目次 ガウス過程 (Gaussian Process; GP) 序論 GPによる回帰 GPによる識別 GP 状態空間モデル 概括 GP 状態空間モデルによる音楽ムードの推定

Size: px
Start display at page:

Download "目次 ガウス過程 (Gaussian Process; GP) 序論 GPによる回帰 GPによる識別 GP 状態空間モデル 概括 GP 状態空間モデルによる音楽ムードの推定"

Transcription

1 公開講座 : ガウス過程の基礎と応用 05/3/3 ガウス過程の基礎 統計数理研究所 松井知子

2 目次 ガウス過程 (Gaussian Process; GP) 序論 GPによる回帰 GPによる識別 GP 状態空間モデル 概括 GP 状態空間モデルによる音楽ムードの推定

3 GP 序論 ノンパラメトリック予測 カーネル法の利用 参照文献 : C. E. Rasmussen and C. K. I. Williams Gaussian Processes for Machine Learning David Barber Gaussian Process (chapter 9 in Bayesian Reasoning and Machine Learning) GP 関連サイト hmp:// hmp://

4 GP 序論 E. Ebden (A quick introducson) Typical predicson problem: given some inputs and the corresponding noisy outputs y, the best essmate y * for a new input * is? hmp:// with author s consent for use

5 GP 序論 : y = f()? 線形モデルを仮定 最小二乗法による線形回帰 y = w i φ i () i 次 3 次 非多項式モデルなどから選択 モデル選択法を利用 ガウス過程で表す データに基づいてモデルを自動決定

6 hmp://learning.eng.cam.ac.uk/carl/talks/gpnt06.pdf with author s consent for use GP 序論 C. E. Rasmussen Eample CO per year 40 CO concentration, ppm 400? year

7 GP 序論 C. E. Rasmussen Eample CO per year 最小 乗法による線形モデルの当てはめ CO concentration, ppm year hmp://learning.eng.cam.ac.uk/carl/talks/gpnt06.pdf with author s consent for use 問題 : 季節変動が捉えられない

8 GP 序論 C. E. Rasmussen Eample CO per year { 季節変動 - 正弦関数 }+{ トレンド - 3 次多項式 } モデルの当てはめ 40 CO concentration, ppm hmp://learning.eng.cam.ac.uk/carl/talks/gpnt06.pdf with author s consent for use year

9 GP 序論 C. E. Rasmussen Eample CO per year { 季節変動 - 正弦関数 }+{ トレンド - 次多項式 } モデルの当てはめ CO concentration, ppm hmp://learning.eng.cam.ac.uk/carl/talks/gpnt06.pdf with author s consent for use year

10 GP 序論 C. E. Rasmussen Eample CO per year { 季節変動 - 正弦関数 }+{ トレンド - 多項式 } 回帰モデル : ü データがある部分についてはよく適合している ü データがない部分については トレンド成分を表す基底関数を 3 次から 次の多項式の変更しただけで 予測が異なる 問題 : パラメトリックなモデルの利用の難しさ 将来の CO はどうのように予測したらよいか? GP の利用

11 GP 序論 : ノンパラメトリック予測 Y n 番目の入力 : n 出力: y n 学習データ : D = {( n,y n ),n=,...,n} = X [ Y Z p(y, Y, X )= p(y, )p( ) Y p(y n, n ) n パラメトリックモデル [D. Barber, Bayesian Reasoning and Machine Learning, 0] with author s consent for use ノンパラメトリックモデル

12 GP 序論 : 線形モデルから GP へ 線形モデル y = Φw, Φ = φ( ),...,φ( N ) [ ] Τ, p(w) = Ν(w 0, Σ w ) p(y ) = w δ y Φw ( ) mean: y = Φ w p(w) = 0 p(w) : Gaussian distributed with Σ w = I ΦΦ T cov: yy Τ = Φ ww Τ p(w) ΦΤ = ΦΣ w Φ Τ = ΦΣ w K ( )( ΦΣ ) Τ w [D. Barber, Bayesian Reasoning and Machine Learning, 0] with author s consent for use

13 GP 序論 : 線形モデルから GP へ 線形モデル y = Φw, Φ = φ( ),...,φ( N ) [ ] Τ, p(w) = Ν(w 0, Σ w ) p(y ) = Ν y 0, K ( ) Gram matri: K [ ] n,n' = φ( n ) Τ φ( n' ) = k( n, n' ) GP: ノンパラメトリックモデル [D. Barber, Bayesian Reasoning and Machine Learning, 0] with author s consent for use

14 GP 序論 : カーネル法 z o o o o o o o o o o z z 3 (, ) (z, z, z 3 ) := (,, ) 入力空間 R 特徴空間 R 3

15 GP 序論カーネル法 : 高次元空間での内積計算 次元から 3 次元空間への写像 カーネル関数 ),, ( ) ( ), ( = Φ =, ) :, K( y y =, ), ),(, ( ),, ),(,, ( ) ( ), ( y y = = = Φ Φ y y y y y y

16 GP 序論 カーネル法 : 次元の呪いの克服 カーネル関数 K(, y) = (, y + ) s 実際の計算! 高々 64 次元の内積 が64 次元で s = 3の時 = (,, 64) [ 入力空間 ] Φ( ) = 3 4 (,,,,, 3, ),, 64,,,,, 6 3,, [ 特徴空間 ] Φ( ), Φ( y) 次元の内積 大変な計算!

17 GP 序論 カーネル法 : 識別関数 ( ) = w T Φ( ) + b ( f = w 3 +!+ w : 64 次元ベクトル K(, y) = ( T y+) 3 + w !+ w w !+ w w !+ w w !+ w w !+ w i SV + w ) + b = α i y i k( i, )+ b w i が大きければ識別に有効な特徴量 高い表現力!

18 GP 序論 カーネル法 : 入力空間と特徴空間 非線形識別 回帰 入力空間 :Ω i 線形識別 回帰特徴空間 :H {w,b} (~ 次元 ) Φ( i ) カーネル関数による計算 ( 高々サンプル数 ) 8

19 GP 序論カーネル法 : k(, y) = Φ T () Φ(y) となる条件. 正定値カーネル. 再生核ヒルベルト空間 集合 Ω, k: Ω Ω R k(, y): Ω 上の正定値カーネル [ 対称性 ] k(, y) = k(y, ) [ 正定値性 ] 任意の自然数 n と任意の Ω の点,, n に対して n n グラム行列 n { k( i, j )} i, j=! # = # # "# k(, )! k(, n )! "! k( n, )! k( n, n ) が半正定値 すなわち 任意の実数 c,, c n に対して c j k( i, j ) 0 n c i, j= i $ & & & %&

20 GP 序論 : 正定値カーネル m Ω = R 多項式 k(, ') = ( T '+σ 0 ) p Squared eponensal γ- eponensal " k(, ') = ep ' % $ # l ' & " " k(, ') = ep $ $ # # ' l % ' & γ % ' &

21 GP 序論 : カーネル設計 カーネルの特質 : 和 : k(, ) = k (, ) + k (, ) 積 : k(, ) = k (, ) k (, ) z = [, y] T の時 : 和 : k(z, z ) = k (, ) + k (y, y ) 積 : k(z, z ) = k (, ) k (y, y )

22 目次 ガウス過程 (Gaussian Process; GP) 序論 GPによる回帰 GPによる識別 GP 状態空間モデル 概括 GP 状態空間モデルによる音楽ムードの推定

23 線形モデルから GP へ ( 再び ) 線形モデル y = Φw, Φ = φ( ),...,φ( N ) [ ] Τ, p(w) = Ν(w 0, Σ w ) p(y ) = Ν y 0, K ( ) Gram matri: K [ ] n,n' = φ( n ) Τ φ( n' ) = k( n, n' ) GP: ノンパラメトリックモデル [D. Barber, Bayesian Reasoning and Machine Learning, 0] with author s consent for use

24 GP による回帰 PredicSon problem using a dataset D = {, y}: p(y, y *, * ) = Ν(y, y * 0 N+, K + ) K + K, K,* K *, K *,* p(y * *, D) = Ν(y * K K *,,y, K *, * K K *,,K,* ) PredicSve distribuson [D. Barber, Bayesian Reasoning and Machine Learning, 0] with author s consent for use

25 GP による回帰 回帰問題 : y = f ()+ε, ε ~ N(0,σ ) R d Unknown system y R GP 回帰 : f = [ f ( ), f ( ),..., f ( n )], f ~ N(m, K) n=,..., f () ~ GP(m(), k(, ')) m() = E[ f ()] k(, ') = E[( f () m())( f (') m(')))]

26 GP による回帰 平均と分散 : m = [m( ), m( ),..., m( n )]! # # K = # # "# k(, ) k(, )... k(, n ) k(, ) k(, )... k(, n ) k( n, ) k( n, )... k( n, n ) $ & & & & %& k(, ') - any valid kernel funcson.

27 GP による回帰 p(y * *, y, ) = p(y * f * )p( f * *, y, ) df * Gaussian p( f * *, y, ) = p( f * f, *, ) p(f y, )df Gaussian p(y * *, y, ) = N( f *, var( f * )) Gaussian

28 GP による回帰 回帰問題 : 予測 : p(y * *, y, ) = N( f *, var( f * )+σ I) Prior y = f ()+ε, ε ~ N(0,σ ) f * = K *, (K, +σ I) y var( f * ) = K *, * K *, (K, +σ I) K,* Posterior output, f() 0 output, f() input, input,

29 GP による回帰 ハイパーパラメータの学習 : Θ = {σ,l} ma Θ p(y,θ) = ma Θ p(y f)p(f, Θ)df ML type II estimation

30 目次 ガウス過程 (Gaussian Process; GP) 序論 GPによる回帰 GPによる識別 GP 状態空間モデル 概括 GP 状態空間モデルによる音楽ムードの推定

31 GP による識別 入力 のクラス c を推定する問題 : p(c ) = p(c y, )p(y )dy = p(c y)p(y )dy 学習データ X = {,, N } とそのクラス C = {c,,c N } が与えられた時 新しい入力 * のクラスを推定する : p(c * *,C, X) = p( c * y * )p(y * X,C)dy * p(y * X,C) p(y *,C X) = p(y *, Y,C X, * )dy = p(c Y)p(Y, y * X, * )dy クラス写像 # N & GP = $ p(c n y n )' p(y,.., y N, y *,.., N, * )dy,.., dy N % ( n=

32 GP による識別 グラフ表現 : c c N c y y N y N [D. Barber, Bayesian Reasoning and Machine Learning, 0] with author s consent for use

33 GPによる識別 :クラス分類 c { 0,} 例 ) クラス写像としてシグモイド関数を利用 : σ () = + ep( ) p(c y) = σ ((c )y) 問題 非線形のクラス写像の場合 p(y * X, C) の積分計算 " N % p(y * X,C) # p(c n y n )& p(y, y * X, * )dy $ ' n= [D. Barber, Bayesian Reasoning and Machine Learning, 0] with author s consent for use

34 GP による識別 : クラス分類 c { 0,} ラプラス近似法 ( 分布の Gaussian 近似法 ) の利用 : p(y *, Y *, X,C) p(y *, Y,C *, X) p(y * Y, *, X)p(Y C, X) クラス情報を含まない Gaussian で近似 p(y *, Y *, X,C) p(y * Y, *, X)q(Y C, X) Joint Gaussian p(c * = *, X,C) σ (y * ) N (y * <y * >,var(y * )) [D. Barber, Bayesian Reasoning and Machine Learning, 0] with author s consent for use

35 GPによる識別 :クラス分類 c { 0,} [D. Barber, Bayesian Reasoning and Machine Learning, 0] with author s consent for use

36 GP による識別 : 多クラス分類 ソフトマックス関数の利用 : p(c = m y) = m' ep(y m ) ep(y m' ) m p(c = m) = [D. Barber, Bayesian Reasoning and Machine Learning, 0] with author s consent for use

37 目次 ガウス過程 (Gaussian Process; GP) 序論 GPによる回帰 GPによる識別 GP 状態空間モデル 概括 GP 状態空間モデルによる音楽ムードの推定 [K. Markov and T. Matsui, Dynamic music emoson recognison using state space models, Proc. MediaEval04]

38 状態空間モデル 時系列を解析するモデル : 状態 t と観測 y t を表す式! " # $% " #&',) +υ #, υ~./0, 3 # $4 " #,5 +ν #, ν~./0,7

39 カルマンフィルター 線形状態空間モデル + +, -,+,/0 υ, 3, --+, ν, 長所 : 解析的な推定法が確立されている 高速に計算できる 短所 : 線形のモデル

40 状態と観測の式 : 長所 : GP 状態空間モデル 非線形 ノンパラメトリックのモデル 表現力が高い 短所 :! " # $% " #&' (υ #, %,"- /0,0, - 4 # $5 " # ( ν #, 5,"- /0,0, 3 - 推定法がまだ確立されていない 計算コストが大きい

41 使用データ 学習セット clips. テストセット - 44 clips. 実験 MediaEval04 カルマンフィルター GP 状態空間モデル A- V 空間を 4 つにクラスタリング 各クラスタごとに状態空間モデルを推定 最尤基準によるモデル選択 [hmp://

42 実験 MediaEval04 音楽特徴量 mfcc メル周波数ケプストラム係数 baseline MediaEval04 における標準の特徴量 ( スペクトルの変化 ハーモニックの変化 音量 音色 ゼロ交差率を表す 5 つの特徴量 )

43 実験結果 :RMSE 特徴量 カルマンフィルター GP 状態空間モデル RMSE RMSE AROUSAL MULTIPLE MODELS mfcc baseline VALENCE MULTIPLE MODELS mfcc baseline

44 ご質問をどうぞ!

Microsoft PowerPoint - OsakaU_1intro.pptx

Microsoft PowerPoint - OsakaU_1intro.pptx カーネル法入門. カーネル法へのイントロダクション 福水健次 統計数理研究所 / 総合研究大学院大学 大阪大学大阪大学大学院基礎工学研究科 集中講義 204 September カーネル法 : 近年 990 年代半ばごろから 発展したデータ解析の方法論. 非線形な情報や高次モーメントの扱いが容易. サポートベクターマシンの提案が発端となった. 2 線形なデータ解析 非線形な データ解析 3 データ解析とは?

More information

Microsoft PowerPoint - H17-5時限(パターン認識).ppt

Microsoft PowerPoint - H17-5時限(パターン認識).ppt パターン認識早稲田大学講義 平成 7 年度 独 産業技術総合研究所栗田多喜夫 赤穂昭太郎 統計的特徴抽出 パターン認識過程 特徴抽出 認識対象から何らかの特徴量を計測 抽出 する必要がある 認識に有効な情報 特徴 を抽出し 次元を縮小した効率の良い空間を構成する過程 文字認識 : スキャナ等で取り込んだ画像から文字の識別に必要な本質的な特徴のみを抽出 例 文字線の傾き 曲率 面積など 識別 与えられた未知の対象を

More information

Microsoft PowerPoint - IBIS2012_open.pptx

Microsoft PowerPoint - IBIS2012_open.pptx カーネル法の新展開 ーその理論と応用ー 福水 健次 統計数理研究所 / 総合研究大学院大学 第 15 回情報論的学習理論ワークショップ (IBIS2012) 2012.11.7 9. @ 筑波大学東京キャンパス 1 Outline 1. イントロダクション : カーネル法の概要 2. 確率分布の表現としてのカーネル法 3. 条件付確率の表現と推定精度 4. カーネル推論則 5. おわりに 2 データの高次元性,

More information

PowerPoint Presentation

PowerPoint Presentation . カーネル法への招待 正定値カーネルによるデータ解析 - カーネル法の基礎と展開 - 福水健次統計数理研究所 / 総合研究大学院大学 統計数理研究所公開講座 0 年 月 34 日 概要 カーネル法の基本 線形データ解析と非線形データ解析 カーネル法の原理 カーネル法の つの例 カーネル主成分分析 : PCA の非線形拡張 リッジ回帰とそのカーネル化 概要 カーネル法の基本 線形データ解析と非線形データ解析

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

Microsoft Word doc

Microsoft Word doc . 正規線形モデルのベイズ推定翠川 大竹距離減衰式 (PGA(Midorikawa, S., and Ohtake, Y. (, Attenuation relationships of peak ground acceleration and velocity considering attenuation characteristics for shallow and deeper earthquakes,

More information

Microsoft PowerPoint - 資料04 重回帰分析.ppt

Microsoft PowerPoint - 資料04 重回帰分析.ppt 04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit manabu@cheme.koto-u.ac.jp http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

スライド 1

スライド 1 数値解析 2019 年度前期第 13 週 [7 月 11 日 ] 静岡大学創造科学技術大学院情報科学専攻工学部機械工学科計測情報講座 三浦憲二郎 講義アウトライン [7 月 11 日 ] 関数近似と補間 最小 2 乗近似による関数近似 ラグランジュ補間 T.Kanai, U.Tokyo 関数近似 p.116 複雑な関数を簡単な関数で近似する 関数近似 閉区間 [a,b] で定義された関数 f(x)

More information

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手 14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9),

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9), ML rgr ML ML ML (,, ) σ τ τ u + + τ σ τ v + + τ τ σ + + (.) uv,,,, σ, σ, σ, τ, τ, τ t (Hook) σ λθ + ε, τ γ σ λθ + ε, τ γ σ λθ + ε, τ γ λ, E ν ν λ E, E ( + ν)( ν) ( + ν) Θ Θ ε + ε + ε (.) ε, ε, ε, γ, γ,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション データ解析 第 7 回 : 時系列分析 渡辺澄夫 過去から未来を予測する 観測データ 回帰 判別分析 解析方法 主成分 因子 クラスタ分析 時系列予測 時系列を予測する 無限個の確率変数 ( 確率変数が作る無限数列 ){X(t) ; t は整数 } を生成する情報源を考える {X(t)} を確率過程という 確率過程に ついて過去の値から未来を予測するにはどうしたらよいだろうか X(t-K),X(t-K+1),,X(t-1)

More information

したがって このモデルではの長さをもつ潜在履歴 latent history が存在し 同様に と指標化して扱うことができる 以下では 潜在的に起こりうる履歴を潜在履歴 latent history 実際にデ ータとして記録された履歴を記録履歴 recorded history ということにする M

したがって このモデルではの長さをもつ潜在履歴 latent history が存在し 同様に と指標化して扱うことができる 以下では 潜在的に起こりうる履歴を潜在履歴 latent history 実際にデ ータとして記録された履歴を記録履歴 recorded history ということにする M Bayesian Inference with ecological applications Chapter 10 Bayesian Inference with ecological applications 輪読会 潜在的な事象を扱うための多項分布モデル Latent Multinomial Models 本章では 記録した頻度データが多項分布に従う潜在的な変数を集約したものと考えられるときの

More information

Overview (Gaussian Process) GPLVM GPDM 2 / 59

Overview (Gaussian Process) GPLVM GPDM 2 / 59 daichi@ism.ac.jp 2015-3-3( ) 1 / 59 Overview (Gaussian Process) GPLVM GPDM 2 / 59 (Gaussian Process) y 2 1 0 1 2 3 8 6 4 2 0 2 4 6 8 x x y (regressor) D = { (x (n), y (n) ) } N, n=1 x (n+1) y (n+1), (

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル 時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル

More information

ベイズ統計入門

ベイズ統計入門 ベイズ統計入門 条件付確率 事象 F が起こったことが既知であるという条件の下で E が起こる確率を条件付確率 (codtoal probablt) という P ( E F ) P ( E F ) P( F ) 定義式を変形すると 確率の乗法公式となる ( E F ) P( F ) P( E F ) P( E) P( F E) P 事象の独立 ある事象の生起する確率が 他のある事象が生起するかどうかによって変化しないとき

More information

Presentation Title

Presentation Title センサーデータ解析と機械学習 ~ 振動データからの異常検出 ~ MathWorks Japan アプリケーションエンジニアリング部 ( テクニカルコンピューティング ) 太田英司 2015 2014 The MathWorks, Inc. 1 構造ヘルスモニタリング センサーとコンピュータにより構造物の健全性を自動監視する 老朽化する構造物 インフラの数 人手のみの監視による限界 人間では検知できない故障や異常の予兆

More information

景気指標の新しい動向

景気指標の新しい動向 内閣府経済社会総合研究所 経済分析 22 年第 166 号 4 時系列因子分析モデル 4.1 時系列因子分析モデル (Stock-Watson モデル の理論的解説 4.1.1 景気循環の状態空間表現 Stock and Watson (1989,1991 は観測される景気指標を状態空間表現と呼ば れるモデルで表し, 景気の状態を示す指標を開発した. 状態空間表現とは, わ れわれの目に見える実際に観測される変数は,

More information

Microsoft PowerPoint - S11_1 2010Econometrics [互換モード]

Microsoft PowerPoint - S11_1 2010Econometrics [互換モード] S11_1 計量経済学 一般化古典的回帰モデル -3 1 図 7-3 不均一分散の検定と想定の誤り 想定の誤りと不均一分散均一分散を棄却 3つの可能性 1. 不均一分散がある. 不均一分散はないがモデルの想定に誤り 3. 両者が同時に起きている 想定に誤り不均一分散を 検出 したら散布図に戻り関数形の想定や説明変数の選択を再検討 残差 残差 Y 真の関係 e e 線形回帰 X X 1 実行可能な一般化最小二乗法

More information

Microsoft Word - Time Series Basic - Modeling.doc

Microsoft Word - Time Series Basic - Modeling.doc 時系列解析入門 モデリング. 確率分布と統計的モデル が確率変数 (radom varable のとき すべての実数 R に対して となる確 率 Prob( が定められる これを の関数とみなして G( Prob ( とあらわすとき G( を確率変数 の分布関数 (probablt dstrbuto ucto と呼 ぶ 時系列解析で用いられる確率変数は通常連続型と呼ばれるもので その分布関数は (

More information

Presentation Title

Presentation Title データの本質を読み解くための機械学習 MATLAB でデータ解析の課題に立ち向かう MathWorks Japan アプリケーションエンジニア部アプリケーションエンジニア井原瑞希 2016 The MathWorks, Inc. 1 Buzzwords IoT 人工知能 / AI データ解析 ビッグデータ 2 データ解析ワークフロー データへのアクセスと探索 データの前処理 予測モデルの構築 システムへの統合

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 非線形カルマンフィルタ ~a. 問題設定 ~ 離散時間非線形状態空間表現 x k + 1 = f x k y k = h x k + bv k + w k f : ベクトル値をとるx k の非線形関数 h : スカラ値をとるx k の非線形関数 v k システム雑音 ( 平均値 0, 分散 σ v 2 k ) x k + 1 = f x k,v k w k 観測雑音 ( 平均値 0, 分散 σ w

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A

NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, AstraZeneca KK 要旨 : NLMIXEDプロシジャの最尤推定の機能を用いて 指数分布 Weibull

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

トピックモデルの応用: 関係データ、ネットワークデータ

トピックモデルの応用: 関係データ、ネットワークデータ NTT コミュニケーション科学基礎研究所 石黒勝彦 2013/01/15-16 統計数理研究所会議室 1 1 画像認識系から尐し遅れますが 最近では音声 音響データに対してもトピックモデルが利用されるようになっています 2 1. どの特徴量を利用するか? 2. 時系列性をどう扱うか? 3 どの特徴量を利用して どうやって BoW 形式に変換するかを検討する必要があります MFCC: 音声認識などで広い範囲で利用される

More information

航空機の運動方程式

航空機の運動方程式 可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

カーネル法による 非線形データ解析法

カーネル法による 非線形データ解析法 カーネル法による 非線形データ解析入門 福水健次 情報 システム研究機構統計数理研究所 March 3, 2006. @ ROIS Cross-talk あらまし. イントロ : 線形から非線形へ 2. カーネル法 : 高次元の内積計算 3. カーネル法の具体例 : カーネル PCA とカーネル CCA 4. グラフに対するデータ解析 5. まとめ 2 Introduction 線形から非線形へ.

More information

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 . 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション ロボットの計画と制御 マルコフ決定過程 確率ロボティクス 14 章 http://www.probabilistic-robotics.org/ 1 14.1 動機付けロボットの行動選択のための確率的なアルゴリズム 目的 予想される不確かさを最小化したい. ロボットの動作につての不確かさ (MDP で考える ) 決定論的な要素 ロボット工学の理論の多くは, 動作の影響は決定論的であるという仮定のもとに成り立っている.

More information

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�)

Microsoft Word ã‡»ã…«ã‡ªã…¼ã…‹ã…žã…‹ã…³ã†¨åłºæœ›å•¤(佒芤喋çfl�) Cellulr uo nd heir eigenlues 東洋大学総合情報学部 佐藤忠一 Tdzu So Depren o Inorion Siene nd rs Toyo Uniersiy. まえがき 一次元セルオ-トマトンは数学的には記号列上の行列の固有値問題である 固有値問題の行列はふつう複素数体上の行列である 量子力学における固有値問題も無限次元ではあるが関数環上の行列でその成分は可換環である

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍

More information

Microsoft PowerPoint - 時系列解析(11)_講義用.pptx

Microsoft PowerPoint - 時系列解析(11)_講義用.pptx 時系列解析 () ボラティリティ 時変係数 AR モデル 東京 学数理 情報教育研究センター 北川源四郎 概要. 分散 定常モデル : 線形化 正規近似. 共分散 定常モデル : 時変係数モデル 3. 線形 ガウス型状態空間モデル 分散 共分散 定常 3 地震波 経 5 定常時系列のモデル 4. 平均 定常 トレンド, 季節調整. 分散 定常 線形 ガウスモデル ( カルマンフィルタ ) で推定するためには

More information

SAP11_03

SAP11_03 第 3 回 音声音響信号処理 ( 線形予測分析と自己回帰モデル ) 亀岡弘和 東京大学大学院情報理工学系研究科日本電信電話株式会社 NTT コミュニケーション科学基礎研究所 講義内容 ( キーワード ) 信号処理 符号化 標準化の実用システム例の紹介情報通信の基本 ( 誤り検出 訂正符号 変調 IP) 符号化技術の基本 ( 量子化 予測 変換 圧縮 ) 音声分析 合成 認識 強調 音楽信号処理統計的信号処理の基礎

More information

0 部分的最小二乗回帰 Partial Least Squares Regression PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌

0 部分的最小二乗回帰 Partial Least Squares Regression PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 0 部分的最小二乗回帰 Parial Leas Squares Regressio PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 部分的最小二乗回帰 (PLS) とは? 部分的最小二乗回帰 (Parial Leas Squares Regressio, PLS) 線形の回帰分析手法の つ 説明変数 ( 記述 ) の数がサンプルの数より多くても計算可能 回帰式を作るときにノイズの影響を受けにくい

More information

Introduction to System Identification

Introduction to System Identification y(t) モデルベースデザイン 制御系設計のためのシステム同定入門 s 2 Teja Muppirala t s 2 3s 4 2012 The MathWorks, Inc. 1 モデルベースデザイン 正確なモデルがあることが大前提 実行可能な仕様書 シミュレーションによる設計 モデル 連続したテスト 検証 コード生成による実装 2 動的システムのモデリング モデリング手法 第一原理モデリング データドリブンモデリング

More information

集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed mu

集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed mu 集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models, Transportation Research Part

More information

0 スペクトル 時系列データの前処理 法 平滑化 ( スムージング ) と微分 明治大学理 学部応用化学科 データ化学 学研究室 弘昌

0 スペクトル 時系列データの前処理 法 平滑化 ( スムージング ) と微分 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 0 スペクトル 時系列データの前処理 法 平滑化 ( スムージング ) と微分 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 スペクトルデータの特徴 1 波 ( 波数 ) が近いと 吸光度 ( 強度 ) の値も似ている ノイズが含まれる 吸光度 ( 強度 ) の極大値 ( ピーク ) 以外のデータも重要 時系列データの特徴 2 時刻が近いと プロセス変数の値も似ている ノイズが含まれる プロセス変数の極大値

More information

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q( 1 1 y = y() y, y,..., y (n) : n y F (, y, y,..., y (n) ) = 0 n F (, y, y ) = 0 1 y() 1.1 1 y y = G(, y) 1.1.1 1 y, y y + p()y = q() 1 p() q() (q() = 0) y + p()y = 0 y y + py = 0 y y = p (log y) = p log

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

画像処理工学

画像処理工学 画像処理工学 画像の空間周波数解析とテクスチャ特徴 フーリエ変換の基本概念 信号波形のフーリエ変換 信号波形を周波数の異なる三角関数 ( 正弦波など ) に分解する 逆に, 周波数の異なる三角関数を重ねあわせることにより, 任意の信号波形を合成できる 正弦波の重ね合わせによる矩形波の表現 フーリエ変換の基本概念 フーリエ変換 次元信号 f (t) のフーリエ変換 変換 ( ω) ( ) ωt F f

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

09.pptx

09.pptx 講義内容 数値解析 第 9 回 5 年 6 月 7 日 水 理学部物理学科情報理学コース. 非線形方程式の数値解法. はじめに. 分法. 補間法.4 ニュートン法.4. 多変数問題への応用.4. ニュートン法の収束性. 連立 次方程式の解法. 序論と行列計算の基礎. ガウスの消去法. 重対角行列の場合の解法項目を変更しました.4 LU 分解法.5 特異値分解法.6 共役勾配法.7 反復法.7. ヤコビ法.7.

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 行列演算と写像 ( 次変換 3 拡大とスカラー倍 p ' = ( ', ' = ( k, kk p = (, k 倍 k 倍 拡大後 k 倍拡大の関係は スカラー倍を用いて次のように表現できる ' = k ' 拡大前 拡大 4 拡大と行列の積 p ' = ( ', '

More information

(Microsoft PowerPoint - \221\34613\211\361)

(Microsoft PowerPoint - \221\34613\211\361) 計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.

More information

Microsoft PowerPoint - qcomp.ppt [互換モード]

Microsoft PowerPoint - qcomp.ppt [互換モード] 量子計算基礎 東京工業大学 河内亮周 概要 計算って何? 数理科学的に 計算 を扱うには 量子力学を計算に使おう! 量子情報とは? 量子情報に対する演算 = 量子計算 一般的な量子回路の構成方法 計算って何? 計算とは? 計算 = 入力情報から出力情報への変換 入力 計算機構 ( デジタルコンピュータ,etc ) 出力 計算とは? 計算 = 入力情報から出力情報への変換 この関数はどれくらい計算が大変か??

More information

( 前半 ) 目次 1. 辞書学習の導入と先行研究の紹介. 辞書学習の応用事例 3. 辞書学習のサンプル複雑度とは ( 後半 ) 4. 既存の辞書学習のアルゴリズム 5.Bayes 推定を用いた辞書学習のアルゴリズム /53

( 前半 ) 目次 1. 辞書学習の導入と先行研究の紹介. 辞書学習の応用事例 3. 辞書学習のサンプル複雑度とは ( 後半 ) 4. 既存の辞書学習のアルゴリズム 5.Bayes 推定を用いた辞書学習のアルゴリズム /53 スパース表現を探す - 辞書学習におけるサンプル複雑度と アルゴリズム - 坂田綾香 A, 樺島祥介 B A 統計数理研究所, B 東京工業大学 1/53 ( 前半 ) 目次 1. 辞書学習の導入と先行研究の紹介. 辞書学習の応用事例 3. 辞書学習のサンプル複雑度とは ( 後半 ) 4. 既存の辞書学習のアルゴリズム 5.Bayes 推定を用いた辞書学習のアルゴリズム /53 ( 前半 ) 目次

More information

Microsoft PowerPoint - H22制御工学I-10回.ppt

Microsoft PowerPoint - H22制御工学I-10回.ppt 制御工学 I 第 回 安定性 ラウス, フルビッツの安定判別 平成 年 6 月 日 /6/ 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

. 分析内容及びデータ () 分析内容中長期の代表的金利である円金利スワップを題材に 年 -5 年物のイールドスプレッドの変動を自己回帰誤差モデル * により時系列分析を行った * ) 自己回帰誤差モデル一般に自己回帰モデルは線形回帰モデルと同様な考え方で 外生変数の無いT 期間だけ遅れのある従属変

. 分析内容及びデータ () 分析内容中長期の代表的金利である円金利スワップを題材に 年 -5 年物のイールドスプレッドの変動を自己回帰誤差モデル * により時系列分析を行った * ) 自己回帰誤差モデル一般に自己回帰モデルは線形回帰モデルと同様な考え方で 外生変数の無いT 期間だけ遅れのある従属変 () 現在データは最大 5 営業日前までの自己データが受けたショック ( 変動要因 ) の影響を受け 易い ( 情報の有効性 ) 現在の金利変動は 過去のどのタイミングでのショック ( 変動要因 ) を引きずり変動しているのかの推測 ( 偏自己相関 ) また 将来の変動を予測する上で 政策金利変更等の ショックの持続性 はどの程度 将来の変動に影響を与えるか等の判別に役に立つ可能性がある (2) その中でも

More information

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 となるように半固定抵抗器を調整する ( ゼロ点調整のため ) 図 1 非反転増幅器 2010 年度版物理工学実験法

More information

Microsoft PowerPoint - no1_17

Microsoft PowerPoint - no1_17 数理計画法 田地宏一 Inrodcion o Mahemaical rogramming 教科書 : 新版数理計画入門 福島雅夫 朝倉書店 参考書 : 最適化法 田村 村松著 共立出版 工学基礎最適化とその応用 矢部著 数理工学社 6Linear and Nonlinear Opimizaion: second ediion I.Griba.G. Nash and A. ofer IAM 9 など多数

More information

スライド 1

スライド 1 第 13 章系列データ 2015/9/20 夏合宿 PRML 輪読ゼミ B4 三木真理子 目次 2 1. 系列データと状態空間モデル 2. 隠れマルコフモデル 2.1 定式化とその性質 2.2 最尤推定法 2.3 潜在変数の系列を知るには 3. 線形動的システム この章の目標 : 系列データを扱う際に有効な状態空間モデルのうち 代表的な 2 例である隠れマルコフモデルと線形動的システムの性質を知り

More information

AI技術の紹介とセンサーデータ解析への応用

AI技術の紹介とセンサーデータ解析への応用 AI を活用したセンサーデータ解析 MathWorks Japan アプリケーションエンジニアリンググループアプリケーションエンジニア吉田剛士 2018 The MathWorks, Inc. 1 AI を活用したセンサーデータ解析 11:20-11:50 MATLAB による AI 作成 アプリを使った簡易的な解析 学習モデルのパラメータ自動調整 学習モデルのスタンドアロン化 2 課題 : ターボファンエンジンの予知保全

More information

カイ二乗フィット検定、パラメータの誤差

カイ二乗フィット検定、パラメータの誤差 統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,

More information

untitled

untitled 17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1 1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 復習 ) 時系列のモデリング ~a. 離散時間モデル ~ y k + a 1 z 1 y k + + a na z n ay k = b 0 u k + b 1 z 1 u k + + b nb z n bu k y k = G z 1 u k = B(z 1 ) A(z 1 u k ) ARMA モデル A z 1 B z 1 = 1 + a 1 z 1 + + a na z n a = b 0

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

Microsoft PowerPoint - 13approx.pptx

Microsoft PowerPoint - 13approx.pptx I482F 実践的アルゴリズム特論 13,14 回目 : 近似アルゴリズム 上原隆平 (uehara@jaist.ac.jp) ソートの下界の話 比較に基づく任意のソートアルゴリズムはΩ(n log n) 時間の計算時間が必要である 証明 ( 概略 ) k 回の比較で区別できる場合の数は高々 2 k 種類しかない n 個の要素の異なる並べ方は n! 通りある したがって少なくとも k n 2 n!

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

Microsoft PowerPoint - ElasticConvergence

Microsoft PowerPoint - ElasticConvergence IBIS2010 スパース正則化学習の学習性能, 特にスパース性と汎化誤差の関係についてス性と汎化誤差の関係について 鈴木大慈東京大学情報理工学系研究科数理情報学専攻 2010 年 11 月 4 日 冨岡亮太 ( 東京大学 ), 杉山将 ( 東京工業大学 ) との共同研究 1 スパース性と汎化誤差の関係 どのような正則化が好ましい? Multiple Kernel Learning (MKL) Elasticnet

More information

Dependent Variable: LOG(GDP00/(E*HOUR)) Date: 02/27/06 Time: 16:39 Sample (adjusted): 1994Q1 2005Q3 Included observations: 47 after adjustments C -1.5

Dependent Variable: LOG(GDP00/(E*HOUR)) Date: 02/27/06 Time: 16:39 Sample (adjusted): 1994Q1 2005Q3 Included observations: 47 after adjustments C -1.5 第 4 章 この章では 最小二乗法をベースにして 推計上のさまざまなテクニックを検討する 変数のバリエーション 係数の制約係数にあらかじめ制約がある場合がある たとえばマクロの生産関数は 次のように表すことができる 生産要素は資本と労働である 稼動資本は資本ストックに稼働率をかけることで計算でき 労働投入量は 就業者数に総労働時間をかけることで計算できる 制約を掛けずに 推計すると次の結果が得られる

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

Microsoft PowerPoint - CSA_B3_EX2.pptx

Microsoft PowerPoint - CSA_B3_EX2.pptx Computer Science A Hardware Design Excise 2 Handout V2.01 May 27 th.,2019 CSAHW Computer Science A, Meiji University CSA_B3_EX2.pptx 32 Slides Renji Mikami 1 CSAHW2 ハード演習内容 2.1 二次元空間でのベクトルの直交 2.2 Reserved

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

NS NS Scalar turbulence 5 6 FEM NS Mesh (A )

NS NS Scalar turbulence 5 6 FEM NS Mesh (A ) 22 3 2 1 2 2 2 3 3 4 NS 4 4.1 NS............ 5 5 Scalar turbulence 5 6 FEM 5 6.1 NS.................................... 6 6.2 Mes A )................................... 6 6.3.....................................

More information

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ Mindlin -Rissnr δ εσd δ ubd+ δ utd Γ Γ εσ (.) ε σ u b t σ ε. u { σ σ σ z τ τ z τz} { ε ε εz γ γ z γ z} { u u uz} { b b bz} b t { t t tz}. ε u u u u z u u u z u u z ε + + + (.) z z z (.) u u NU (.) N U

More information

Microsoft PowerPoint - 3.ppt [互換モード]

Microsoft PowerPoint - 3.ppt [互換モード] 3. プッシュダウンオートマトンと文脈自由文法 1 3-1. プッシュダウンオートマトン オートマトンはメモリがほとんど無かった この制限を除いた機械を考える 理想的なスタックを利用できるようなオートマトンをプッシュダウンオートマトン (Push Down Automaton,PDA) という 0 1 入力テープ 1 a 1 1 0 1 スタッb 入力テープを一度走査したあと ク2 入力テプを度走査したあと

More information

Microsoft PowerPoint - no1_19.pptx

Microsoft PowerPoint - no1_19.pptx 数理計画法 ( 田地宏一 ) Inroducion o ahemaical Programming 教科書 : 新版数理計画入門, 福島雅夫, 朝倉書店 011 参考書 : 最適化法, 田村, 村松著, 共立出版 00 工学基礎最適化とその応用, 矢部著, 数理工学社 006,Linear and Nonlinear Opimizaion: second ediion, I.Griba, S.G.

More information

カーネル法

カーネル法 講義 1: カーネル法 産業技術総合研究所津田宏治 1 産業技術総合研究所 ( 産総研 ) 産業技術分野におけるさまざまな研究開発を総合的に行う経済産業省所管の研究組織である ライフサイエンス 情報 通信 環境 エネルギー ナノテク 材料 製造 地質 海洋 標準 計測 の 6 分野を主軸に 日本の産業のほぼ全分野を網羅している 陣容は 研究職を中心とする常勤職員約 2500 名 事務系職員約 700

More information

2 1,384,000 2,000,000 1,296,211 1,793,925 38,000 54,500 27,804 43,187 41,000 60,000 31,776 49,017 8,781 18,663 25,000 35,300 3 4 5 6 1,296,211 1,793,925 27,804 43,187 1,275,648 1,753,306 29,387 43,025

More information

Microsoft Word - 訋é⁄‘組渋å�¦H29æœ�末試é¨fi解ç�fl仟㆓.docx

Microsoft Word - 訋é⁄‘組渋å�¦H29æœ�末試é¨fi解ç�fl仟㆓.docx 07 年 8 月 日計量経済学期末試験問. 次元ベクトル x ( x..., x)', w ( w.., w )', v ( v.., v )' は非確率変数であり 一次独立である 最小二乗推定法の残差と説明変数が直交することは証明無く用いてよい 確率ベクトル e ( e... ) ' は E( e ) 0, V ( e ),cov( e j ) 0 ( j) とし 確率ベクトル y=( y...,

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

ブック 1.indb

ブック 1.indb 21 1211 27 11 27 12 16 20 11 27 10 20 28 29 30 12 10 11 12 30 13 30 14 10 30 15 11 16 12 17 13 18 14 19 15 20 16 10 21 11 27 106 21 107 108 109 110 21 111 28 112 28 10 113 29 11 11421 30 12 11521 32 13

More information

CSR報告書2005 (和文)

CSR報告書2005 (和文) A 250 200 150 100 50 0 25,000 20,000 15,000 10,000 5,000 0 1,000 800 600 400 200 0 168 14 14 27 54 60 2000 16,975 1,314 1,207 8,977 5,477 2000 698 112 115 292 178 2000 223 24 28

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

 

  早稲田大学大学院理工学研究科 博士論文概要 論文題目 Various statistical methods in time series analysis 時系列解析における種々の統計手法 申請者 天野友之 Tomoyuki AMANO 数理科学専攻数理統計学研究 007 年 月 時とともに変動する偶然量の観測値の系列である時系列の解析は近年 様々な統計手法が導入され自然工学 医学 経済学 など多方面で急速に発展している

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ] Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

DVIOUT

DVIOUT 最適レギュレータ 松尾研究室資料 第 最適レギュレータ 節時不変型無限時間最適レギュレータ 状態フィードバックの可能な場合の無限時間問題における最適レギュレータについて確定系について説明する. ここで, レギュレータとは状態量をゼロにするようなコントローラのことである. なぜ, 無限時間問題のみを述べるかという理由は以下のとおりである. 有限時間の最適レギュレータ問題の場合の最適フィードバックゲインは微分方程式の解から構成される時間関数として表現される.

More information

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1> 3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として

More information