i 1 1 Super-Kamiokande

Size: px
Start display at page:

Download "i 1 1 Super-Kamiokande"

Transcription

1

2 i 1 1 Super-Kamiokande Super-Kamiokande First Reduction Second Reduction SK-II A Super-Kamiokande 47

3 ii A A A A A.4.1 A.4.2 A.4.3 NiCf LINAC A B

4 A 5kpc SK PMT SK-III PMT A 1987A

5 2 1 Super-Kamiokande Super-Kamiokande(SK) 1, 5, SK n(λ) > 1 p µ 1 pµ 2 kµ p θ k p p µ 1 = pµ 2 + kµ (1.1) cos θ ch = 1 n(λ)β (1.2) θ ch ( ) n = 1.33β = 1 42 cos θ ch 1 E n mass n2 1 (1.3)

6 1 Super-Kamiokande 3.767MeV 157.4MeV n dl λ 1 λ 2 dn dn dl = 2πα ( 1 1 ) ( 1 1 ) n λ 1 λ 2 n 2 β 2 (α 1/137 ) SK 3nm 6nm 1cm 34 1MeV cm SK 1, / *1 *2 (1.4) 1.2 SK 1.2 1,m(2,7m w.e) mG LINAC room electronics hut control room 2" PMTs water system Mt. IKENOYAMA 1m 1.2 Super-Kamiokande *1 2.5V.3A 1.5V 1.5V A =.27J/s 2.5 5nm 1 hc/λ = Js m/s 5nm = J (.27J/s) ( J) photons/s *2 SK 23Hz

7 1 Super-Kamiokande SK 39.3m 41.4m 5, 32, 11, % 1, ,2 FRP SK-I SK-II SK Sb-K-Cs nm 66nm39nm 22% (ADC ) 1 * /4 p.e (-1mV) 3kHz *3 1

8 1 Super-Kamiokande 5 Quantum efficiency Wave length (nm) [1] (T.T.S)[1] (T.T.S:Transit Time Spread) SK 1 T.T.S 2.2ns (1.7) 2 [1] 1.3 7m ATM(Analog Timing Module) *4 *4 Super-Kamioka TKO(Tristan KEK Online)

9 1 Super-Kamiokande 6 2-inch PMT SCH ATM x 24 2-inch PMT x 2 ATM GONG SCH ATM x 2 interface Ultra Sparc x 24 ATM GONG SMP SMP SMP online CPU(slave) SMP SMP x 6 SMP Super Memory Partner 2-inch PMT VME SCH ATM Ultra Sparc x 2 online CPU(slave) x 24 ATM GONG TKO Analog Timing Module Ultra Sparc online CPU(slave) Ultra Sparc FDDI online CPU(host) Ultra sparc online CPU(slave) Ultra Sparc online CPU(slave) Ultra Sparc online CPU(slave) FDDI Ultra Sparc interface SMP SMP SMP online CPU(slave) Ultra Sparc online CPU(slave) online CPU (slave) Ultra Sparc SMP SMP SMP VME Super Memory Partner VME interface interrupt reg. 2-inch PMT TRG SCH ATM TRIGGER x 24 x 2 ATM GONG Analog Timing Module HIT INFORMATION TRIGGER PROCESSOR TKO PMT x 112 ATM x ~1 SMP x 48 online CPU(slave) x SK TKO 1 (SCH) (GONG) 2 ATM

10 1 Super-Kamiokande 7 HITSUM ATM AD *5 AD SCH *6 SMP(Super Memory Partner) Super-Kamiokande HITSUM HITSUM 2ns 15mV 1 2ns 1 HITSUM (1.9) Analog signal from PMT ATM threshold 4nsec width ADC gate start stop TDC start and stop 2nsec width HITSUM global trigger in ATM Sum of HITSUM Master threshold in center hut global trigger 1.9 HITSUM Super-Kamiokande HE(High Energy)LE(Low Energy) SLE(Super Low Energy) HE>LE>SLE *5 PMTSUM ATM FlashADC *6 Super Control Head SMP TKO SMP

11 1 Super-Kamiokande 8 *7 TRG VME TRG 3ns TRG GONG ATM TRG 2ns 1 28ns MTL(Magnetic Tape Library) SK-I 12Tbyte MTL SK-I 4Gbte/day 2Tbyte ATM 5Ω ATM 5Ω *8 ATM 7m.2m/nsec 7m.2m/nsec 2 = 7nsec ATM 9nsec SK 15MeV 1 1kpc SK 1 4kHz 9nsec 9nsec 4kHz =.36.36% 9nsec *7 SK-I HE:-34mV(31hits)LE:-32mV(29hits)SLE:-186mV(17hits) SK-I HE:-18mV(17hits)LE:-152mV(1hits)SLE:-11mV(1hits) SLE SLE SLE *8 1kΩ ATM 1%

12 9 2 SK I II Ia Ib ( ) Ic II II-P (P:Plateau) II-L (L:Linear) II Z 2 (Z: ) 3. 4.

13 2 1 2).46M 2 (> 8M ) ONeMg Fe ( ) IbIcII II Ib (Ic ) II-P II-L [5] II-L 12M II-P 1M II-P II-L Ib Ic Ia C+O 4 M < M < 8 M (2.1) a. (M <.8 M ) b. (.8 M < M <.46 M ) 1 2 M

14 [4] c. (.46 M < M < 4 M ) C+O 5 d. (4 M < M < 8 M ) C+O C+O 1.41M 1 9 K 1.41M erg erg e. (8 M < M < 12 M ) 24 Mg 24 Na 2 Ne 2 F e 16 O f. (12 M < M) K

15 erg SK 4 e A(N, Z) ν e A(N + 1, Z 1) (2.1) e p ν e n (2.2) e + n ν e p (2.3) e e + ν e ν (2.4) ν A ν A (2.5) ν p ν p (2.6) ν n ν n (2.7) ν e ν e (2.8) 1. Fermi (2.1) ν e 1 51 erg g/cm 3 ν e (2.5) 3. (t = ) ν e 1 14 g/cm 3 4. (t 1msec)

16 2 13 (2.2) ν e ν e 1msec 1 53 erg/sec 1 51 erg 5. (1msec t 1sec) () (2.2) (2.3) (2.4) erg 1msec 1sec 6. (1sec t 1sec) 1sec 1 53 erg 7. (t > ) km 198 Wilson [6] (2.2) (2.3) delayed explosion Livermore group [7] Livermore group ( ) (.1sec ν e ( ) ) 5msec

17 2 14 delayed explosion 1 25MeV ν µ ν µ ν τ ν τ ν e ν e 5msec delayed explosion 2.3 Super-Kamiokande SK 5 (i) ν e ν e (2.9) (ii) ν e p n e + (2.1) (iii) ν e 16 O e + 15 N (2.11) (iv) ν e 16 O e 16 F (2.12) (ii) O(1/M)(M ) [8] E e = E ν M 2 n M 2 p +m2 e 2M p 1 + E ν M p (1 v e cos θ) (2.13) E ν M n M p 1/M p e = Ee 2 m 2 e 1 v e = p e /E e E () e = E ν (2.14) = M p M n 1 [ E e (1) = E e () 1 E ] ν (1 v() e cos θ) y2 M M (2.15)

18 2 15 y = ( 2 m 2 e)/2 M *1 ( ) (1) dσ = σ [ { } (f 2 + 3g 2 ) + (f 2 g 2 )v ( d cos θ 2 e1) cos θ E e (1) p (1) e Γ ] M E() e p () e (2.16) σ = G2 F cos2 θ C (1 + R π inner) (2.17) G F Fermi θ C Cabibbo cos θ C =.974 R inner.24 [9] Γ [ Γ = 2(f + f 2 )g (2E e () + )(1 v e () [ ( (f 2 +3g 2 ) (E e () + ) 1 1 cos θ v e () ) cos θ) m2 e E () e ] +(f 2 g 2 ) ] [ + (f 2 + g 2 ) [ ( (E e () + ) (1 + v () e 1 1 cos θ v e () cos θ) + m2 e E e () ) ] ] + v e () cos θ (2.18) fg f = 1g = 1.26 f 2 f 2 = µ p µ n = MeV [8] (i) dσ = G2 F m [ ] e m e T e A + B + C dt e 2π Eν 2 (2.19) [1] T e m e A B C A = (g V + g A ) 2, B = (g V g A ) 2, C = (ga 2 gv 2 ) (2.2) { gv = 2 sin 2 θ W + 1 2, g A = for ν e g V = 2 sin 2 θ W 1 2, g A = 1 (2.21) 2 for ν µ, ντ [1] θ W Weinberg (=.2317 [11]) 2.2 T e σ total = Tmax = G2 F m e 2π dσ dt e dt e [ A T max + B E ν 3 { 1 ( 1 T ) } ] 3 max m e Tmax 2 C E ν 2Eν 2 (2.22) T max T max = E ν 1 + m e 2E ν (2.23) 1MeV *1 O(1/M 2 )

19 2 16 a) ν e e ν e e σ νe e ν e e = E ν(mev ) 1(MeV ) (cm 2 ) (2.24) b) ν e e ν e e σ νe e ν e e = E ν(mev ) 1(MeV ) (cm 2 ) (2.25) c) ν µ,τ e ν µ,τ e σ νµ,τ e ν µ,τ e = E ν(mev ) 1(MeV ) (cm 2 ) (2.26) d) ν µ,τ e ν µ,τ e σ νµ,τ e ν µ,τ e = E ν(mev ) 1(MeV ) (cm 2 ) (2.27) 2.3 (ii) N(ν e, p) : N(ν e, e ) : N(ν µ,τ, e ) 5 : 1 : 1 6 (2.28) (ii) (i) cos θ = 1 + m e E ν 1 + 2m e T e (2.29) cos θ > 1 m e T e (2.3) [12, 13] Livermore group 1kpc SK ( (i) (ii) [14] SN1987A Kamiokande 11 IMB 8 i). 1 ii) ergiii). Kamiokande E = 7.5MeV IMB

20 2 17 σ (1-4 cm 2 ) ν e+ 16 O ν e+p ν e + 16 O ν e +e - ν e+e - ν X +e - ν X+e Neutrino Energy (MeV) 2.3 Number of Events / 1 MeV ν +e - νp e ν e + 16 O 1 ν e+ 16 O Visible Energy (MeV) 2.4 SK 1kpc ( (1MeV ) )

21 2 18 E = 11.1MeV [15, 16] i).ii). iii). E νe 16MeV SuperKamiokande SN1987A Delayed explosion SK 1kpc SK 8 [17] θ 13 t m2 νl (2.31) 2cE ν L SN1987A ν e (ν e ) 6eV (@ 95%C.L.) [18]SK 1msec 2eV m e < 2.8eV

22 19 3 SK SK-I SK-II SK [19] SK-I SK-II PMT SK-I SK-II () ( PMT) 1. PMT PMT PMT a PMT

23 time(nsec) SK PMT 3.1 t 1 t 4 b 2nsec 2nsec window 3.1 t 2 t 3 window c window N BG t 3 t 2 (t 2 t 1 ) + (t 4 t 3 ) (N hit(t 1 t 2 ) + N hit (t 3 t 4 )) (3.1) d Significance Signif icance N hit (t 2 t 3 ) N BG t 3 t 2 (t 2 t 1 )+(t 4 t 3 ) Nhit (t 1 t 2 ) + N hit (t 3 t 4 ) 2nsec 3.1 PMT cm (goodness) goodness 1 N hit i=1 1 σ 2 N hit 1 ( σ 2 exp (t res,i t mean ) 2 2σ 2 i=1 σ PMT 5nsec t res,i t i PMT(i) ( x xi ) t res,i = t i 2 (3.4) c water x x i PMT(i) t mean t res,i goodness 1 PMT 1 goodness goodness ) (3.2) (3.3)

24 3 21 y coordinate(cm) x coordinate(cm) Z coordinate(cm) x or y coordinate(cm) 3.2 x y 3.3 z x( y) PMTi d v θi i φ i SK tank relative probability cosθ dir Monte Carlo f accept (φ)[19] () β 1 42 PMT 2nsec 5nsec window PMT d = (d x, d y, d z ) L( d) = N hit5 i=1 log[f(φ i ( d))] cos θ i f accept (cos θ i ) (3.5) N hit5 5nsec PMT 3.4 φ i

25 3 22 d PMT v i θ i PMT PMT f accept (cos θ i ) f accept (cos θ i ) f accept = cos θ i +.39 cos 2 θ i.132 cos 3 θ i (3.6) f accept (φ) Monte Carlo d d init d init = N hit5 i=1 v i (3.7) PMT PMT 1 1 PMT 5nsec window N hit5 N hit5 PMT N eff N eff N eff = N hit5 i=1 [ (X i ɛ dark + ɛ tail ) N all N alive R ( cover S(θ i, φ i ) exp ri ) ] G(i) λ X i : PMT 1 (3.8) X i log(1 x i) (3.9) x i x i PMT N i PMT n i x i = n i /N i PMT ɛ dark : SK-I PMT dark noise rate 1 3kHz PMT nsec window PMT 2 dark noise ɛ dark ɛ dark N alive R noise 5nsec N hit5 (3.1)

26 3 23 N alive PMT R noise dark noise rate [hits/nsec] ɛ tail : SK-I 4% 5nsec window ɛ tail N hit1 N hit5 N hit5 ɛ dark (3.11) N hit1 1nsec window PMT ɛ tail > N all N alive : Bad PMT PMT N alive PMT N all Bad PMT R cover S(θ i,φ i ) : R cover SK-I.4SK-II.19 PMT 3.6 S(θ, φ) θ φ PMT θ 8 6 Θ φ S(θ, φ)[19] 3.7 S(θ, φ) θφ φ exp ( r i ) λ : PMT exp ( r i ) λ r i PMT λ G(i): SK-I PMT 375 PMT PMT PMT ( ) [3]

27 Energy(MeV) Neff(corrected) 3.8 N eff PMT G(i) = {.833 for the 375 PMTs 1. for the other PMTs (3.12) *1 N eff 4 Monte Carlo N eff First Reduction 1 1MeV *1 SK-II G(i) PMT

28 3 25 γ 2cm 22.5kt DAQ 1 5µsec (ODOuter Detector) PMT 19 OD First noise cut.5 PMT N noise N total R noise = N noise /N total.4 Second noise cut ATM 1 ATM 95% PMT Goodness Goodness Goodness Second Reduction First Reduction Fit stability goodness goodness goodness goodness 3 goodness goodness G G R grid 3.9 R grid Monte Carlo R grid R grid >.8 Spallation SK 2 3Hz (spallation)

29 3 26 Number of events Rgrid 3.9 R grid MC R grid.8 [19] X µ + 16 O µ + X (3.13) X sec 5 2 MeV Spallation Spallation 3 L: T : Q res : Q res = Q total Q unit L Q total Q unit L Spallation Spallation [19] 3.1 ( L T Q res 3 T Q res 2 ) 2 1 Spallation SK-II 2 goodness 1

30 3 27 Isotope τ 1 (sec) decay mode Kinetic Energy (MeV) 2 8 2He.119 β (γ) β n 16% 8 3Li.838 β B.77 β Li.178 β 13.6 (5.5 % ) β n ( 5 % ) 9 6C.127 β + n Li.85 β 16 2 ( 5 % ) β n 16 ( 5 % ) 11 4 Be 13.8 β ( 54.7 % ) (γ) ( 31.4 % ) 11 4 Be.236 β B.22 β N.11 β B.174 β O.86 β B.138 β (γ) 15 6 C β 9.77 ( 36.8 % ) (γ) 16 6 C.747 β n N 7.13 β 1.42 ( 28.% ) (γ) (66.2% ) 3.1 SK Spallation (spallation product)[19] 5 4 CUT CUT Spallation likelihood Spallation likelihood 3.1 () ()Spallation [19] Monte Carlo

31 SK-II SK-II PMT 5182 SK-I 1MeV 11cm21% (SK-I 87cm14% ) SK-II 2cm Energy < 7.5 MeV 3cm 7.5 MeV Energy < 8.MeV 2cm 3cm Energy 8.MeV 2cm goodness ( goodness 1 ) goodness ovaq (Quality factor of orientaion and vertex accuracy) ovaq = Goodness 2 vertex Goodness 2 orientation (3.14) 1MeV ovaq <.25 ovaq <.2 PMT 3.11 d wall Monte Carlo Energy < 7.5 MeV : d eff = 11cm 7.5 MeV Energy < 8.MeV : d eff = 1cm 8. MeV Energy < 8.5MeV : d eff = 8cm 8.5 MeV Energy < 9.MeV : d eff = 7cm 9. MeV Energy < 1MeV : d eff = 5cm 1 MeV Energy < 3MeV : d eff = 4cm 3.11 d eff

32 3 29 livetime efficiency SK-I SK-II SK LINAC 23 Year 3.3 SK-I SK-II % LINAC 23 SK-I SK-II 3.2 SK-II PMT SK MeV

33 3 3 SK-I SK-II ( ) 11,146 5,182 (with FRP+ ) % 19% (1MeV) 14% 21% (1MeV) 87cm 11cm (1MeV) p.e/mev 2.8 p.e/mev 4.1 MeV (Sep 22) 5.5 MeV 5/31/19965/28/1997 : 6.5MeV 12/22/227/14/23 : 8MeV 5/29/19977/15/21 : 4.5MeV / 7/15/231/5/25 : 7MeV / 3.2 SK-I SK-II MeV 25MeV SK 1kpc 1, ( 9, ) ( / ) ν e + p n + e + (88%/89%), (3.15) ν e + e ν e + e (1.5%/1.5%), (3.16) ν e + e ν e + e (< 1%/ < 1%), (3.17) ν x + e ν x + e (1%/1%), (3.18) ν e + 16 O e + 17 F (2.5%/1%), (3.19) ν e + 16 O e N (1.5%/ < 1%), (3.2) ν x + 16 O ν x + O /N + γ (5%/6%), (3.21) ν x ν µ ν τ *2 Time-window Time *2 [17] Livermore [2] [17] 3.13

34 time-window 2. time-window (Multiplcity) 1. (3.13 ) 3. 3 time-window Spallation 1 PMT PMT Flasher R mean = N multi 1 i=1 N multi j=i+1 r i r j N multi C 2. (3.22) N multi Multiplicity r i i N multi C 2 2 R mean R mean 3.14 Monte Calro R mean R rmean 18cm R rmean Multiplicity 2 75cm Multiplicity 1cm 3.3 Probability Rmean Multiplicity R mean 2 > 75 cm.94 3 > 1 cm.96 4 > 1 cm.99 8 > 1 cm R mean 3.14 R mean

35 [21] 1Mpc SK II [22]SK SK 1kpc 8 7kpc time-window 2 time-window 2 2events/2sec (3.23) time-window R 1 time-window ( T ) (Muiltiplicity :M thr -1) (RT live : T live ) N bg = RT e R T [R T ] live (i 1)! i=m thr i 1 (3.24) Monte Calro kpc BG (3.17) SK-I SK-II 17MeV SK-I.762 / SK-II 1.3 / R mean 3.18 SK-I R mean 3 PMT SK-ISK-II

36 Detection Probability of SN Detection Probability of SN # of Expected Background in days 3 33 # of Expected Background in days Energy threshold [MeV] Energy threshold [MeV] 3.15 SK-I SK-II SN@1kpc SN@3kpc SN@5kpc SN@7kpc Energy threshold [MeV] 1-2 SN@1kpc SN@3kpc SN@5kpc SN@7kpc Energy threshold [MeV] 3.16 SK-I SK-II SN1987A SK IMB 19 SK-I 6.5MeV SK-II 7MeV (3.2) *3 *3 SK-I 5/29/ MeV SK-I 6.5MeV

37 3 34 Detection Probability / # of Expected BG SN@1kpc SN@3kpc SN@5kpc SN@7kpc Energy threshold [MeV] Detection Probability / # of Expected BG SN@1kpc SN@3kpc SN@5kpc SN@7kpc Energy threshold [MeV] 3.17 SK-I SK-II BG MeV BG Rmean Multiplicity R mean SK-I SK-II time-window multiplicity 3events/.5sec, or 4events/2.sec, or 8events/1sec. (3.25) SK-ISK-II R mean multiplicity 2 2

38 3 35 BG SK-I SK-II 3 events/.5 sec events/2. sec events/ 1 sec Rmean [cm] SK-I SK-II Multiplicity 3.19 Multiplicity R mean SK-I SK-II 2 Multiplicity R mean SK-I 121 SK-II 53 Rmean > 1cm SK-I 3 SK-II 2 R mean > 1cm 819cm( A) 874cm( B) R mean Flasher Spallation Flasher PMT Spallation 3.2 first reduction ovaq R mean AB ovaq ovaq A Flasher ovaq B Spallatio

39 # of Events Cut for Energy<1MeV 1 2 Cut for Energy>1MeV ovaq 3.2 First reduction ovaq ( Energy < 1MeV Energy > 1MeV ovaq ) A B 3 ovaq 3.21 A 3 Flasher (3.22) A 1 First reduction 3.23 FlasherPMT A 3 A Flasher B B (First reduction ) 3.25 B 3 ( ) 15 (3.24 ) (3.26) 793, PMT *4 2 *4 goodness.46

40 3 37 NUM 27 RUN EVENT DATE 4-Oct-23 TIME 18:34:58 TOT PE: 83.5 MAX PE: 5.9 NMHIT : 63 ANT-PE: 4.6 ANT-MX: 2.9 NMHITA: 39 RunMODE:NORMAL TRG ID :111 T diff.: 318. us :.318 ms FSCC: 827F9 TDC: Q thr. :. BAD ch.: no mask SUB EV : / NUM 77 RUN EVENT DATE 4-Oct-23 TIME 18:34:59 TOT PE: MAX PE: 72.5 NMHIT : 159 ANT-PE: 38.4 ANT-MX: 4.5 NMHITA: RunMODE:NORMAL TRG ID :111 T diff.:.378e+4us : 3.78 ms FSCC: 827F9 TDC: Q thr. :. BAD ch.: no mask SUB EV : / NUM 134 RUN EVENT DATE 4-Oct-23 TIME 18:34:59 TOT PE: MAX PE: 12.7 NMHIT : 85 ANT-PE: 35.3 ANT-MX: 2. NMHITA: 4 RunMODE:NORMAL TRG ID :111 T diff.: 79.6 us :.796E-1ms FSCC: 827F9 TDC: 896. Q thr. :. BAD ch.: no mask SUB EV : / A 3 SK PMT PMT PMT (t) (q) nsec (p.e)

41 3 38 NUM 23 RUN EVENT DATE 4-Oct-23 TIME 18:34:58 TOT PE: MAX PE: 13.9 NMHIT : 332 ANT-PE: 61.5 ANT-MX: 9.9 NMHITA: 58 NUM 46 RUN EVENT DATE 4-Oct-23 TIME 18:34:58 TOT PE: MAX PE: 1. NMHIT : 237 ANT-PE: 29.2 ANT-MX: 2.5 NMHITA: 32 RunMODE:NORMAL TRG ID :111 T diff.: 311. us :.311 ms FSCC: 827F9 TDC: Q thr. :. BAD ch.: no mask SUB EV : / RunMODE:NORMAL TRG ID :11 T diff.: 4.16 us :.416E-2ms FSCC: 865F9 TDC: Q thr. :. BAD ch.: no mask SUB EV : / NUM 64 RUN EVENT DATE 4-Oct-23 TIME 18:34:59 TOT PE: MAX PE: 6.2 NMHIT : 121 ANT-PE: 48.7 ANT-MX: 4.1 NMHITA: 47 NUM 12 RUN EVENT DATE 4-Oct-23 TIME 18:34:59 TOT PE: MAX PE: 9.8 NMHIT : 93 ANT-PE: 44.6 ANT-MX: 11. NMHITA: 35 RunMODE:NORMAL TRG ID :111 T diff.:.132e+5us : 13.2 ms FSCC: 827F9 TDC: Q thr. :. BAD ch.: no mask SUB EV : / RunMODE:NORMAL TRG ID :11 T diff.: 16.6 us :.166E-1ms FSCC: 827F9 TDC: Q thr. :. BAD ch.: no mask SUB EV : / 3.22 A Flasher FlasherPMT 3.7 time-window multiplicity e + p n + ν e 1msec erg 1kpc

42 第3章 39 超新星爆発ニュートリノバースト探索の解析 Z position [cm] Y position [cm] X position [cm] 図 X position [cm] 事象群 A の前後 1 秒以内に観測された有効体積カット抜きの first recduction を行った後 の事象の発生点分布 右はタンクを上から見たときの x-y 平面 左は横から見たときの z-x 平面での 発生点分布をしめす 実線は内水槽 点線は壁から 2cm の有効体積を示す 赤星は事象群 A の 3 事象の発生点で青丸はその前後 1 秒間に観測された first reduction 後に残った事象の発生点である が 図 3.22 の Flasher PMT のある位置に事象発生点が集中していることがわかる NUM 374 RUN EVENT DATE 3-Apr7 TIME :23:56 TOT PE: MAX PE: 411. NMHIT : 7367 ANT-PE: ANT-MX: 68.8 NMHITA: Entrance point RunMODE:NORMAL TRG ID :111 T diff.:.513e+5us : 51.3 ms FSCC: E827F9 TDC: 891. Q thr. :. BAD ch.: no mask SUB EV : / Exit point 25 2 Saturated PMTs 図 3.24 右は事象群 B の約 3 秒前に飛来したミュー粒子のイベントディスプレイ はミュー粒子 がタンクに入った点を示し はタンクを出た点を示す 左は光を受け取った PMT の時間 [nsec] と荷 電情報 [p.e] のヒストグラムを示し 22p.e 付近のピークはサチュレーションを起こした PMT を示 している トリノ事象はニュートリノ振動のモデルにもよるが およそ 1 から 6 事象である [17] したがって 多く の統計はあまり期待できないにしろ 超新星爆発機構の詳細を理解するためには重要な解析であるといえ る また 銀河系内超新星爆発がデータ取得期間内に起こらなかったとしても例えばブラックホールの形 成などで核の爆発途中で途絶えてしまったときその前におこる中性子化バーストのみが観測される可能性 があるということも付け加えておくべきであろう*5 図 3.27 は Livermore group モデルによる超新星爆発の SK における観測事象数時間発展を示してあ *5 たとえブラックホールが形成されても通常の超新星爆発とほぼ同数のニュートリノが観測されると主張している文献もある [23]

43 # of events /.5 sec Time [sec] 3.25 B first reduction ( B sec Y position [cm] 5-5 Z position [cm] X position [cm] X position [cm] 3.26 B 3.25 first recduction x-y z-x 2cm B first reduction 3.24

44 3 41 # of events at SK(32kt) / 2msec ν e +e, ν e+p ν e+e ν e+p Probability Time [sec] cosθsn 3.27 Livermore 3.28 (1kpc) SK ν e.5sec 1msec time-window SK SK-I 5/29/19977/15/21 4.5MeV Second reduction 1496 [19] SK-II time-window 1msec1msec1msec 3 multiplicity 2 2events/1msec, or 2events/1msec, or 2events/1msec. (3.26) 1 (3.28) N multi dir i i=1 Sumdir = (3.27) N multi N multi multiplicitydir i Sumdir Sumdir Sumdir >.75.84

45 Sumdir 3.29 MC MC Sumdir SK-I BG SK-II 2events/1msec events/1msec events/1msec BG 3events/1msec events/1msec events/1msec BG 3.5 R mean Sumdir 3events/1msec, or 3events/1msec, or 3events/1msec. (3.28) 3.5

46 43 4 Monte Carlo SK-I SK-II 1. 2events/2sec, and Energy 17M ev (4.1) 2. 3events/.5sec, or 4events/2.sec, or 8events/1sec. (4.2) 3. 2events/1msec, or 2events/1msec, or 2events/1msec. (4.3) ( ) SK *1 1Mpc SK *2 first reducitonsecond reduction Monte Calro kpc Second reduction *1 3 *2 Livermore group

47 SK 15kpc reduction ( ) 5 1

48 SK Spallation (4.1 ) 2sec 17MeV SK-II SK-I SK-I SK-II kpc 1% (LMCSMC ) 9% 2.3 (@9%C.L.) = 2.3/( ) <.32 SN/year 9% C.L. (SK only) (4.4) [24] <.2 SN/year 9% C.L. (SK + Kamiokande) (4.5) 2 7kpc 1 7.5% A

49 46 A Super-Kamiokande Super-Kamiokande 26 7 SK-III A.1 PMT PMT PMT ATM PMT A.1 ATM A.1 time-walk (time-walk) + PMT 1 ATM 25 time-walk A.2 PMT 2 PMT ATM TDC stop 1 PMT ( ) A.3 AMT TDC 2 PMT stop 2 PMT T PMT

50 A Super-Kamiokande 47 T of * nsec ( :T) ( :Q) TQmap ATM TQmap ATM 1 PMT 2 A,B PMT 2 TQmap TQmap A.3 7 T Qmap(Q) T Q T isk T isk T Qmap(Q) T + 1nsec (A.1) 1nsec A.1 T isk T T isk PMT T + T of T isk T of T [ns] Q [p.e.] A.2 SK A.3 TQmap (p.e.) nsec *1 T of; Time Of Flight

51 A Super-Kamiokande 48 A.2 / LSI(Laser Science Ins.) (VSL-337) (DML-12) 337nm 4nsec 12Hz A.1 1cm 1 3 8nm A.4 367nm PMT 3942nm PBBO 396nm A.2 A.4 VSL mm 337.1nm.1nm 2Hz ( ) 4ns 4 % Flash A.1 DML mm 396nm.3nm 2Hz ( ) 4ns A.2 6 %

52 A Super-Kamiokande 49 1 PMT %99% ND 4µm 3mm 6mm (A.5) Optical fiber stainless sleeve φmmmm MgO 1 ppm 5mm MgO 15ppm 2.3mm φmm A.5 SK 23 1cm 5cm 5.8µm 15ppm 1cm 1ppm A.3 TQmap time-walk

53 A Super-Kamiokande 5 time-walk A.3 14 Qbin(1 14) Qbin Qbin {.2pC, for 1 Qbin 5 (pc Q 1pC) Qbin (A.2) 1 Qbin 5 1 Qbin 1 5, for 51 Qbin 14 (1pC Q 63.95pC) A ( PMT : T + T of ) T + T of 5 1 8nsec 14 ( ) A.6 SK-ISK-II A.6 PMT T + T of Qbin T + T of PMT PMT A.7 PMT T + T of PMT T + T of PMT Qbin T + T of PMT

54 A Super-Kamiokande 51 # of entry # of entry A.7 PMT PMT 1 T + T of A.6 SK-III T + T of A.6 A.8 i H(i) S(i) Nbin [ ] 1 S(i) = H(j) exp (i j)2 j=1 2πσ 2 2σ 2 (A.3) A.8 σ Qbin A.9 *2 A.1 TQmap 7 SK-I SK-II 8 SK-III A *2

55 A Super-Kamiokande 52 A.9 A.7 PMT 1 T +T of Qbin A.1 TQmap( ) T +T of A.11 () 7 () TQmap TQmap nsec T + T of PMT A.12 PMT.5nsec PMT (4nsec) SK-ISK-II a. PMT

56 A Super-Kamiokande A A.7 PMT TQmap TQmap [nsec] b. 15 A.4 SK-III TQmap SK-ISK-II TQmap a. NiCf b. SK PMT A.4.1 NiCf A.14 NiCf 252 Cf µsec Ni Ni(n, γ)ni A.3 9MeV SK 2m Ni PMT T isk T of *3 *3 A.1 Tisk T of

57 A Super-Kamiokande 54 Ni wire & water SK tank 252 Cf φ A.13 Ni-Cf (%) (barns) γ (MeV) 58 Ni(n, γ) 59 Ni Ni(n, γ) 61 Ni Ni(n, γ) 63 Ni Ni(n, γ) 65 Ni A.3 Ni A.14 PMT 99% 1 1 PMT Ni PMT 1 1 A.14 T isk T of T PMT T T isk T of T PMT PMT T T of T T isk T of T = PMT A.15 MC Ni TQmap TQmap PMT T isk T of T PMT Z MC PMT time-walk TQmap MC TQmap TQmap Z TQmap MC A.16 Z PMT T isk T of T MC

58 A Super-Kamiokande 55 NUM 46 RUN EVENT DATE 6-Oct-1 TIME 16:27:52 TOT PE: MAX PE: 1.4 NMHIT : 13 ANT-PE:. ANT-MX:. NMHITA: RunMODE:Jan TRG ID :111 T diff.: 18.8 us :.188E-1ms FSCC: TDC: Q thr. :. BAD ch.: no mask SUB EV : / A.14 NiCf T isk T of PMT PMT Tisk-Tof-T [nsec] Tisk-Tof-T [nsec] Tisk-Tof-T [nsec] A.15 PMT T isk T of T ( ) PMT Z ( ) MC TQmap TQmap ( ) TQmap 1.1nsec TQmap.6nsec A.4.2 LINAC A.17 ( LINAC) 5 15MeV [19] SK-III 13.6MeV (338.9cm, 7.7cm, 1197cm) PMT 1 3 PMT T isk T of T T isk T of T A.19 PMT T isk T of T

59 A Super-Kamiokande 56 A Z PMT A.14 T isk T of T MC LINAC D1 MAGNET D2 MAGNET TOWER FOR INSERTING BEAM PIPE D3 MAGNET 13 cm +12m E C A BEAM PIPE m F D B 42 cm -12m H I G Z -12m -8m -4m 4 cm Y X A.17 (LINAC) A H A 3 3 A.19 A.2 TQmap nsec 1.2nsec A.11 TQmap 7

60 A Super-Kamiokande 57 NUM 192 RUN 3171 EVENT 1413 DATE 6-Sep- 1 TIME 15:53:53 TOT PE: MAX PE: 15.5 NMHIT : 177 ANT-PE:. ANT-MX:. NMHITA: RunMODE:LINAC TRG ID :111 T diff.:.217e+5us : 21.7 ms FSCC: TDC: Q thr. :. BAD ch.: no mask SUB EV : / A.18 LINAC T isk T of PMT 7 A A TQmap 2inchPMT Qbin T cor T cor = T T Qmap + T of + T Qmap (P MT =1,ch=A) T T of PMT T of PMT 1 A TQmap A.21 1 (A.4)

61 A Super-Kamiokande 58 Tisk-Tof-T [nsec] TQmap TQmap A ( ) PMT A nsec1.7nsec A.6

62 A Super-Kamiokande 59 σ T - TQmap + Tof +Tpmt=1,ch=a [nsec] A.21 A.22 SK-III 2inchPMT 1 3nsec Qbin=1 1.75nsec A.23 A.5 PMT A.23 PMT (.1nsec ) PMT PMT :.2nsec( ) TDC A.24 *4 A.23 PMT RMS *4 :KEC1( ) :.2nsec :15µJ

63 # of entry # of entry A Super-Kamiokande 6 25 ID Entries Mean E-2 12 ID Entries Mean E-2 RMS.4179 RMS UDFLW. OVFLW / 11 Constant UDFLW. OVFLW / 24 Constant Mean.57E-2 Sigma Mean E-2 Sigma T - T T - T A.24 TDC(RPC-17: 1nsec, 4psec) PMT(HAMAMATSU:H2431-5,RiseTime:.7n,T.T.S:.37ns) 2 PMT 1 PMT.9nsec RMS.4nsec PMT 1nsec *5.2nsec SK PMT TQmap TQmap PMT T + T of TQmap *5 [25] 4.2nsec

64 61 B Super-Kamiokande [26] n(= ɛ) nβ > 1 θ c = cos 1 1/nβ B.1 1 ( 1 2 p 1 ) (k) (p 2 ) B.1 n = ɛ k µ = (ω, k) Maxwell ω = k n p 1 p 2 k p 2 1 = (p 2 + k) 2 m 2 e = m 2 e + k 2 + 2(ωE 2 k p 2 cos θ) = = m 2 e + (1 n 2 )ω 2 + 2ωE 2 (1 nβ cos θ) = nβω cos θ (1 n2 )ω 2 p θ k p (B.1) (B.2) 2E 2 ω (B.3) cos θ = 1 [ 1 + ω ] (n 2 1) < 1 (B.4) nβ 2E 2 ( ) (n = 1 )β 1

65 B 62 B.1 S fi = i d 4 x H int (B.5) H int H int = j µ A µ = e ψγ µ ψa µ (B.6) me ψ = E i V u(p, λ i) exp( ip i x) (i = 1, 2) (B.7) E i u(p.λ i ) p µ i λ i V 1 Maxwell ɛ i k, ɛ i 2 = 1 (B.8) 2 ɛ i A µ = 1 1 n 2ωV ɛ µ exp( ik x) ɛ µ = (, ɛ) (B.9) B.5 me me S fi = i E 1 V E 2 V 1 2ωn 2 V M (2π)4 δ (4) (p 1 p 2 k) (B.1) me /EV M = eū(p 2, λ 2 )γ µ u(p 1, λ 1 )ɛ µ (B.11) B.1 T = t t w fi = 1 T V d 3 p 2 (2π) 3 V d 3 k (2π) 3 S fi 2 (B.12) M 2 M 2 = 1 2 λ 2 λ 1 [ū(p 2, λ 2 )γ µ u(p 1, λ 1 )ɛ µ ] [ū(p 2, λ 2 )γ ν u(p 1, λ 1 )ɛ ν ] (B.13) γ ν γ = γ γ ν 2 [ u (p 2, λ 2 )γ γ ν u(p 1, λ 1 )ɛ ν ] = [ u (p 1, λ 1 )γ ν γ u(p 2, λ 2 )ɛ ν ] (B.14) = [ū(p 1, λ 1 )γ ν u(p 2, λ 2 )ɛ ν ] (B.15)

66 B 63 *1 B.13 M 2 = 1 2 λ 2 λ 1 [ū(p 2, λ 2 )γ µ u(p 1, λ 1 )ɛ µ ] [ū(p 1, λ 1 )γ ν u(p 2, λ 2 )ɛ ν ] (B.16) ad ( ) M 2 = 1 ū(p 2, λ 2 ) a γ µ ab 2 ɛ µ u(p 1, λ 1 ) b ū(p 1, λ 1 ) c γcdu(p ν 2, λ 2 ) d ɛ ν λ 2 λ 1 = 1 u(p 2, λ 2 ) d ū(p 2, λ 2 ) a γ µ ab 2 ɛ µ u(p 1, λ 1 ) b ū(p 1, λ 1 ) c γcdɛ ν ν (B.17) λ 2 λ 1 u(p, λ)ū(p, λ) = /p + m 2m λ M 2 = 1 [ ] [ ] /p2 + m e /p1 + m e ɛ/ ab ɛ/ cd 2 2m e da 2m e bc = 1 ( 2 T r /p2 + m e ɛ/ /p ) 1 + m e ɛ/ 2m e 2m e = 1 T r ( /p 2 ɛ//p 1 ɛ/ + m e /p 2 ɛ/ɛ/ + m e /p 1 ɛ/ɛ/ + m 2 eɛ/ɛ/ ) 8m 2 e *2 M 2 = 4 [ 2(p1 8m 2 ɛ)(p 2 ɛ) + p 1 p 2 m 2 e] e (B.18) (B.19) (B.2) = 1 m 2 e (p ɛ) 2 (p 1 = p2 = p) ɛ B.2 z p k ɛ1 x-z (y ɛ 2 ) p ɛ = p ɛ B.2 = p e z (cos θ e x + e y sin θ e z ) = p sin θ (B.21) M 2 = p 2 m 2 e sin 2 θ c (B.22) y ε2 B.2 ε 1 θ x k θ p // z *1 ψ ψ ψ ψ γ /p *2 T r(/ab/) = 4a b, T r(odd number of γ µ ) =, T r(/ab/c//d) = 4[(a b)(c d) (a c)(b d) + (a d)(b c)]

67 B 64 B.12 w fi = d 3 p 2 d 3 k e 2 (2π) 3 (2π) 3 2E 2 ωn 2 p 2 sin 2 θ(2π) 4 δ 4 (p 1 p 2 k) (B.23) *3 p d 3 p 2 w fi = (2π) 3 = d 3 k e 2 (2π) 3 2E 2 ωn 2 p 2 sin 2 θ(2π) 4 δ 4 (p 1 p 2 k) d 3 k e 2 2E 2 ωn 2 p 2 1 (2π) 2 sin2 θδ(e 1 E 2 ω) = d(cos θ)d k k 2 e 2 1 2π 2E 2 ωn 2 p 2 (2π) 2 sin2 θ δ (nβω cos θ ω) ( B.3 ) = dωn 3 ω 2 e π 2E 2 ωn 2 p 2 (2π) 2 sin2 θ c (B.24) nβω ω dw fi dω = αβ sin2 θ c (B.25) α = e2 4π ω = k n = 2π (B.26) nλ d 2 w fi dλdl = 2πα nλ 2 sin2 θ c = 2πα nλ 2 ( 1 1 n 2 β 2 ) (B.27) *3 Z δ(e E ) 2 1 T /2 2 = lim e i(e E )t dt T 2π T /2 = lim sin[(e E )T/2] 2 T π(e E ) 4 = T 2π δ(e E ) δ 4 (p p ) 2 = V T (2π) 4 δ4 (p p )

68 65 [1] A. Suzuki et al. Nucl. Instr. and Meth. A 329 (1993) 299 [2] T. Nishino, Master Thesis, University of Tokyo (26) [3] S. Fukuda et al. Nucl. Instr. and Meth. A 51 (23) 418 [4], 7, (1979) [5] M. Turatto arxiv:astro-ph/3117 (23) [6] J. R. Wilson et al. Astrophys. J. 295 (1985) 14 [7] T. Totani et al. Astrophys. J. 496 (1998) 216 [8] P. Vogel et al. arxiv:hep-ph/ (1999) [9] D. H. Wilkinson, Z.Phys.A 348 (1994) 129 [1] thooft, G. Phys.Rev.Lett. B37 (1971) 195 [11] J. N. Bahcall et al. Phys.Rev B 51 (1995) 6146 [12] R. Tomas et al. Phys.Rev D 68 (23) 9313 [13] E. Kolbe et al. Phys.Rev D 66 (22) 137 [14] G. G. Raffelt Nucl.Phys B (Proc.Suppl.) 11 (22) 254 [15] K. S. Hirata et al. Phys.Rev D 38 (1988) 448 [16] R. M. Binota et al. Phys.Rev.Lett. 58 (1987) 1494 [17] K. Takahashi et al. Phys.Rev D 64 (21) 934 [18] T. J. Loredo et al. arxiv:astro-ph/1726 (21) [19] J. Hosaka et al. Phys. Rev. D 73 (26) 1121 [2] K. Langanke et al. Phys. Rev. Lett. 76 (1996) 2629 [21] [22] S. Ando et al. Phys.Rev.Lett. 95 (25) [23] K. Sumiyoshi et al. Phys.Rev.Lett. 97 (26) 9111 [24] Y. Suzuki, in Proc.of the International Symposium on Neutrino Astrophysics: Frontiers of Neutrino Astrophysics, edited by Y.Suzuki and K.Nakamura, (Universal Academy Press Inc., Tokyo,1993), number 5 in Frontier Science Series, p.61. [25] Y. Kobayashi, Master Thesis, University of Tokyo (1999) [26] V. L. Ginzburg, J.Phys.USSR 2, 441 (194)

69 SK TA 6 1 M1 M1 4 NuInt SK

70 B 67 MC ATM SK-II M. Vagins M. B. Smy LINAC J. P. Cravens B. S. Yang PMT SK C. K. Jung R. Terri

71 B 68 I. S. Jeong Lowe group Calib group member 3 M

72 B 69

73 7 ATM, 5 delayed explosion, 13 d wall cut (gamma cut), 28 First reduction, 24 Fit stability test (GRINGO), 25 Flasher, 31 GONG, 8 goodness, 2 HE, 7 HITSUM, 7 IMB, 16 Kamiokande, 16 LE, 7 Livermore group, 13 Multiplicity, 31 N eff, 22 ovaq cut, 28 PBBO, 48 PMTSUM, 7 R mean, 31 SCH, 7 significance, 2 SK, 3, 29, 29, 29, 29 SLE, 7 SMP, 7 spallation product, 27 spallation (SPACUT), 25 Sumdir, 41 time-walk, 46 TKO, 5 TQmap, 47 TRG, 8, 4 I, 9, 25, 47, 1, 4, 2, 4, 29, 1, 48, 49, 29, 9, 29, 19, 21, 19, 11, 1, 1, 2, 61, 3, 48, 49, 32, 1, 12, 38, 11, 13, 12, 1, 1, 4 II, 9, 12, 4, 12, 13, 1, 24, 4, 22

untitled

untitled masato@icrr.u-tokyo.ac.jp 996 Start 997 998 999 000 00 00 003 004 005 006 007 008 SK-I Accident Partial Reconstruction SK-II Full reconstruction ( SK-III ( ),46 (40%) 5,8 (9%),9 (40%) 5MeV 7MeV 4MeV(plan)

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

スーパーカミオカンデにおける 高エネルギーニュートリノ研究 2009 11 20 Cosmic Ray PD D M P4 ? CR M f M PD MOA M1 ν ν p+p+p+p 4 He +2e - +2ν e MeV e - + p n+ ν e γ e + + e - ν x + ν x p + p, γ + p π + X π µ + ν µ e + ν µ + ν e TeV p + p π + X π µ + ν µ e + ν µ +

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

2005 4 18 3 31 1 1 8 1.1.................................. 8 1.2............................... 8 1.3.......................... 8 1.4.............................. 9 1.5.............................. 9

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

nakajima_

nakajima_ SK-Gd (ICRR) 30 2018 12 21 SK-Gd SK!2 !3 ls of SK Solar ν measurement rvation of day-night asymmetry far, B8, 2.5σ indication Hep reported at NEUTRINO2014) nalizing all SK-IV data very of the transition

More information

main.dvi

main.dvi MICE Sci-Fi 2 15 3 7 1 1 5 1.1 MICE(Muon Ionization Cooling Experiment)............. 5 1.1.1........................... 5 1.1.2............................... 7 1.1.3 MICE.......................... 10

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

KamLAND (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

untitled

untitled 71 7 3,000 1 MeV t = 1 MeV = c 1 MeV c 200 MeV fm 1 MeV 3.0 10 8 10 15 fm/s 0.67 10 21 s (1) 1fm t = 1fm c 1fm 3.0 10 8 10 15 fm/s 0.33 10 23 s (2) 10 22 s 7.1 ( ) a + b + B(+X +...) (3) a b B( X,...)

More information

Report10.dvi

Report10.dvi [76 ] Yuji Chinone - t t t = t t t = fl B = ce () - Δθ u u ΔS /γ /γ observer = fl t t t t = = =fl B = ce - Eq.() t ο t v ο fl ce () c v fl fl - S = r = r fl = v ce S =c t t t ο t S c = ce ce v c = ce v

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21 1 3 KamLAND shimizu@awa.tohoku.ac.jp 014 ( 6 ) 1 31 1 KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR.1 ν e ν µ ν τ ν 1 ν ν 3 3 3 MNS m 1 = 7.5 10 5 ev m 31 m 3 =.3 10 3 ev 100 m ν e [1] 71 Ga SAGEGallex

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

LEPS

LEPS LEPS2 2016 2 17 LEPS2 SPring-8 γ 3 GeV γ 10 Mcps LEPS2 7 120 LEPS Λ(1405) LEPS2 LEPS2 Silicon Strip Detector (SSD) SSD 100 µm 512 ch 6 cm 3 x y 2 SSD 6 3072 ch APV25-s1 APVDAQ VME APV25-s1 SSD 128 ch

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

nenmatsu5c19_web.key

nenmatsu5c19_web.key KL π ± e νe + e - (Ke3ee) Ke3ee ν e + e - Ke3 K 0 γ e + π - Ke3 KL ; 40.67(%) Ke3ee K 0 ν γ e + π - Ke3 KL ; 40.67(%) Me + e - 10 4 10 3 10 2 : MC Ke3γ : data K L real γ e detector matter e e 10 1 0 0.02

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

橡実験IIINMR.PDF

橡実験IIINMR.PDF (NMR) 0 (NMR) 2µH hω ω 1 h 2 1 1-1 NMR NMR h I µ = γµ N 1-2 1 H 19 F Ne µ = Neh 2mc ( 1) N 2 ( ) I =1/2 I =3/2 I z =+1/2 I z = 1/2 γh H>0 2µH H=0 µh I z =+3/2 I z =+1/2 I z = 1/2 I z = 3/2 γh H>0 2µH H=0

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

JPS2016_Aut_Takahashi_ver4

JPS2016_Aut_Takahashi_ver4 CTA 111: CTA 7 A B A C D A E F G D H I J K H H J L H I A C B I A J I H A M H D G Dang Viet Tan G Daniela Hadasch A Daniel Mazin A C CTA-Japan A, B, Max-Planck-Inst. fuer Phys. C, D, ISEE E, F, G, H, I,

More information

untitled

untitled MPPC 18 2 16 MPPC(Multi Pixel Photon Counter), MPPC T2K MPPC T2K (HPK) CPTA, MPPC T2K p,π T2K > 5 10 5 < 1MHz > 15% 200p.e. MIP 5p.e. p/π MPPC HPK MPPC 2 1 MPPC 5 1.1...................................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law) ( ) ( ) 2002.11 1 1 1.1 (Blackbody Radiation).............................. 1 1.2 (Stefan-Boltzmann s Law)................ 1 1.3 (Wien s Displacement Law)....................... 2 1.4 (Kirchhoff s Law)...........................

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

スーパーカミオカンデにおける超新星観測用DAQの開発と遠い超新星爆発探索の最適化

スーパーカミオカンデにおける超新星観測用DAQの開発と遠い超新星爆発探索の最適化 スーパーカミオカンデにおける超新星観測用 DAQ の開発 森正光高エネルギー物理学研究室 Iceppシンポジウム 24 1 スライドの構成 1. 超新星爆発 2. スーパーカミオカンデの概要 3. 新 DAQの開発 4. まとめと展望 2 超新星爆発について 太陽の 8 倍以上の質量をもつ恒星がその生涯を終えるときに大爆発を起こす現象 そのエネルギーの総量は 10 53 erg に達する エネルギーの

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

09_organal2

09_organal2 4. (1) (a) I = 1/2 (I = 1/2) I 0 p ( ), n () I = 0 (p + n) I = (1/2, 3/2, 5/2 ) p ( ), n () I = (1, 2, 3 ) (b) (m) (I = 1/2) m = +1/2, 1/2 (I = 1/2) m = +1/2, 1/2 I m = +I, +(I 1), +(I 2) (I 1), I ( )

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

thesis.dvi

thesis.dvi 3 17 03SA210A 2005 3 1 introduction 1 1.1 Positronium............ 1 1.2 Positronium....................... 4 1.2.1 moderation....................... 5 1.2.2..................... 6 1.2.3...................

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

2004 A1 10 4 1 2 2 3 2.1................................................ 3 2.2............................................. 4 2.3.................................................. 5 2.3.1.......................

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

From Evans Application Notes

From Evans Application Notes 3 From Evans Application Notes http://www.eaglabs.com From Evans Application Notes http://www.eaglabs.com XPS AES ISS SSIMS ATR-IR 1-10keV µ 1 V() r = kx 2 = 2π µν x mm 1 2 µ= m + m 1 2 1 k ν = OSC 2

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

スーパーカミオカンデ実験

スーパーカミオカンデ実験 スーパーカミオカンデ実験 作田誠 ( 岡大 ) ICRR 共同利用研究発表会 27 年 12 月 15 日 1. 検出器現状 (SK-III) 2. 最近の物理結果 3. Electronics Upgrade (28) 4. まとめ 共同研究機関 (27 年 4 月 ) ( 日本 米国 韓国 中国 ポーランド 約 15 名 ) 東大宇宙線研究所 神岡宇宙素粒子観測施設 ニュートリノ観測情報融合センター

More information

Canvas-tr01(title).cv3

Canvas-tr01(title).cv3 Working Group DaiMaJin DaiRittaikaku Multiparticle Jiki-Bunnsekiki Samurai7 Superconducting Analyser for Multi particles from RadioIsotope Beams with 7Tm of bending power (γ,n) softgdr, GDR non resonant

More information

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary Measurements of Galactic and Atmospheric Cosmic-Ray Absolute Fluxes BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary Introduction 90% 9% 100~10 6

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information