|
|
- もりより すずがみね
- 5 years ago
- Views:
Transcription
1 ( )
2 i
3 CV F CV F CV F CV F CV F CV F CV F CV F ii
4 iii
5 ( 2 ) CV F CV F CV F ( ) CV F ( ) CV F CV F CV F ( 1 ) iv
6 p = p = p = p = p = p = p = p = p = p = ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 3.11 ) ( 3.12 ) l =2.1R l =2.5R l =3.0R l =3.5R v
7 4.17 l =3.9R vi
8 ( 1 ) vii
9 [ (1982)]
10 1.1: :
11
12 ( 2 ) χ θ([ (1998)]) CV F([ (1998)]) ( 3 ) 104 CV F CV F CV F CV F ( 4 ) 1.3: 4
13 [, (1956)] 1 3 ([, (1956)]) ( ) ( ) 2 5
14 2.1.2 [ (1998)] 4 6
15 2.2 1) 2) 3) [ (1974)] p R(p) R(p) =0 (p<p c ) R(p) > 0 (p>p c ) p c R(p) p c 0 <p c < 1 2 7
16 [ (1974)] R(p) 3 R(p) p c [ (1973)] 2 1 ( ) % 4 55% 1/5 2/5 2 1/ [ (1982)] % 8
17 % 1% % 1% 70% ([ (1998)] [, (1999)] [,, (1999)] [,, (2000)]) [ (1998)] p c p c 1 ( ) 1 ( ) ρ d p CV F(Covering Volume Fraction) CV F CV F ρ d /2 CV F =1 exp (πρp c (d /2) 2 ) (2.1) CV F 9
18 2.2.5 [ (1999)] (2.2.3 ) d ( ) 1 S e S S w n w d = Se S w /S S w nw (2.2) D D =9.5x +8.0y +5.2z +4.0p (2.3) x y z p (1) d/d < 1.0 (2) 55% (2.2.4 ) 55% 10
19 20% 16% 9.5% 55% (3) d<5.2 D =5.2 d/d < [ (1993)] 4 250m 1) 2) 250m 250m 9 3) 60 [ (1985)] m ) 2) 2 11
20 2 V = δ r(w) g(h) (1 c ) δ = a a Vw+b Vm a +b +d V d a+d r(w) = w (2.4) g(h) = h a d a b c w h V d V w V m (m) (m) (m/sec) (%) ( 0.45m/min 0.33m/min 0.38m/min) (0.87m/min) (0.71m/min) δ [ (1999)] 2 α S s 1 s 2 s 3 s 4 k 1 =0.36 k 2 =0.64 k 3 =
21 k 4 =1.00 α = 4i=1 k i s i S β β 0 n S S 0 β 0 = S0 S n 1 a b c d p i l 1 =2.25 l 2 =2.16 l 3 =2.08 l 4 = β = β 0 l i p i (2.5) i=1 p 1 = a n, p 2 = b n, p 3 = c n, p 4 = d n (2.6) 1 y α β y = a 0 + a 1 α + a 2 e bβ a 0 = a 1 = a 2 = b = α : t =4.05 β : t =13.73 R 2 =
22 : 2.1: [ (1974)] [ (1974)] [ (1974)] [ (1973)] [ (1998)] 1 2 [ (1999)]
23
24 ([ (1998)]) [, (1956)] θ t 200 C θ(t) =6200(e 10t e 15t )+200 (2.7) 1 θ 1 (t) =θ(t) C 1 θ 1 (t) = θ(t) 1110 C 2 θ 2 (t) = 3 4 θ 1(t) 833 C 3 θ 3 (t) = 1 2 θ 1(t) 550 C 4 θ 4 (t) = θ 1(t) 260 C d h h = pd 2 (p ) ( ) p 10m 1 2 d =0 (2.8) 2 3 h =0.82d 2 (2.9) 3 4 h =0.15d 2 (2.10) 4 h =0.04d 2 (2.11) 16
25 θ(t) θ 1 (t) θ 2 (t) θ 3 (t) θ 4 (t) t 2.2: [, (1956)] h d =0 h =0.82d 2 h =0.15d 2 h =0.04d 2 d 2.3: [, (1956)] 17
26 2.3.2 a d t V =(a + d)/t ( ) ([ (1997)]) 2.2: t(min) V (m/min) D(m) t 0 = a + 8d D i (1 ) 1+0.1ν t i = a + 8d D i α( ν ν 2 ) α =1.6 t t V = n α(a + d)( ν ν2 ) a + 8d D i n = (a + b ) (1 c ) a + b 0.6 t = a + 8d D ν 2 V = n (a + d)( ν2 ) a + 8d D t = a + 8d D ν 2 V = n (a + d)( ν2 ) a + 8d D a (m) d (m) ν (m/sec) a b c D 0 =1.15( ν) D i = β i D 0 β i D =1.15( ν) D =1.15( ν) [ (1997)] ν 18
27 2.3.3 [ (1972)] =D/2( D ) τ τ 0 = a + 8d δ (1 ) 1+0.1ν τ 1 = a + 8d δ α( ν ν 2 ) α = 1.6 τ +14 τ +25 T t( 2.2) τ x K ( ) a K = 2 + d +(x T 0 ) 1 (a + d) T 1 ( ) a x x T 0 K = 2 + d T ( ) 0 a K = 2 + d +(x T ) 1 (a + d) T ( ) a x x T K = 2 + d T ( ) a K = 2 + d +(x T ) 1 (a + d) T ( ) a x x T K = 2 + d T 19
28 2.3.4 [ (1982)] PC t 0 = x + x 8 a + 8d D i 1+0.1ν (2.12) d =0 a =8 ν =1.5 t 0 =17.5 x =10 D m D k h 4 h =0.04D m 2 h =0.82D k 2 ((2.11) ) ((2.9) ) D k = D m /4 t k0 D 1k t k0 = a + 10d D 1k 1+0.1ν D 1k = D m 4 (2.13) (2.14) m 3 20
29 [, (1983)] m n 2 1 ( ) r 1 r 2 Z E(Z) V (Z) r (2) 1 r 2 r (4) 1 r 2 E(Z) = A 1 b (3) A 2 b (5) r (3) 1 r (2) 2 r 1 V (Z) = 2B 1 b (5) +2B 2 (4) r 2 (2) b (6) 2F 1 r 1 (5) r 2 (2) b (7) +2(D 2 F 2 ) r 1 r (7) 1 r (2) 2 r 1 +2D 1 b (9) +2D 3 (6) r 2 (2) b (8) (8) r (2) 2 b (10) +E(X) E(Y ) {E(X)+E(Y )} 2 X = ( )+( ) Y = ( ) A 1 = 2(b a) A 2 = b 2a +4 B 1 = 6b 12a +16 B 2 = A 1 2 D 1 = 2b 6a +16 (A 2 + B 1 +6b 11a + 16) 21
30 D 2 = 2b 6a +18 D 3 = A 2 2 F 1 = 12b 32a +80 (D 1 + D 2 +2b 5a + 12) F 2 = A 1 A 2 (F 1 +10b 22a + 48) r i (k) = r i (r i 1) (r i k +1) b (k) = b(b 1) (b k +1) a = m + n b = mn [ (1988)] [, (1989)] [, (1989)] ζ r C ρ ˆζ = C +4r Cρ + ρπr 2 (2.15) 22
31 r 0 C + η (r r 0 ) ˆζ = (2.16) 1 (1 C η 0 )exp( (η η 0 )) (r >r 0 ) η =4r Cρ + ρπr 2 η 0 =4r 0 Cρ + ρπr0 2 1 s C = sρ s = α ρ (2.17) [ (1998)] CV F [, (1989)] [ (1998)] [ (1998)] p c [ (1974)] R χ 1 N k i 23
32 n i i i n i χ = ki=1 n i 2 N (2.18) θ 1 θ = 1 N max {n i i =1,..., k} χ VA χ i 1 s i (2.18) n i s i χ A χ A = ki=1 n i s i N S 0 χ VA = ki=1 n i s i S 0 N (2.19) [ (1998)] CV F CV F (1) 3 (2) (1) (2.1) CV F 3 (2) (2.1) ([, (1989)] (2.16) 24
33 (2.1) p c =1 CV F =1 exp (πρ(d /2) 2 ) (2.20) (2.16) C =0 r r 0 =0 ˆζ =1 exp ( (ρπr 2 )) (2.21) [ (1986)] (2.16) [ (1986)] (2.16) r
34 3 3.1 [ (1998)] CV F CV F CV F CV F CV F CV F 3.2 CV F CV F 6 ( ) ( ) 6 40m 26
35 40m 3000m 2 2% 104 (3.1) CV F [ (2001)] [ (2001)] 2 ( 6m) (1) (a) (b) (c) (2) CV F 2.3 ( ) :( ) :( ) =4:2:1 10m 4 (2.11) h =0.04d 2 2 6m h =6 d =5 6=12.25(m) d 10m 2 10m D 10 D10 w = 12(m) D10 b = 6(m) D10 k = 3(m) 27
36 3.1:
37 6m a D a D 10 a ( 10m D 10 ) =( a D a ) a D a Da w = 12 ( a ) = 4.34 a Da b = 6 ( a ) = 2.86 a Da k = 3 ( a ) = 1.98 a D t a = 0 (3.1) a A a = A CV F CV F ([, (1989)] ) CV F
38 1 3.2: ( 2 ) 30
39 (2.19) χ VA χ VA = ki=1 n i s i S 0 N 3.3 CV F CV F 3.3 CV F 0.05 CV F CV F 3.3: CV F CV F 3.1 CV F ([, (1989)]) ([ (1988)]) CV F [ (1999)] (2.2.7 (2.6) ) 31
40 CV F [ (1999)] β 3.4 β CV F β β CV F CV F β 3.4: CV F CV F 3.5 CV F χ VA CV F 0.6 χ VA 0.1 CV F 0.6 χ VA 3.6 CV F χ VA CV F 0.6 χ VA CV F 0.6 χ VA CV F CV F CV F 32
41 χ VA CV F 3.5: CV F ( ) χ VA CV F 3.6: CV F ( ) 33
42 3.4 CV F CV F CV F L 3.7 (a) (b) 3.7: (a) (b) 3.8 L/S 0 χ VA L/S 0 34
43 χ VA L/S 0 3.8: L/S CV F 3.9: CV F 35
44 CV F L/S 0 CV F L/S L/S 0 CV F χ VA CV F CV F L/S 0 χ VA 3.10 CV F L/S 0 χ VA L/S 0 CV F 3.10: CV F χ VA CV F CV F L/S 0 CV F ( ) L/S 0 L/S 0 χ VA CV F L/S 0 CV F L/S 0 ([ (1986)]) 36
45 3.4.2 CV F [ (1999)] β CV F CV F β (2.2.7 ) CV F [ (1998)] 4 (2.2.4 ) 3 χ VA CV F χ VA CV F χ VA : S 0 L/S 0 β CVF (m 2 ) ( /ha) (m/ha) (m) χ VA
46 3.11: 2 38
47 3.12: 5 39
48 3.13: 1 40
49 3.14: 2 41
50 0.1 ( 2 5 ) 0.2 ( 1 2 ) 2 1) 2)
51 3.5 CV F CV F CV F CV F ) 2) 3.15 ([ (1999)]) (1)
52 3.15: 44
53 3.5.3 ( ) 1 6m ( 3.16) CV F χ VA : ( 1 ) CV F χ VA a b /2 2 2 (3.4.2 ) CV F
54 3.16: 46
55 ( ) : 47
56 : 48
57 χ VA CV F 3.18: CV F ( 1 ) 0.02 CV F a. b CV F χ VA χ VA
58 3.19:
59 3.20: 51
60 a b 3.21: 1 52
61 3.5.6 [ (1998)] p c CV F CV F 3.5 CV F CV F CV F CV F CV F 3.5 1) 2) 5 5 3) 2 4) p χ N θ (2.5.1 ) p 13 1 p 21 53
62 p : p = : p =14 54
63 3.24: p = : p = : p = : p =17 55
64 3.28: p = : p = : p = : p =19 56
65 p χ θ χ θ p =20 p : 3.33: 57
66 p =13 p =15 p =15 60% ([ (1998)]) CV F (3.3 ) CV F p =3 p =19 p =5 p =9 p =17 p =13 p = : 58
67 3.7 CV F CV F CV F CV F 59
68 4 4.1 ( ) ((3.1) ) ( 3 ) 2 2 ( 4.2) 60
69 4.1: ( 1 ) 61
70 4.2: ) 1 2) 1 3)
71 2 2 63
72 4.3: 1 ( 1 ) 64
73 4.4: 1 ( 1 ) 65
74 4.5: 1 ( 1 ) 66
75 ) 2) 1) 2) (1) (2) 1 (3.5.1 ) 67
76 ) 2) 3) 4) 5) 6) 68
77 C 1 m (m +1) C 1 C 1 n x 1,..., x n ( 0 <x 1 < <x n ) x 1,..., x n g 1,..., g n 2 g i 1 g i A i A i = xi x i 1 C 1 dx A 1 = = A m+1 x 1,..., x m C 1 (m+1) ( 4.6) 4.4 x 1 x 2 x 3 O 4.6: 69
78 1 2 C 2 m 2m C 2 (m 1) m 1 2 C 2 2m ( 4.7) 4.7: 70
79 m 2m (i + j) (i +1)(j +1) 3 (i + j) (i +1)(j +1) ABC A BC i X 1,..., X i i BC j 1 j ABC (i +1)(j +1) ( 4.8) A B X 1 X 2 X 3 C 4.8: BC j 1 1 (i + j) (i +1)(j +1) 71
80 4 (i + j) (i +1)(j +1) ABCD AB i (i +1) ABCD AD j (j +1) ABCD (i +1)(j +1) ( 4.9) A D B C 4.9: ( 4.10) 5 ( 4.11) 72
81 4.10: 2 ( 3.11 ) 73
82 4.11: 5 ( 3.12 ) 74
83 l 2 g 1 g 2 g 1 l 1 ( 0 <l 1 <l/2) g 1 Y 1 Y 1 g 2 Y 2 Y 2 g 1 g 2 M 1 M 2 ( 4.12) g 1 Y 1 g 2 X Y 2 M 2 Y 2 O M 1 Y : 2 g 1 2 S 1 A 1 A 1 = R 2 sin 1 l 1 2R 1 2 l 1 R 2 l g 2 2 S 2 A 2 A 2 = R 2 sin 1 l l 1 2R 1 2 (l l 1) R 2 (l l 1) 2 4 S 1 S 2 A 12 2 χ 2 χ 2 = A (A 1 A 12 ) 2 +(A 2 A 12 ) 2 +(πr 2 A 1 A 2 + A 12 ) 2 = 4A (πR 2 2A 1 2A 2 )A 12 +2A A A 1 A 2 2πR 2 (A 1 + A 2 )+π 2 R 4 75
84 S 1 S 2 A 12 g 1 OM 1 g 2 OM 2 θ 12 (0 <θ 12 <π) i) 0 <θ 12 < sin 1 l l 1 2R sin 1 l 1 2R A 1 A 2 A 12 = A 1 ii) sin 1 l l 1 2R sin 1 l 1 2R <θ 12 < sin 1 l l 1 2R +sin 1 l 1 2R g 1 g 2 A 12 2 g 1 g 2 X A 12 =( OY 2 Y 1 ) ( OXY 1 ) ( OXY 2 ) ( OY 2 Y 1 ) = 1 ( 2 R2 sin 1 l 1 l l ) 2R +sin 1 1 2R θ 12 ( OXY 1 ) = 1 ( ) l1 2 2 v 1 p 1 ( OXY 2 ) = 1 ( v 2 + l l ) 1 p p 1 = R 2 l p 2 = R 2 (l l 1) 2 4 v 1 = p 2 sin θ 12 + v 2 cos θ 12 v 2 = p 2 cos θ 12 p 1 sin θ 12 A 12 = p 1p 2 p p sin θ 12 2tanθ 12 2 R2 θ 12 + C C = 1 ( 2 R2 sin 1 l 1 l l ) 2R +sin R 4 {(p 1 p 2 )l 1 + lp 2 } iii) sin 1 l l 1 2R +sin 1 l 1 2R <θ 12 <π A 1 A 2 A 12 =0 l 2.1R 2.5R 3.0R 3.5R 3.9R l 1 θ l 1 = l 2R θ 12 = π/2 1) 2R g 2 76
85 2) g 2 1 g θ 12 l χ/(πr 2 ) l 1 θ : l =2.1R χ/(πr 2 ) l 1 θ : l =2.5R 77
86 χ/(πr 2 ) l 1 θ : l =3.0R χ/(πr 2 ) l 1 θ : l =3.5R 78
87 χ/(πr 2 ) l 1 θ : l =3.9R
88
89 5 5.1 CV F CV F CV F CV F 81
90 5.2 [ (1998)] ([ (1982)]) 70% CV F (1) (1a) CV F (1b) (1c) (1d) (1a) CV F CV F 82
91 CV F (1b) (1c) (1d) (1a) (2) 1 (2a) (2b) (2c) (2d) (2a) (2b) (2c) ( ) (2d) 83
92 [ (1998)] :,, [,, (1999)],,,, : ( 2)- -, 525, , [,, (2000)],,, : ( 3)- -, 534, , [, (1999)], : - -, 516, , [ (1982)] :, [ (2001)] :, [ (1986)] :, OR , [ (1988)] :, 23, 19 24, [, (1989)], :, 24, , [, (1983)], :, 18, 37 42,
93 [ (1999)] :, [ (1999)] :,, [ (1973)] : - -, 91, 18 19, [ (1985)] :, [ (1993)] : ( 3 ), [ (1997)] :,, 3, [ (1999)] : - -,, [, (1956)], :, 21., [ (1974)] :, 132, 45 52, [ (1972)] :,, [ (1982)] :, 22, ,
t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ
4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ
70 : 20 : A B (20 ) (30 ) 50 1
70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................
1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +
( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {
04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory
, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,
6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
I II III IV V
I II III IV V N/m 2 640 980 50 200 290 440 2m 50 4m 100 100 150 200 290 390 590 150 340 4m 6m 8m 100 170 250 µ = E FRVβ β N/mm 2 N/mm 2 1.1 F c t.1 3 1 1.1 1.1 2 2 2 2 F F b F s F c F t F b F s 3 3 3
(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)
1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y
Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e
7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z
untitled
1 17 () BAC9ABC6ACB3 1 tan 6 = 3, cos 6 = AB=1 BC=2, AC= 3 2 A BC D 2 BDBD=BA 1 2 ABD BADBDA ABC6 BAD = (18 6 ) / 2 = 6 θ = 18 BAD = 12 () AD AD=BADCAD9 ABD ACD A 1 1 1 1 dsinαsinα = d 3 sin β 3 sin β
i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
meiji_resume_1.PDF
β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E
17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,
17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,
[ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b
18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C
8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,
i
i ii iii iv v vi vii viii ix x xi ( ) 854.3 700.9 10 200 3,126.9 162.3 100.6 18.3 26.5 5.6/s ( ) ( ) 1949 8 12 () () ア イ ウ ) ) () () () () BC () () (
1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ
1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c
m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)
2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T
NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977
1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1
ABCD ABD AC BD E E BD : () AB = AD =, AB AD = () AE = AB + () A F AD AE = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD AB + AD AB + 7 9 AD AB + AD AB + 9 7 4 9 AD () AB sin π = AB = ABD AD
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
201711grade1ouyou.pdf
2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2
A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6
1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67
ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.
(1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..
II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re
II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier
熊本県数学問題正解
00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (
II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )
II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11
K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................
高校生の就職への数学II
II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................
4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx
4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +
2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j
koji07-01.dvi
2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?
2
1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59
untitled
i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
1
1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................
#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =
#A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/
K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................
i
14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7
エクセルカバー入稿用.indd
i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68
The Physics of Atmospheres CAPTER :
The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(
) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)
4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7
2000年度『数学展望 I』講義録
2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53
21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........
A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π
4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
keisoku01.dvi
2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.
01_.g.r..
I II III IV V VI VII VIII IX X XI I II III IV V I I I II II II I I YS-1 I YS-2 I YS-3 I YS-4 I YS-5 I YS-6 I YS-7 II II YS-1 II YS-2 II YS-3 II YS-4 II YS-5 II YS-6 II YS-7 III III YS-1 III YS-2
50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq
49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r
18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (
8 ) ) [ ] [ ) 8 5 5 II III A B ),,, 5, 6 II III A B ) ),,, 7, 8 II III A B ) [ ]),,, 5, 7 II III A B ) [ ] ) ) 7, 8, 9 II A B 9 ) ) 5, 7, 9 II B 9 ) A, ) B 6, ) l ) P, ) l A C ) ) C l l ) π < θ < π sin
6.1 (P (P (P (P (P (P (, P (, P.
(011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.
6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P
6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P
量子力学 問題
3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................
: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ
17 6 8.1 1: Bragg-Brenano x 1 Bragg-Brenano focal geomer 1 Bragg-Brenano α α 1 1 α < α < f B α 3 α α Barle 1. 4 α β θ 1 : α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ Θ θ θ Θ α, β θ Θ 5 a, a, a, b, b, b
基礎数学I
I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............
1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O
: 2014 4 10 1 2 2 3 2.1...................................... 3 2.2....................................... 4 2.3....................................... 4 2.4................................ 5 2.5 Free-Body
1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................
3 5 18 3 5000 1 2 7 8 120 1 9 1954 29 18 12 30 700 4km 1.5 100 50 6 13 5 99 93 34 17 2 2002 04 14 16 6000 12 57 60 1986 55 3 3 3 500 350 4 5 250 18 19 1590 1591 250 100 500 20 800 20 55 3 3 3 18 19 1590
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.
A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c
困ったときのQ&A
ii iii iv NEC Corporation 1997 v P A R T 1 vi vii P A R T 2 viii P A R T 3 ix x xi 1P A R T 2 1 3 4 1 5 6 1 7 8 1 9 1 2 3 4 10 1 11 12 1 13 14 1 1 2 15 16 1 2 1 1 2 3 4 5 17 18 1 2 3 1 19 20 1 21 22 1
名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト
名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim
(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z
B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r
入門ガイド
ii iii iv NEC Corporation 1998 v P A R 1 P A R 2 P A R 3 T T T vi P A R T 4 P A R T 5 P A R T 6 P A R T 7 vii 1P A R T 1 2 2 1 3 1 4 1 1 5 2 3 6 4 1 7 1 2 3 8 1 1 2 3 9 1 2 10 1 1 2 11 3 12 1 2 1 3 4 13
1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0
: 2016 4 1 1 2 1.1......................................... 2 1.2................................... 2 2 2 2.1........................................ 2 2.2......................................... 3 2.3.........................................
ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.
23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%
85 4
85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V
6.1 (P (P (P (P (P (P (, P (, P.101
(008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........
29
9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n
.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(
06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,
2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a
009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin
: , 2.0, 3.0, 2.0, (%) ( 2.
2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................
gr09.dvi
.1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {
<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>
i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2
filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin
SC-85X2取説
I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11
/02/18
3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,
ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.
24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)
. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n
003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t
1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x
. P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +