3 M=8.4 M=3 M=.8 M=4.7 M=5.6 M=3 M=5. M=4.6 M=7 M=3 M= (interaction) 4 - A - B (main effect) - A B (interaction)
|
|
|
- ひでたつ よしなが
- 9 years ago
- Views:
Transcription
1 1 (two-way ANOVA) - - A B 1
2 3 M=8.4 M=3 M=.8 M=4.7 M=5.6 M=3 M=5. M=4.6 M=7 M=3 M= (interaction) 4 - A - B (main effect) - A B (interaction)
3 two-way ANOVA 5 1 A - H0: µ A 0 = µ A 1 = = µ A n - H1: not H0 B - H0: µ B 0 = µ B 1 = = µ B k - H1: not H0 3 - H0: A B - H1: N ij, N ia N jb N N ij = N A i N B j / N 3
4 7 - X ijk (i, j) k - N ij (i, j) - N ia, N jb A (B) i ( j) - N Nij - T ij, M ij (i, j) - T ia, T jb A (B) i ( j) - M ia, M jb A (B) i ( j) - T, M - K A, K B A (B) A 8 1 A MSA MSA = SSA / (K A - 1) SSA = Σ i N i A ( M i A - M ) = Σ i ( T i A / N i A ) - T / N MSW MSW = SSW / (N - K A K B ) SSW = Σ ijk ( X ijk - M ij ) = Σ ijk X ijk - Σ ij (T ij / N ij ) 4
5 A 9 MSA/MSW (K A - 1), (N - K A K B ) F - A B one-way ANOVA two-way ANOVA B 10 B MSB MSB = SSB / (K B - 1) SSB = Σ j N B j ( M B j - M ) = Σ j ( T B j / N B j ) - T / N MSB/MSW (K B - 1), (N - K A K B ) F - MSW 5
6 A B 11 A, B MSAB MSAB = SSAB / (K A - 1) (K B - 1) SSAB = Σ ij N ij ( M ij - M i A - M j B + M ) = Σ ij ( T ij / N ij ) - SSA - SSB - T / N (Mij - M) (Mi A - M) + (Mj B - M) MSAB/MSW (K A - 1)(K B - 1) (N - K A K B ) F -MSW 1 Source SS df MS F p ( ) ( ) ( ) A SSA K A - 1 MSA MSA / MSW B SSB K B - 1 MSB MSB / MSW A B SSAB (K A - 1)(K B - 1) MSAB MSAB / MSW Within: SSW N - K A K B MSW 6
7 13 5% 10, 9, 8, 7, 7 5, 4, 3,, 1 4, 3, 3,, 6, 6, 6, 5, 5 4, 4, 3,, 6, 6, 5, 5, 4 A B N 11 = N 1 = N 13 = N 1 = N = N 3 = 5 N A 1 = N A = 15, N B 1 = N B = N B 3 = 10 N = ( ) T 11 = 4, T 1 = 15, T 13 = 14, T 1 = 8, T = 15, T 3 = 6, T 1 A = 71, T A = 69, T 1 B = 70, T B = 30, T 3 B = 40 M 11 = 8.4, M 1 = 3, M 13 =.8, M 1 = 5.6, M = 3, M 3 = 5., M A 1 = 4.7, M A = 4.6, M B 1 = 7, M B = 3, M B 3 = 4 T = 140, M = 4.33, K A =, K B = 3, Σ X ijk = 800 7
8 15 ( SSA = (T A 1 ) / N A 1 + (T A ) / N A - T / N = 71 / / / 30 = 0.14 MSA = SSA / (K A - 1) = 0.14 / ( - 1) = 0.14 SSB = (T B 1 ) / N A 1 + (T B ) / N B + (T 3B ) / N B 3 - T / N = 70 / / / / 30 = MSB = SSB / (K B - 1) = / (3-1) = SSW = Σ X ijk - [T 11 / N 11 + T 1 / N 1 + T 13 / N 13 + T 1 / N 1 + T / N + T 3 / N 3 ] = 6 16 MSW = SSW / (N - K A K B ) = 6 / (30 - *3) = 1.08 SSAB = [T 11 / N 11 + T 1 / N 1 + T 13 / N 13 + T 1 / N 1 + T / N + T 3 / N 3 ] - SSA - SSB - T / N = = MSAB = SSAB / (K A - 1) (K B - 1) = / ( - 1) (3-1) =
9 A 17 5% 1, 4 F, F > 4.6 F = MSA / MSW = 0.14 / 1.08 = B 18 5%, 4 F F > 3.40 F = MSB / MSW = / 1.08 =
10 19 5%, 4 F F > 3.40 F = MSAB / MSW = / 1.08 = Source SS df MS F p A > 0.7 B < 0.001*** A B < 0.001*** Within:
11 Male Female Score T1 T T3 Treatment Score T1 T T3 0 Male Female Treatment Sex 11
12 3 Score T1 T T Male Female Male Female Treatment Sex Treatment Sex 4 Within-Subject design - A - B two-way ANOVA 1 1
13 5 -X ij (i, j) -K A, K B A (B) -N K A K B -T ia, T jb A (B) i (j) -M ia, M jb A (B) i (j) -T, M 6 A MSA MSA = SSA / (K A - 1) SSA = K B Σ i ( M A i - M ) = ( Σ i T A i ) / K B - T / N B MSB MSB = SSB / (K B - 1) SSB = K A Σ j ( M B j - M ) = ( Σ j T B j ) / K A - T / N MSAB MSAB = SSAB / (K A - 1) (K B - 1) SSAB = Σ ij ( X ij - M i A - M j B + M ) = Σ ij X ij - SSA - SSB - T / N 13
14 7 F = MSA / MSAB -MSA -MSAB (K A -1) (K A - 1)(K B - 1) 8 Source SS df MS F p ( ) ( ) ( ) A SSA K A - 1 MSA MSA/MSAB B SSB K B - 1 MSB A B SSAB (K A - 1)(K B - 1) MSAB MSW A 14
15 9 1 Y ij = µ + a i + ε ij µ a i A ( a i = µ i - µ ) ε ij ( ε ij = Y ij - µ i ) - ε ij - H0 all a i = 0 - H1 not all a i = MSW MSB - MSW ( ε ij ) - MSB ( ε ij ) + ( Σ N i a i / (K - 1) ) MSB MSW - MSB
16 31 Y ijk = µ + a i + b j + (ab) ij + ε ijk µ a i A ( a i = µ i - µ ) b j B ( b j = µ j - µ) (ab) ij ( (ab) ij = µ ij - µ i - µ j + µ ) ε ijk - 3 A - H0 all a i = 0 - H1 not all a i = 0 B - H0 all b j = 0 - H1 not all b j = 0 - H0 all (ab) ij = 0 - H1 not all (ab) ij = 0 16
17 33 MSW, MSA, MSB, MSAB - MSW ( ε ijk ) - MSA ( ε ijk ) + ( Σ N A i a i / (K A - 1) ) - MSB ( ε ijk ) + ( Σ N B j b j / (K B - 1) ) - MSAB: ( ε ijk ) + ( Σ N ij (ab) ij / (K A - 1) (K B - 1) ) 1 Within-Subject design 34 Y ij = µ + a i + b j + (ab) ij + ε ij µ a i A b j B (ab) ij ε ij - H0 all a i = 0 - H1 not all a i = 0 17
18 35 MSA, MSAB MSA ( ε ij ) + + ( ) + ( MSAB: ( ε ij ) + ( ) Within-Subject 18
読めば必ずわかる 分散分析の基礎 第2版
2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)
200-3318 200-3247 26 103 27 106 1000 1.4 1.5 24 27 65 28 79 23 401 5 202 1000 6.9 27 11 27 661 619 6.8 147 185 20.5 98.1 25 3 6 7 () () 100 27 724 192 239 293 271 8.1 5 1,243 162 101 980 1,003 2.3 1,000
こんにちは由美子です
Analysis of Variance 2 two sample t test analysis of variance (ANOVA) CO 3 3 1 EFV1 µ 1 µ 2 µ 3 H 0 H 0 : µ 1 = µ 2 = µ 3 H A : Group 1 Group 2.. Group k population mean µ 1 µ µ κ SD σ 1 σ σ κ sample mean
ネットショップ・オーナー2 ユーザーマニュアル
1 1-1 1-2 1-3 1-4 1 1-5 2 2-1 A C 2-2 A 2 C D E F G H I 2-3 2-4 2 C D E E A 3 3-1 A 3 A A 3 3 3 3-2 3-3 3-4 3 C 4 4-1 A A 4 B B C D C D E F G 4 H I J K L 4-2 4 C D E B D C A C B D 4 E F B E C 4-3 4
/9/ ) 1) 1 2 2) 4) ) ) 2x + y 42x + y + 1) 4) : 6 = x 5) : x 2) x ) x 2 8x + 10 = 0
1. 2018/9/ ) 1) 8 9) 2) 6 14) + 14 ) 1 4 8a 8b) 2 a + b) 4) 2 : 7 = x 8) : x ) x ) + 1 2 ) + 2 6) x + 1)x + ) 15 2. 2018/9/ ) 1) 1 2 2) 4) 2 + 6 5) ) 2x + y 42x + y + 1) 4) : 6 = x 5) : x 2) x 2 15 12
EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編
K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D
ありがとうございました
- 1 - - 2 - - 3 - - 4 - - 5 - 1 2 AB C A B C - 6 - - 7 - - 8 - 10 1 3 1 10 400 8 9-9 - 2600 1 119 26.44 63 50 15 325.37 131.99 457.36-10 - 5 977 1688 1805 200 7 80-11 - - 12 - - 13 - - 14 - 2-1 - 15 -
EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編
K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D
公務員人件費のシミュレーション分析
47 50 (a) (b) (c) (7) 11 10 2018 20 2028 16 17 18 19 20 21 22 20 90.1 9.9 20 87.2 12.8 2018 10 17 6.916.0 7.87.4 40.511.6 23 0.0% 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2.0% 4.0% 6.0% 8.0%
198
197 198 199 200 201 202 A B C D E F G H I J K L 203 204 205 A B 206 A B C D E F 207 208 209 210 211 212 213 214 215 A B 216 217 218 219 220 221 222 223 224 225 226 227 228 229 A B C D 230 231 232 233 A
all.dvi
38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t
2010 IA ε-n I 1, 2, 3, 4, 5, 6, 7, 8, ε-n 1 ε-n ε-n? {a n } n=1 1 {a n } n=1 a a {a n } n=1 ε ε N N n a n a < ε
00 IA ε-n I,, 3, 4, 5, 6, 7, 8, 9 4 6 ε-n ε-n ε-n? {a } = {a } = a a {a } = ε ε N N a a < ε ε-n ε ε N a a < ε N ε ε N ε N N ε N [ > N = a a < ε] ε > 0 N N N ε N N ε N N ε a = lim a = 0 ε-n 3 ε N 0 < ε
Microsoft Word - 統計マニュアル.doc
Stat View StatView ANOVA 1 !"#$ %"#$ &'() 2 3 $%!/01)234,567 8%!/073+,-.96'3:;)*< =6$('>= $%&'()*%+,-.!"# regression to the norm 4 prospective controlled study!" +#$%,-./012+#$&,3456789+#$%,- :;2+#$&,3./45:?-@A2BC?D
Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 s
BR003 Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 sampsi 47 mwp-044 sdtest 54 mwp-043 signrank/signtest
225 225 232528 152810 225 232513 -1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- -18- -19- -20- -21- -22- -23- -24- -25- -26- -27- -28- -29- -30- -31- -32- -33- -34- -35- -36-
232528 152810 232513 -1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- -18- -19- -20- -21- -22- -23- -24- -25- -26- -27- -28- -29- -30- -31- -32- -33- -34- -35- -36- -37- -38-
AHPを用いた大相撲の新しい番付編成
5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i
EPSON LP-8900ユーザーズガイド
3 4 5 6 7 8 abc ade w p s 9 10 s s 11 p 12 p 13 14 p s 15 p s A B 16 w 17 C p 18 D E F 19 p w G H 20 A B 21 C s p D 22 E s p w 23 w w s 24 p w s 25 w 26 p p 27 w p s 28 w p 29 w p s 30 p s 31 A s B 32
68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1
67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10
量子力学 問題
3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,
卒業論文
Y = ax 1 b1 X 2 b2...x k bk e u InY = Ina + b 1 InX 1 + b 2 InX 2 +...+ b k InX k + u X 1 Y b = ab 1 X 1 1 b 1 X 2 2...X bk k e u = b 1 (ax b1 1 X b2 2...X bk k e u ) / X 1 = b 1 Y / X 1 X 1 X 1 q YX1
NISTEP REPORT No. 95 ( ) ( ) ( ) ( ) ( ) ( ) 104 397 1022 1050 1173 1674 1738 2679(651cites) 2683 2721 2763 2780 3032 3865 3866 3879 3928 4151 4203 4335 4676 4682 4699 4715 4898 5431
E E E E E 9001700 113 114 0120-109217 E E E E E E E EE E E EE E E E E E E E E E E E E E E E E E E E E E E E E 9001700 113 114 0120-109217 9001700 113 114 0120-109217 E E E E E E E E E E
SL-8号電話機 取扱説明書
E E E E E E 0120-109217 9001700 113 114 E E E E E E E E E E E E EE E E EE E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E 9001700 113 114 0120-109217 9001700 113
IA01-154_ACL5...._1.indd
7 7 7 7 7 3 Q 4 q 8 8 8 8 8 8 5 q 8 8 8 8 8 6 q 8 8 7 q 8 8 8 8 8 q 8 9 10 8 8 q 8 8 8 8 8 8 8 11 q 8 8 8 8 8 q 12 13 q 8 q 8 8 14 15 q 8 6 1 7 7 7 7 2 7 3 1 10 3 7 7 7 4 7 7 7 7 16 17 5 6 7 8 9 10 11
合併後の交付税について
(1) (2) 1 0.9 0.7 0.5 0.3 0.1 2 3 (1) (a), 4 (b) (a), (c) (a) 0.9 0.7 0.5 0.3 0.1 (b) (d),(e) (f) (g) (h) (a) (i) (g) (h) (j) (i) 5 (2) 6 (3) (A) (B) (A)+(B) n 1,000 1,000 2,000 n+1 970 970 1,940 3.0%
2! $ ' $ % & " " " " "
Jp SB-600 SB-600 (Jp) 2! $ ' $ % & " " " " " 3 ' ( # # # # # # & " " "! " " # ' # $ # " " " " " 4 " " " " ( # " " " " 5 6 " " " " # # # ( $ " " " 7 " " " " " " " # # # ( $ ' 8 9 k k k k k k k k k u 10
t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1
t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.
54 144 144 144 144 144 80 152 84 122 HTML
54 144 144 144 144 144 80 152 84 122 HTML P20 P24 P28 P40 P54 P84 P122 P138 P144 P152 P220 P234 P240 P242 1 1-1 1-2 1-3 1-4 1-5 1 1-6 1 2 2-1 2-2 A C D E F 2 G H I 2-3 2-4 C D E E A 2
Nikon SB-600 使用説明書
Jp SB-600 SB-600 (Jp) 2! $ ' $ % & " " " " " 3 ' ( # # # # # # & " " "! " " # ' # $ # " " " " " 4 " " " " ( # " " " " 5 6 " " " " # # # ( $ " " " 7 " " " " " " " # # # ( $ ' 8 9 k k k k k k k k k u 10
取扱説明書[L704i]
231 N b N b A N b A N N P 232 N N b b K Q P M I b C c C 233 DC I d I M M M C I I C C I C C 234 M I C M J C J C D J C C H D C DC I b I 235 M b 1 3 7 9 F E 5 b J b c b c d e c b d e M H M I 236 J M J M I
00 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.... 0........ 0 0 0 0 0 0 0 0 0 0..0..........0 0 0 0 0 0 0 0 0 0 0.... 0........ 0 0 0 0 0 0 0 0 0 0... 0...... 0... 0 0 0 0 0 0..0 0... 0 0 0 0 0.0.....0.
i
009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3
140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11
福岡大学人文論叢47-3
679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.
50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq
49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r
II III II 1 III ( ) [2] [3] [1] 1 1:
2015 4 16 1. II III II 1 III () [2] [3] 2013 11 18 [1] 1 1: [5] [6] () [7] [1] [1] 1998 4 2008 8 2014 8 6 [1] [1] 2 3 4 5 2. 2.1. t Dt L DF t A t (2.1) A t = Dt L + Dt F (2.1) 3 2 1 2008 9 2008 8 2008
ito.dvi
1 2 1006 214 542 160 120 160 1 1916 49 1710 55 1716 1 2 1995 1 2 3 4 2 3 1950 1973 1969 1989 1 4 3 3.1 3.1.1 1989 2 3.1.2 214 542 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
B's Recorderマニュアル_B's Recorderマニュアル
5 Part 6 - 8 9 - 0 5 A C B AB A B A B C 7-6 - 8 9-5 0 5 7 A D B C E F A B C D F E 6 9 8 0 Part - - 5 5 7 6 9-7 6 8 0 5 5-6 7 9 8 5-5 50 5 5 5 -6 5 55 5 57-7 56 59 8 7 6 58 0 8 9 6 6 7 6 5 60 7 5 6 6-8
B's Recorderマニュアル
2 3 4 5 Part 1 6 1-1 8 9 1-2 10 11 12 13 A B C A C B AB A B 14 15 17 1-4 2 1 16 1-3 18 19 1-5 2 1 20 21 22 23 24 25 A B C D E F A B C D E F 26 27 28 29 30 31 Part 2 32 2-1 2-2 1 2 34 35 5 37 4 3 36 6 2-3
untitled
1 th 1 th Dec.2006 1 1 th 1 th Dec.2006 103 1 2 EITC 2 1 th 1 th Dec.2006 3 1 th 1 th Dec.2006 2006 4 1 th 1 th Dec.2006 5 1 th 1 th Dec.2006 2 6 1 th 1 th Dec.2006 7 1 th 1 th Dec.2006 3 8 1 th 1 th Dec.2006
絵本に描写された「男らしさ・女らしさ」
~ ,.;~ 11 と ~ ~l ぷ乏し ':i~: ~< 酔 活ょう ~ "(../V~/tØ 11~ 11~ 11~ 11~ ~~ ~9 æ~ (4~ (4~ (4~ (5~ (5~ ~ ラス テイラー (1~ ~ ンタンのぼうし O~ (8~ (9~ A Study on Sex Roles in Picture Books Tomohide, BANZAI Hiroko,
: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =
1 1980 1) 1 2 3 19721960 1965 2) 1999 1 69 1980 1972: 55 1999: 179 2041999: 210 211 1999: 211 3 2003 1987 92 97 3) 1960 1965 1970 1985 1990 1995 4) 1. d ij f i e i x i v j m a ij m f ij n x i = n d ij
Core Ethics Vol. Sex Reassignment Surgery SRS SRS GID GID SRS GID GID GID GID GID QOL QOL QOL -- QOL
Core Ethics Vol. MTF Gender Identity Disorder GID GID GID GID QOL GID QOL QOL GID QOL GID QOL QOL QOL GID QOL Gender Identity Disorder QOL GID Core Ethics Vol. Sex Reassignment Surgery SRS SRS GID GID
- 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - 1979 54 2010 22 2012 24 2005 17 2007 19 2007 19 18 1992
1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π
. 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.
MINITAB アシスタントホワイトペーパー本書は Minitab 統計ソフトウェアのアシスタントで使用される方法およびデータチェックを開発するため Minitab の統計専門家によって行われた調査に関する一連の文書群を構成する文書の 1 つです ゲージ R&R 分析 ( 交差 ) 概要 測定システ
MINITAB アシスタントホワイトペーパー本書は Minitab 統計ソフトウェアのアシスタントで使用される方法およびデータチェックを開発するため Minitab の統計専門家によって行われた調査に関する一連の文書群を構成する文書の 1 つです ゲージ R&R 分析 ( 交差 ) 概要 測定システムの分析は 生産工程を適切に監視および改善するために 事実上あらゆる種類の製造業で行われています 一般的な測定システムの分析では
untitled
- k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =
日本呼吸器学会雑誌第48巻第6号
Fig.1 Cutaneousfindingsandpathologicalfindingsofatransbronchiallungbiopsy(TBLB)andlichenifiedeczemaoftherightforearm.Thepatienthadlichenifiedeczemaonhisextremitiesandbodytrunk (1a:rightforearm,1b:leftthigh).Therewasinfiltrationoftheinflammatorylymphocytes,edemaandabrasioninthetype2alveolarepithelium
n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz
1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x
