 14 25 34364511 7.54 191420 434849 72 191536 1739 17 1918 1915 60 1913 70 10 10 10 99.5 1898 19034.17.6

More information

3.ごみの減量方法.PDF

3.ごみの減量方法.PDF - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - ( 100 ( 100 - 13-123,550,846 111,195,762 92,663,135 ( 12 25 37 49.2 16 33 49 65.6 15 30 44 59.0 2.5kg) ( 5kg) ( 7.5kg) ( k ( 123,550,846 111,195,762 92,663,135 (

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

21 1113 127 23 21 12 TEL 0762251341 1 44 2 3 20 66 1 6 10 24 36 50 58 80 100 10 104 11 118 12 130 13 144 14 150 15 184 16 186 17 194 18 202 19 204 20 230 21 242 22 254 23 262 24 266 25 268 26 270 271

More information