Excelにおける回帰分析(最小二乗法)の手順と出力

Size: px
Start display at page:

Download "Excelにおける回帰分析(最小二乗法)の手順と出力"

Transcription

1 Microsoft Excel Excel 1 1 x y x y y = a + bx a b a x 1 3 x y b log x α x α x β 4 version Website: 1

2 Excel Excel.1 Excel Excel 003 [ ] [ ] 1 [ ] [OK] Microsoft Office Excel CD. [Excel ] Excel y x Excel ( data.xls) y x α x β 1 [ ] y x F9 [ ] [ ] [ ] [ ].3 [ ] [ ] [ ] [OK] [ ] 1 Excel 007 Microsoft Office [Excel ] Excel [ ] [ ] Excel 007 [ ] [ ]

3 [Excel ] Y 1 X 3 Y $B$10:$B$60 X $C$10:$D$60 $K$ [OK] 概要 回帰統計 重相関 R 重決定 R 補正 R 標準誤差 観測数 50 分散分析表 自由度 変動 分散 観測された分散比 有意 F 回帰 E-5 残差 合計 係数 標準誤差 t P- 値 下限 95% 上限 95% 下限 95.0% 上限 95.0% 切片 x α E x β E [Excel ] 3 Excel 16 4 [ ] 5 $ Excel $ $ : 6 $K$10 3

4 3 Excel [ ] y n i y i x y = a + bx y = a 1 + bx a i j x ij b b 1 j b j y ŷ y k i ŷ i (1) ŷ i = b 1 + b x i + b 3 x i3 + + b k x ik (1) (1) ŷ i y i e i 7 e i i e i ŷ i () y i y i = ŷ i + e i () j x j e n n x ij e i = 0 (3) [ ] V Y 6 F9 0 0 n 0 7 e ϵ e ϵ 8 e i = (y i ŷ i ) = {y i (b 1 + b x i + + b k x ik )} e i = 0 e i b j b j =0 {x ij e i } = 0 = {x ij (y i b 1 + b x i + + b k x ik )} = {x ij e i } 4

5 (1) b 1 1 (3) 1 e i = e i = 0 (4) e 0 e ē e e i ē 0 (1) e i ŷ i e i = [b 1 + b x i + + b k x ik ]e i = [b 1 e i + b x i e i + + b k x ik e i ] n = b 1 e i + b n x i e i + + b k n x ik e i = b b b k 0 = 0 (5) ŷ e 0 0 n 0 [ x e 0] 3. () y i = ŷ i + e i n y i = ŷ i + e i (6) (4) (6) e i 0 (6) y i = ŷ i (7) y ŷ n y y y y = ŷ ŷ y = ŷ = b 1 + b x + b 3 x b k x k (8) (8) [ y ] [ ŷ ] [ x ] y x [ ] y B6 x B67 5

6 [ x y ] (8) y = ŷ = b 1 (9) b 1 ȳ (9) b 1 (y i b 1 ) b 1 = y (10) 9 (10) e i b 1 y 3.3 (x, y) = (0, y 1 ) (1, y ) (1, y 3 ) (1, y 4 ) 4 x = 0 ŷ x=0 x = 1 ŷ x=1 x = 0 (x, y) = (0, y 1 ) 1 ŷ x=1 (0, y 1 ) (1, ŷ x=1 ) ŷ x=0 y 1 ŷ x=1 (10) b 1 ŷ x=1 ŷ x=1 x = 1 y ŷ x=1 = y +y 3 +y 4 3 (0, y 1 ) (1, y +y 3 +y 4 3 ) ŷ = y 1 + ( y + y 3 + y 4 3 y 1 )x (11) (11) x 1 y ( y +y 3 +y 4 3 y 1 ) (y y 1 ), (y 3 y 1 ), (y 4 y 1 ) (11) 9 (y i b 1 ) b 1 = ( y i nb 1 ) =0 b 1 = y 6

7 4 Excel Excel R ŷ y () y i = ŷ i + e i () y ŷ () (4) e e i e 0 (7) y = ŷ (4) ē = 0 () y y i y = ŷ i y + e i [y i y] = [ŷ i y + e i ] = [ŷ i y] + [ŷ i y]e i + e i (1) (1) [ŷ i y]e i (4) (5) 0 (1) [y i y] = [ŷ i y] + e i (13) (13) [y ]=[ŷ ]+[e ] 11 y ŷ e 1 (13) (13) 1 = [yi y] [yi y] = [ŷi y] [yi y] + e i [yi y i ] (14) (14) y ŷ 13 (14) R y ŷ 10 R R R 11 e = 0 e i e e i 1 ŷ e y 13 R 14 (9) [ŷ i y] = [y y] = 0 0 7

8 R = [ŷi y] [yi y] = 1 e i [yi y] = = 1 (15) 4. R R R R 1 e R = 1 [yi i y] = 1 = (16) 4.3 R 0 e i 0 e i 0 e i (15) e i [y i y] k (17) R = 1 e i (n 1) [yi y i ] (n k) = 1 (1 ) ( 1) ( ) 1 18 (17) (17) 15 Excel 0.5 Excel = ˆ 0.5 Excel =sqrt( ) Adjusted-R Adj-R 18 n k (17) 1 8

9 R 4.4 (4) ē = 0 0 ±1 ± ± e i e 1 e i n 1 e i n 19 0 e i 0 0 e i = 0 n k (n k) 1 e i (n k) = = e i (n k) = ( ) e i (n k) = ( ) (18) (19) 4.5 F 0 19 n (n 1) ( F9 0 1 (17) [ ] [ ] 3 (standard deviation) (standard error) 4 s s 9

10 5 e i (10) b 1 = y [y i y] y [y i y] e i (13) [ŷ i y] [ ] [ŷ i y] (k 1) 1 (18) 6 (0) (ŷi ȳ) = (k 1) e i (n k) = (0) = = (ŷi ȳ) (k 1) e i (n k) = (1 ) (ŷi ȳ) (yi ȳ) (yi ȳ) (n k) e i (k 1) ( ) ( 1) (1) (1) (0) (1) 0 F 7 F 0 [ ] P1 F [7.68E-5] 7.68 (0.1) (0.1) 5 5 Excel F ANOVA(analysis of variance) F F F P 6 [ ] N1 [ ] N [ ] 7 F F F (k 1, n k) F 8 Excel F [=FDIST(, (k 1), (n k)]=[fdist(6.0883,,47)] 7.68E-5 10

11 5 Excel Excel [ ] 係数 標準誤差 t P- 値 下限 95% 上限 95% 下限 95.0% 上限 95.0% 切片 x α E x β E [ Excel ] [3.3 ] 0 5. [1] [] 30 [3] [4] 31 [] [4] [ ] F9 [] F4, F5 [3] B7 [4] B6 [-1 1] x α x β 0 ± ±1 Excel 0 Excel 11

12 5.3 t () t t = () t () t 3 t 0 t t t 0 t 0 t.5% 5% 標準正規分布とt 分布 0.5 標準正規分布 t 分布 : 自由度 0 t 分布 : 自由度 5 t 分布 : 自由度 % t 33 t 95% t 34 t 5% t 5% t 0 t % t t.5 1% t 35 t 5%.5% 36 t t t 33 ( normal.xls) F9 95% ± 34 t 0 35 t t Excel [=TINV(, )] 5% 47 [=TINV(0.05, 47)] % (significance level) 1

13 95% t t 5% t t 0 37 t 5.4 P t 5% t t t t t P 38 P 0 t 100 t.13 5% t 1% t 5% 1% t P % 39 5% t P ,, 95% % 37 [5. ] [1] 0 t 38 p P 39 Excel [=TDIST(t,, =)] P [=TDIST(.13, 100, )] % 41 95% [ ] R3 13

14 6 (3) i = b 1 + b i + b 3 i + b 4 i + e i (3) 6.1 (3) 0mm 1mm 100mm 101mm (3) 4 43 [ ] y b j x j 1 y x j b j x j 1% y 46 (3) b 4 1 (4) b 4 1% b 1 + b i + b 3 i + b 4 log( i ) (4) [ ] A B (5) b 1 + b i + b 3 i + b 4 i + b 5 i (5) d log(y) = 1 y dy y y b y j x 45 Excel natural logarithm ln( ) Excel log( ) x j y 14

15 A 0 B 1 Excel (5) A b 1 B b 1 + b 5 (6) b 1 + {b + b 6 i } i + b 3 i + b 4 i (6) (6) (5) i A b B b + b 6 (6) Excel Excel (7) 0 b 1 + b ia + b 6 ib + b 3 i + b 4 i (7) (7) A b B b 6 b 6 = b + b 6 (6) (7) A B C 3 47 [ ] j x j y ŷ e ŷ e ŷ e ( i ) ( i i ) ( i ) ( 傘の販売本数 ) 切片と一乗項のみでの回帰分析 グループ A の標本グループ B の標本グループ横断の回帰線 (1 日の降水量 ) ( 傘の販売本数 ) 二乗項と定数項ダミーを追加した回帰分析 グループ A の標本グループ B の標本グループ A の回帰線グループ B の回帰線 (1 日の降水量 ) 47 ( wage data.htm) 15

16 6. (3) (3) 48 (3) (3) (3) b 4 b [6.6 ] Excel 16

17 6.4 Excel e ϵ (8) 0 σ ϵ N(0, σ ) (8) (8) [ ] [ ] ϵ 55 e ϵ e x j ŷ 56 [6.1 ] [6. ] 57 ( 推定エラー ) 均一分散 ( 推定エラー ) 不均一分散 ( 推定エラー ) 回帰分析の式に問題 ( 説明変数 当てはめ値 ) ( 説明変数 当てはめ値 ) ( 説明変数 当てはめ値 ) (19) σ (19) ϵ (e 56 t e t 1 ) 57 Excel e t 17

18 Heckit 58 ( 傘の販売本数 ) 60 潜在的な標本を含めた回帰分析 ( 傘の販売本数 ) 60 観測できる標本での回帰分析 観測できる標本潜在的な標本全標本での回帰線 (1 日の降水量 ) 観測できる標本観測できる標本での回帰線 (1 日の降水量 ) y x 59 ( 傘の販売本数 ) 60 正確な説明変数での回帰分析 ( 傘の販売本数 ) 60 不正確な説明変数での回帰分析 正確な説明変数 正確な説明変数での回帰線 (1 日の降水量 ) 30 0 不正確な説明変数 不正確な説明変数での回帰線 (1 日の降水量 ) 58 Excel 59 18

スライド 1

スライド 1 データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

Microsoft Word - å“Ÿåłžå¸°173.docx

Microsoft Word - å“Ÿåłžå¸°173.docx 回帰分析 ( その 3) 経済情報処理 価格弾力性の推定ある商品について その購入量を w 単価を p とし それぞれの変化量を w p で表 w w すことにする この時 この商品の価格弾力性 は により定義される これ p p は p が 1 パーセント変化した場合に w が何パーセント変化するかを示したものである ここで p を 0 に近づけていった極限を考えると d ln w 1 dw dw

More information

Microsoft PowerPoint - e-stat(OLS).pptx

Microsoft PowerPoint - e-stat(OLS).pptx 経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

Microsoft PowerPoint - 資料04 重回帰分析.ppt

Microsoft PowerPoint - 資料04 重回帰分析.ppt 04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit manabu@cheme.koto-u.ac.jp http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

経済統計分析1 イントロダクション

経済統計分析1 イントロダクション 1 経済統計分析 10 回帰分析 今日のおはなし. 回帰分析 regression analysis 2 変数の関係を調べる手段のひとつ単回帰重回帰使用上の注意 今日のタネ 吉田耕作.2006. 直感的統計学. 日経 BP. 中村隆英ほか.1984. 統計入門. 東大出版会. Stock, James H. and Mark W. Watson. 2006. Introduction to Econometrics.

More information

Microsoft Word - appendix_b

Microsoft Word - appendix_b 付録 B エクセルの使い方 藪友良 (2019/04/05) 統計学を勉強しても やはり実際に自分で使ってみないと理解は十分ではあ りません ここでは 実際に統計分析を使う方法のひとつとして Microsoft Office のエクセルの使い方を解説します B.1 分析ツールエクセルについている分析ツールという機能を使えば さまざまな統計分析が可能です まず この機能を使えるように設定をします もし

More information

201711grade2.pdf

201711grade2.pdf 2017 11 26 1 2 28 3 90 4 5 A 1 2 3 4 Web Web 6 B 10 3 10 3 7 34 8 23 9 10 1 2 3 1 (A) 3 32.14 0.65 2.82 0.93 7.48 (B) 4 6 61.30 54.68 34.86 5.25 19.07 (C) 7 13 5.89 42.18 56.51 35.80 50.28 (D) 14 20 0.35

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション J1 リーグとプレミアリーグ の観戦需要研究 上智大学経済学部経済学科 滝本耀久 目次 概要 基本情報 先行研究について 使用データ 分析手法 推定結果 考察 参考文献 本研究の概要 プロサッカーリーグの観客動員数は 勝ち点 平均年俸 スタジアムの臨場感 アクセスのよさ 優勝経験有無の影響を受けているか J1 リーグとプレミアリーグの両方で検証 比較 クラブ経営者の視点から 観客数増加の要因を分析する

More information

Microsoft PowerPoint - Econometrics pptx

Microsoft PowerPoint - Econometrics pptx 計量経済学講義 第 4 回回帰モデルの診断と選択 Part 07 年 ( ) 限 担当教員 : 唐渡 広志 研究室 : 経済学研究棟 4 階 43 号室 emal: kkarato@eco.u-toyama.ac.p webste: http://www3.u-toyama.ac.p/kkarato/ 講義の目的 誤差項の分散が不均 である場合や, 系列相関を持つ場合についての検定 法と修正 法を学びます

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

第 4 章事業収支シミュレーション 1. シミュレーションの作成 本章では アンケート調査結果から得られた9 月収支差プラスの事業所データ 4 をもとに その平均像をもとにした事業所 1か月当たりの事業実態のシミュレーションを試みることとする 試算にあたっては 利用者数の設定から 単月ベースの事業所

第 4 章事業収支シミュレーション 1. シミュレーションの作成 本章では アンケート調査結果から得られた9 月収支差プラスの事業所データ 4 をもとに その平均像をもとにした事業所 1か月当たりの事業実態のシミュレーションを試みることとする 試算にあたっては 利用者数の設定から 単月ベースの事業所 第 4 章事業収支シミュレーション 115 第 4 章事業収支シミュレーション 1. シミュレーションの作成 本章では アンケート調査結果から得られた9 月収支差プラスの事業所データ 4 をもとに その平均像をもとにした事業所 1か月当たりの事業実態のシミュレーションを試みることとする 試算にあたっては 利用者数の設定から 単月ベースの事業所のサービス提供時間 売上高 人件費 総職員数 訪問介護員数の算出を試みた

More information

1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j )

1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j ) (Communication and Network) 1 1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j ) p i = P (X n = s i )

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

2 / 29

2 / 29 Office 1 / 29 2 / 29 3 / 29 4 / 29 5 / 29 6 / 29 7 / 29 8 / 29 9 / 29 10 / 29 11 / 29 12 / 29 A 13 / 29 14 / 29 15 / 29 16 / 29 17 / 29 (R) 18 / 29 CD 19 / 29 20 / 29 21 / 29 22 / 29 23 / 29 24 / 29 25

More information

経済統計分析1 イントロダクション

経済統計分析1 イントロダクション 1 経済統計分析 9 分散分析 今日のおはなし. 検定 statistical test のいろいろ 2 変数の関係を調べる手段のひとつ適合度検定独立性検定分散分析 今日のタネ 吉田耕作.2006. 直感的統計学. 日経 BP. 中村隆英ほか.1984. 統計入門. 東大出版会. 2 仮説検定の手続き 仮説検定のロジック もし帰無仮説が正しければ, 検定統計量が既知の分布に従う 計算された検定統計量の値から,

More information

Excelによるデータ分析

Excelによるデータ分析 Excel による データ分析 多変量解析編 矢野佑樹 2013/07/27 Excel で学ぶデータ分析 ( 多変量解析編 ) 多変量解析では, 気温とアイスの売上個数の関係や, 最寄り駅からの距離と来店者数の 関係など,2 つ以上の変数を一度に分析します. では, 早速 2 つのデータ間の関係を Excel によって分析しましょう. < 散布図と相関 > 例 1. あるアイスクリーム販売店では,1

More information

回帰分析 重回帰(1)

回帰分析 重回帰(1) 回帰分析 重回帰 (1) 項目 重回帰モデルの前提 最小二乗推定量の性質 仮説検定 ( 単一の制約 ) 決定係数 Eviews での回帰分析の実際 非線形効果 ダミー変数 定数項ダミー 傾きのダミー 3 つ以上のカテゴリー 重回帰モデル multiple regression model 説明変数が 個以上 y 1 x 1 x k x k u i y x i 他の説明変数を一定に保っておいて,x i

More information

回帰分析 単回帰

回帰分析 単回帰 回帰分析 単回帰 麻生良文 単回帰モデル simple regression model = α + β + u 従属変数 (dependent variable) 被説明変数 (eplained variable) 独立変数 (independent variable) 説明変数 (eplanator variable) u 誤差項 (error term) 撹乱項 (disturbance term)

More information

Microsoft PowerPoint - Econometrics

Microsoft PowerPoint - Econometrics 計量経済学講義 第 回回帰分析 Part 4 7 年 月 7 日 ( 火 ) 限 担当教員 : 唐渡広志 研究室 : 経済学研究棟 4 階 4 号室 emal: kkarato@eco.-toyama.ac.jp webste: http://www.-toyama.ac.jp/kkarato/ 講義の目的 最小 乗法について理論的な説明をします 多重回帰分析についての特殊なケースについて 多重回帰分析のいくつかの応用例を検討します

More information

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : 統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST

More information

不偏推定量

不偏推定量 不偏推定量 情報科学の補足資料 018 年 6 月 7 日藤本祥二 統計的推定 (statistical estimatio) 確率分布が理論的に分かっている標本統計量を利用する 確率分布の期待値の値をそのまま推定値とするのが点推定 ( 信頼度 0%) 点推定に ± で幅を持たせて信頼度を上げたものが区間推定 持たせた幅のことを誤差 (error) と呼ぶ 信頼度 (cofidece level)

More information

交通インフラのストロー効果と地域間格差

交通インフラのストロー効果と地域間格差 ストロー効果と地域間格差 - 東海地方にもストロー効果があるのか?- 中京大学大森ゼミ池田 越前谷 小島 齋藤 水野 1 交通インフラとは 空港 鉄道 道路 港湾などの産業の基盤となる施設 高速道路に着目 2 なぜ高速道路に着目したのか 輸送機関別輸送分担率の推移 [ 輸送トンキロ ] 1970 年度 2017 年度 内航海運 43% 自動車 38% 内航海運 37% 自動車 59% 鉄道 19%

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P 005 5 6 y β + ɛ {x, x,, x p } y, {x, x,, x p }, β, ɛ E ɛ 0 V ɛ σ I 3 rak p 4 ɛ i N 0, σ ɛ ɛ y β y β y y β y + β β, ɛ β y + β 0, β y β y ɛ ɛ β ɛ y β mi L y y ŷ β y β y β β L P y P y + ɛ, ɛ y P y I P y,,

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

第7章

第7章 5. 推定と検定母集団分布の母数を推定する方法と仮説検定の方法を解説する まず 母数を一つの値で推定する点推定について 推定精度としての標準誤差を説明する また 母数が区間に存在することを推定する信頼区間も取り扱う 後半は統計的仮説検定について述べる 検定法の基本的な考え方と正規分布および二項確率についての検定法を解説する 5.1. 点推定先に述べた統計量は対応する母数の推定値である このように母数を一つの値およびベクトルで推定する場合を点推定

More information

Microsoft PowerPoint - ch04j

Microsoft PowerPoint - ch04j Ch.4 重回帰分析 : 推論 重回帰分析 y = 0 + 1 x 1 + 2 x 2 +... + k x k + u 2. 推論 1. OLS 推定量の標本分布 2. 1 係数の仮説検定 : t 検定 3. 信頼区間 4. 係数の線形結合への仮説検定 5. 複数線形制約の検定 : F 検定 6. 回帰結果の報告 入門計量経済学 1 入門計量経済学 2 OLS 推定量の標本分布について OLS 推定量は確率変数

More information

スライド 1

スライド 1 体験統計学 ~ 第 2 回 ~ 本稿の Web ページ 古橋武 1 不偏分散 2 データ : a 1 = 165 [cm] a 2 = 174 [cm] a 3 = 183 [cm] a 4 = 169 [cm] a 5 = 178 [cm] 平均 : a 165 + 174 + 183 + 169 + 178 = 5 = 173.8 総和 :( 具体的な表現 ) V = 1 {(165 173.8)

More information

ビジネス統計 統計基礎とエクセル分析 正誤表

ビジネス統計 統計基礎とエクセル分析 正誤表 ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,, (1 C205) 4 8 27(2015) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7.... 1., 2014... 2. P. G., 1995.,. 3.,. 4.. 5., 1996... 1., 2007,. ii 2. F. ( ),.. 3... 4.,,. 5. G., L., D. ( )

More information

ID POS F

ID POS F 01D8101011L 2005 3 ID POS 2 2 1 F 1... 1 2 ID POS... 2 3... 4 3.1...4 3.2...4 3.3...5 3.4 F...5 3.5...6 3.6 2...6 4... 8 4.1...8 4.2...8 4.3...8 4.4...9 4.5...10 5... 12 5.1...12 5.2...13 5.3...15 5.4...17

More information

13章 回帰分析

13章 回帰分析 単回帰分析 つ以上の変数についての関係を見る つの 目的 被説明 変数を その他の 説明 変数を使って 予測しようというものである 因果関係とは限らない ここで勉強すること 最小 乗法と回帰直線 決定係数とは何か? 最小 乗法と回帰直線 これまで 変数の間の関係の深さについて考えてきた 相関係数 ここでは 変数に役割を与え 一方の 説明 変数を用いて他方の 目的 被説明 変数を説明することを考える

More information

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n 1 1.1 Excel Excel Excel log 1, log, log,, log e.7188188 ln log 1. 5cm 1mm 1 0.1mm 0.1 4 4 1 4.1 fx) fx) n0 f n) 0) x n n! n + 1 R n+1 x) fx) f0) + f 0) 1! x + f 0)! x + + f n) 0) x n + R n+1 x) n! 1 .

More information

<4D F736F F D208EC08CB18C7689E68A E F1918A8AD695AA90CD2E646F63>

<4D F736F F D208EC08CB18C7689E68A E F1918A8AD695AA90CD2E646F63> 第 回相関分析 9 年 月 日 A.つの変数間の関係を調べる. 散布図を書く例 水稲の収量に関連のある生育指標を知りたい. 例えば草丈と収量には関連があるだろうか? 例 トマトの糖度は施肥量によってどのように変化するかを知りたい. 例えば, 窒素施肥量を増加させると糖度はどうなるか? 散布図の書き方 )x 軸 ( 横軸 ) には原因となる変量を, y 軸 ( 縦軸 ) には結果となる変量をとる. サツマイモの収量

More information

Microsoft Word - econome5.docx

Microsoft Word - econome5.docx : 履修登録したクラスの担当教員名を書く : 学籍番号及びが未記入のもの, また授業終了後に提出されたものは採点しないので, 注意すること. 4. 重回帰分析 4.1 重回帰分析とは経済変数間の関係は, 組だけの変数だけで記述できるわけではありません. ミクロ経済で学んだように, 需要を変化させる要因は財価格以外に様々なものが考えられます. 例えば, うどんの需要はうどんの価格以外に, 所得や代替財のそばの価格や補完財のネギの価格などの需要を変化させる要因があります.

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

š ( š ) ,400, , ,893, ,743, ,893, ,893, ,658,475 35,884,803 2,167,037 7,189,060 55,417,575 81,08

š ( š ) ,400, , ,893, ,743, ,893, ,893, ,658,475 35,884,803 2,167,037 7,189,060 55,417,575 81,08 Ÿ š ( š ) 1,970,400 5,000,000 12. 3.26 180,553,493 9. 9.29 41,772,995 10. 9.28 50,075,163 13. 2. 2 1,000,000 10.12.27 j 19,373,160 13. 4. 1 j 1,200,000 38. 3.19 j 1,100,000 6. 9.22 14. 1. 8 0 0 14. 3.13

More information

情報工学概論

情報工学概論 確率と統計 中山クラス 第 11 週 0 本日の内容 第 3 回レポート解説 第 5 章 5.6 独立性の検定 ( カイ二乗検定 ) 5.7 サンプルサイズの検定結果への影響練習問題 (4),(5) 第 4 回レポート課題の説明 1 演習問題 ( 前回 ) の解説 勉強時間と定期試験の得点の関係を無相関検定により調べる. データ入力 > aa

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

Microsoft Word doc

Microsoft Word doc . 正規線形モデルのベイズ推定翠川 大竹距離減衰式 (PGA(Midorikawa, S., and Ohtake, Y. (, Attenuation relationships of peak ground acceleration and velocity considering attenuation characteristics for shallow and deeper earthquakes,

More information

講義「○○○○」

講義「○○○○」 講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数

More information

Microsoft PowerPoint - S11_1 2010Econometrics [互換モード]

Microsoft PowerPoint - S11_1 2010Econometrics [互換モード] S11_1 計量経済学 一般化古典的回帰モデル -3 1 図 7-3 不均一分散の検定と想定の誤り 想定の誤りと不均一分散均一分散を棄却 3つの可能性 1. 不均一分散がある. 不均一分散はないがモデルの想定に誤り 3. 両者が同時に起きている 想定に誤り不均一分散を 検出 したら散布図に戻り関数形の想定や説明変数の選択を再検討 残差 残差 Y 真の関係 e e 線形回帰 X X 1 実行可能な一般化最小二乗法

More information

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め

More information

Microsoft Word - Stattext12.doc

Microsoft Word - Stattext12.doc 章対応のない 群間の量的データの検定. 検定手順 この章ではデータ間に 対 の対応のないつの標本から推定される母集団間の平均値や中央値の比較を行ないます 検定手法は 図. のようにまず正規に従うかどうかを調べます 但し この場合はつの群が共に正規に従うことを調べる必要があります 次に 群とも正規ならば F 検定を用いて等分散であるかどうかを調べます 等分散の場合は t 検定 等分散でない場合はウェルチ

More information

1.民営化

1.民営化 参考資料 最小二乗法 数学的性質 経済統計分析 3 年度秋学期 回帰分析と最小二乗法 被説明変数 の動きを説明変数 の動きで説明 = 回帰分析 説明変数がつ 単回帰 説明変数がつ以上 重回帰 被説明変数 従属変数 係数 定数項傾き 説明変数 独立変数 残差... で説明できる部分 説明できない部分 説明できない部分が小さくなるように回帰式の係数 を推定する有力な方法 = 最小二乗法 最小二乗法による回帰の考え方

More information

EBNと疫学

EBNと疫学 推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定

More information

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2 1 1 1.1 1.1.1 1 168 75 2 170 65 3 156 50... x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2 1 1 0 1 0 0 2 1 0 0 1 0 3 0 1 0 0 1...... 1.1.2 x = 1 n x (average, mean) x i s 2 x = 1 n (x i x) 2 3 x (variance)

More information

<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8>

<4D F736F F D2090B695A8939D8C768A E F AA957A82C682948C9F92E8> 第 8 回 t 分布と t 検定 生物統計学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

untitled

untitled 24 591324 25 0101 0002 0101 0005 0101 0009 0101 0012 0101 0013 0101 0015 0101 0029 0101 0031 0101 0036 0101 0040 0101 0041 0101 0053 0101 0055 0101 0061 0101 0062 0101 0004 0101 0006 0101 0008 0101 0012

More information

年計グラフ作成システム

年計グラフ作成システム 2003/01/20 2.00 1/29 2003/01/20...2...3...4...5...7...9... 11...13...15...16...17...18...19...20...21...23...24...26...27 FAQ...29 2/29 2003/01/20 Microsoft Access 2000 Microsoft Excel 3/29 2003/01/20

More information

2 log 3 9 log 0 0 a log 9 3 2 log 3 9 y 3 y = 9 3 2 = 9 y = 2 0 y = 0 a log 0 0 a = a 9 2 = 3 log 9 3 = 2 a 0 = a = a log a a = log a = 0 log a a =. l

2 log 3 9 log 0 0 a log 9 3 2 log 3 9 y 3 y = 9 3 2 = 9 y = 2 0 y = 0 a log 0 0 a = a 9 2 = 3 log 9 3 = 2 a 0 = a = a log a a = log a = 0 log a a =. l 202 7 8 logarithm a y = y a y log a a log a y = log a = ep a y a > 0, a > 0 log 5 25 log 5 25 y y = log 5 25 25 = 5 y 25 25 = 5 3 y = 3 log 5 25 = 3 2 log 3 9 log 0 0 a log 9 3 2 log 3 9 y 3 y = 9 3 2

More information

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63> 第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

第11回:線形回帰モデルのOLS推定

第11回:線形回帰モデルのOLS推定 11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i

More information

dicutil1_5_2.book

dicutil1_5_2.book Kabayaki for Windows Version 1.5.2 ...1...1 1...3...3 2...5...5...5...7...7 3...9...9...9...10...10...11...12 1 2 Kabayaki ( ) Kabayaki Kabayaki ( ) Kabayaki Kabayaki Kabayaki 1 2 1 Kabayaki ( ) ( ) CSV

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

はじめに Excel における計算式の入力方法の基礎 Excel では計算式を入力することで様々な計算を行うことができる 例えば はセルに =SQRT((4^2)/3+3*5-2) と入力することで算出される ( 答え ) どのような数式が使えるかは 数式

はじめに Excel における計算式の入力方法の基礎 Excel では計算式を入力することで様々な計算を行うことができる 例えば はセルに =SQRT((4^2)/3+3*5-2) と入力することで算出される ( 答え ) どのような数式が使えるかは 数式 統計演習 統計 とはバラツキのあるデータから数値上の性質や規則性あるいは不規則性を 客観的に分析 評価する手法のことである 統計的手法には様々なものが含まれるが 今回はそのなかから 記述統計と統計学的推測について簡単にふれる 記述統計 : 収集した標本の平均や分散 標準偏差などを計算し データの示す傾向や性質を要約して把握する手法のこと 求められた値を記述統計量 ( または要約統計量 ) と言う 平均値

More information

第13回:交差項を含む回帰・弾力性の推定

第13回:交差項を含む回帰・弾力性の推定 13 2018 7 27 1 / 31 1. 2. 2 / 31 y i = β 0 + β X x i + β Z z i + β XZ x i z i + u i, E(u i x i, z i ) = 0, E(u i u j x i, z i ) = 0 (i j), V(u i x i, z i ) = σ 2, i = 1, 2,, n x i z i 1 3 / 31 y i = β

More information

Microsoft Word - mstattext02.docx

Microsoft Word - mstattext02.docx 章重回帰分析 複数の変数で 1つの変数を予測するような手法を 重回帰分析 といいます 前の巻でところで述べた回帰分析は 1つの説明変数で目的変数を予測 ( 説明 ) する手法でしたが この説明変数が複数個になったと考えればよいでしょう 重回帰分析はこの予測式を与える分析手法です 以下の例を見て下さい 例 以下のデータ (Samples 重回帰分析 1.txt) をもとに体重を身長と胸囲の1 次関数で

More information

Microsoft PowerPoint - Econometrics

Microsoft PowerPoint - Econometrics 計量経済学講義 第 0 回回帰分析 Part 07 年 月 日 ( 水 ) 限 ( 金曜授業実施日 ) 担当教員 : 唐渡 広志 研究室 : 経済学研究棟 4 階 4 号室 mal: kkarato@co.-toama.ac.jp wbst: http://www.-toama.ac.jp/kkarato/ 講義の目的 ロジスティック関数の推定方法について学びます 多重回帰分析について学びます kwords:

More information

【補足資料】確率・統計の基礎知識

【補足資料】確率・統計の基礎知識 補足資料 確率 統計の基礎知識 2011 年 5 月 日本銀行金融機構局 金融高度化センター 1 目 次 1. 基本統計量 (1 変量 ) - 平均 分散 標準偏差 パーセント点 2. 基本統計量 (2 変量 ) - 散布図 共分散 相関係数 相関行列 3. 確率変数 - 確率変数 確率分布 期待値 独立 4. 推定と検定 - 記述統計と推測統計 推定 検定 (2 項検定 ) 5. 線形回帰分析 -

More information

Microsoft Word - 訋é⁄‘組渋å�¦H29æœ�末試é¨fi解ç�fl仟㆓.docx

Microsoft Word - 訋é⁄‘組渋å�¦H29æœ�末試é¨fi解ç�fl仟㆓.docx 07 年 8 月 日計量経済学期末試験問. 次元ベクトル x ( x..., x)', w ( w.., w )', v ( v.., v )' は非確率変数であり 一次独立である 最小二乗推定法の残差と説明変数が直交することは証明無く用いてよい 確率ベクトル e ( e... ) ' は E( e ) 0, V ( e ),cov( e j ) 0 ( j) とし 確率ベクトル y=( y...,

More information

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16, 32, n a n {a n } {a n } 2. a n = 10n + 1 {a n } lim an

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 東京外国語大学英語専攻 3 年 飯谷泰樹 CDMとは Clean Development Mechanismの略称排出権取引 共同実施とともに 京都メカニズムの一角をなす CDM とは 先進国が途上国 ( 非附属書 Ⅰ 国 ) において実施された温室効果ガスの排出削減事業から生じた削減分を獲得することを認める制度 総排出枠は増加 先進国は削減分を目標達成に活用でき 途上国は投資と技術移転の機会になるというメリットがある

More information

untitled

untitled Mail de ECO Standard ...1 EXCEL...2...3 EXCEL...4...11...13...15...17...18 EXCEL OK 1 EXCEL EXCEL MailDeEco No 1 15 2 15 3 15 PDF 4 50 PDF PDF 2 EXCEL OK 3 4 No 1 CSV CSV 2 CSV 3 4 5 CSV CSV CSV 5 ( )

More information

Microsoft Word - eviews6_

Microsoft Word - eviews6_ 6 章 : 共和分と誤差修正モデル 2017/11/22 新谷元嗣 藪友良 石原卓弥 教科書 6 章 5 節のデータを用いて エングル = グレンジャーの方法 誤差修正モデル ヨハンセンの方法を学んでいこう 1. データの読み込みと単位根検定 COINT6.XLS のデータを Workfile に読み込む このファイルは教科書の表 6.1 の式から 生成された人工的なデータである ( 下表参照 )

More information

基礎統計

基礎統計 基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t

More information

2 ID POS 1... 1 2... 2 2.1 ID POS... 2 2.2... 3 3... 5 3.1... 5 3.2... 6 3.2.1... 6 3.2.2... 7 3.3... 7 3.3.1... 7 3.3.2... 8 3.3.3... 8 3.4... 9 4... 11 4.1... 11 4.2... 15 4.3... 27 5... 35... 36...

More information

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 統計学ダミー変数による分析 担当 : 長倉大輔 ( ながくらだいすけ ) 1 切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 実際は賃金を就業年数だけで説明するのは現実的はない

More information

( š ) œ 525, , , , ,000 85, , ,810 70,294 4,542,050 18,804,052 () 178,710 1,385, , ,792 72,547 80,366

( š ) œ 525, , , , ,000 85, , ,810 70,294 4,542,050 18,804,052 () 178,710 1,385, , ,792 72,547 80,366 ( š ) 557,319,095 2,606,960 31,296,746,858 7,615,089,278 2,093,641,212 6,544,698,759 936,080 3,164,967,811 20. 3.28 178,639,037 48,288,439 170,045,571 123,059,601 46,985,970 55,580,709 56,883,178 19. 4.20

More information

151021slide.dvi

151021slide.dvi : Mac I 1 ( 5 Windows (Mac Excel : Excel 2007 9 10 1 4 http://asakura.co.jp/ books/isbn/978-4-254-12172-8/ (1 1 9 1/29 (,,... (,,,... (,,, (3 3/29 (, (F7, Ctrl + i, (Shift +, Shift + Ctrl (, a i (, Enter,

More information

Medical3

Medical3 Chapter 1 1.4.1 1 元配置分散分析と多重比較の実行 3つの治療法による測定値に有意な差が認められるかどうかを分散分析で調べます この例では 因子が1つだけ含まれるため1 元配置分散分析 one-way ANOVA の適用になります また 多重比較法 multiple comparison procedure を用いて 具体的のどの治療法の間に有意差が認められるかを検定します 1. 分析メニュー

More information

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差

More information

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手 14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を

More information

Microsoft PowerPoint - sc7.ppt [互換モード]

Microsoft PowerPoint - sc7.ppt [互換モード] / 社会調査論 本章の概要 本章では クロス集計表を用いた独立性の検定を中心に方法を学ぶ 1) 立命館大学経済学部 寺脇 拓 2 11 1.1 比率の推定 ベルヌーイ分布 (Bernoulli distribution) 浄水器の所有率を推定したいとする 浄水器の所有の有無を表す変数をxで表し 浄水器をもっている を 1 浄水器をもっていない を 0 で表す 母集団の浄水器を持っている人の割合をpで表すとすると

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

( )

( ) ) ( ( ) 3 15m t / 1.9 3 m t / 0.64 3 m ( ) ( ) 3 15m 3 1.9m / t 0.64m 3 / t ) ( β1 β 2 β 3 y ( ) = αx1 X 2 X 3 ( ) ) ( ( ) 3 15m t / 1.9 3 m 3 90m t / 0.64 3 m ( ) : r : ) 30 ( 10 0.0164

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

<4D F736F F F696E74202D E738A5889BB8BE688E68A4F82CC926E89BF908492E882C98AD682B782E98CA48B862E707074>

<4D F736F F F696E74202D E738A5889BB8BE688E68A4F82CC926E89BF908492E882C98AD682B782E98CA48B862E707074> 市街化区域外の地価推定に関する研究 不動産 空間計量研究室 筑波大学第三学群社会工学類都市計画主専攻宮下将尚筑波大学大学院システム情報工学研究科社会システム工学専攻高野哲司 背景 日本の国土の区域区分 都市計画区域 市街化区域 市街化を促進する区域 市街化調整区域 市街化を抑制する区域 非線引都市計画区域 上記に属さない区域 非線引き市街化調整区域市街化区域 都市計画区域 本研究での対象区域 都市計画区域外

More information