1 1(a) MPR 1(b) MPR MPR MPR MPR MPR 2 1 MPR MPR MPR A MPR B MPR 2 MPR MPR MPR MPR MPR GPS MPR MPR MPR 3. MPR MPR 2 MPR 2 (1) (4) Zai

Size: px
Start display at page:

Download "1 1(a) MPR 1(b) MPR MPR MPR MPR MPR 2 1 MPR MPR MPR A MPR B MPR 2 MPR MPR MPR MPR MPR GPS MPR MPR MPR 3. MPR MPR 2 MPR 2 (1) (4) Zai"

Transcription

1 Popular MPR 1,a) 2,b) 2,c) GPS Most Popular Route( MPR) MPR MPR MPR MPR MPR MPR MPR Popular Popular MPR MPR Popular 1. GPS GPS GPS Google Maps *1 Zaiben [1] Most Popular Route( MPR) MPR MPR MPR a) [email protected] b) [email protected] c) [email protected] *1 Zaiben MPR [2] MPR MPR GPS MPR MPR MPR Popular Popular MPR MPR Popular 2. MPR MPR 1 1 (a) (b) c 2013 Information Processing Society of Japan 1

2 1 1(a) MPR 1(b) MPR MPR MPR MPR MPR 2 1 MPR MPR MPR A MPR B MPR 2 MPR MPR MPR MPR MPR GPS MPR MPR MPR 3. MPR MPR 2 MPR 2 (1) (4) Zaiben MPR 1 GPS 2 MPR Transfer ProbabilityTP 3 TP Route PopularityRP 4 RP MPR MPR (1) (2 TP (1)-2 (1)-3 1)-2 1)-3 MPR Popular 3.1 T 1 ( ) T t 1 t M M M K 2 ( ) T T.s T.e 1 T T.s T.e T.e T.s + 1 c 2013 Information Processing Society of Japan 2

3 T = m j=1 T j( T i T j = 0) T a T b 2 T a T b T a.e + 1 = T b.s T ab T T T a T b T Algorithm1 Algorithm 1 Time Segments Combination INITIALIZATION: T set { T 1,..., T m } 1: [ITERATION] 2: for T a, T b T set ( T a T b ) do 3: if ((CHECK T ab ( T a, T b )) is true) then 4: T ab =COMBINE( T a, T b ) 5: T set T set T ab - T a - T b 6: end if 7: end for 8: [STOP CONDITION] 9: There exists no T ab where CHECK T ab ( T a, T b ) is true for any combination of a pair, T a, T b T set ( T a T b ) 2 T.s + i (0 i < M m ) w i std( T m ) min( T m ) T m std( T m ) std( T m ) = M m 1 i=0 (w i avg( T m )) 2 (1) avg( T m ) = M m 1 i=0 w i M m M m (2) min( T m ) min( T m ) = w k ( w i W, w k w i ) (3) W = (w 0,..., w M ) m MPR MPR MPR 2 MPR [3] Most Most γ NumberMost 2 MPR 2 ( Most NumberMost MPR MPR Distribution Most NumberMost 2 MPR 2 MPR Distribution Distribution Most NumberMost Distribution 3 3 T 4 T 5 Most T ab ( β% ) std( T ab ) α 3 std Most T 45 NumberMost T ab ( β% ) std( T ab ) α γ 3 c 2013 Information Processing Society of Japan 3

4 3 1 T 4 T 5 N N N N N NumberMost T 45 Distribution ϵ ( N 0,..., N p ) K most K most =1 2 Distribution 3 24 T T 1 T L 1 L 2 L 3 ϵ T 4 T 5 1 T 4 T 5 N 3 2 Algorithm2 Algorithm Popular MPR Popular Popular TP TP popular TP TP Popular MPR Algorithm 2 CHECK T ab ( T a, T b ) INITIALIZATION: Time Segment T a, T b ; Parameter α, β, γ, ϵ; OUTPUT: combineflag; 1: boolean combineflag; 2: T ab = COMBINE( T a, T b ) 3: [CONDITION Most] 4: if (Most(more than β) of the std( T ab )) α then 5: combineflag = true; 6: end if 7: [CONDITION NumberMost] 8: if (Most(more than β) of the std( T ab )) α and (the minimum number of trajectories of all edges) γ then 9: combineflag = true; 10: end if 11: [CONDITION Distribution] 12: if (trajectory amounts takes up same persentage in a Time Segment then 13: combineflag = true; 14: end if 15: RETURN combineflag; n i TP P r t (n i d) 1 t d 4 t P r t (n i d) = p j n i,d (4) j=1 R Popular p(r) 5 p(r) = i P r t (n j d) (5) j= Truck [4] GPS 3 TP MPR MPR MPR Popular 2 1 T 24 t 1 t AM0 c 2013 Information Processing Society of Japan 4

5 4 3 MPR Popular Popular 24 MPR T 12 MPR T 345 MPR T 78 MPR T 1 MPR T 2 MPR T 6 MPR T 7 MPR T 8 MPR Most T 12 (0:00 5:59), T 345 (6:00 14:59), T 6, T 7, T 8 NumberMost T 1, T 2, T 345 (6:00 14:59), T 6, T 7, T 8 Distribution T 12 (0:00 5:59), T 345 (6:00 14:59), T 6, T 78 (18:00 23:59) AM2 59 T 1 AM3 AM5 59 T 2 AM6 AM8 59 T 3 AM9 AM11 59 T 4 PM12 PM14 59 T 5 PM15 00 PM17 59 T 6 PM18 PM20 59 T 7 PM21 00 PM23 59 T α β γ ϵ 0 T 1, T 2,..., T 8 1 α 10.0 β 60.0 γ 20 ϵ Transfer Network GPS GPS Most NumberMost T 3 T 4 T 5 AM6 PM14 59 Most T 1 T 2 NumberMost 20 Distribution T 1 T 2 T 3 T 4 T 5 T 7 T MPR MPR Popular MPR MPR Popular 5 Popular 3 5(a) (AM0 PM23 59 ) MPR MPR 6 Popular (b) T 12 (AM0 AM5 59 ) MPR MPR 10 (a) MPR Popular (a) MPR T 12 (AM0 AM5 59 ) MPR MPR 5(c) T 345 (AM6 PM14 59 ) MPR AM6 PM14 59 MPR Popular (a) MPR T 345 (AM6 PM14 59 ) 5(c) MPR 5(d) T 78 (PM18 PM23 59 ) MPR 5(a) MPR Popular T 78 (PM18 PM23 59 ) MPR 3 ( T 12 T 345 T 78 ) ( T 1 T 2 T 6 T 7 T 8 ) Popular MPR MPR Popular MPR T 345 c 2013 Information Processing Society of Japan 5

6 MPR T 78 MPR Popular MPR 3 T 345 T 78 Distribution 5. [5] [6] [7] Popular Route Zaiben Ling [8] 2 Uncertain Trajectory Popular Route GPS GPS Julia [9] GPS Kai-Ping [10] 2 MPR Hsun [11] MPR MPR Popular MPR MPR MPR Popular MPR MPR JSPS [1] Zaiben Chen, Heng Tao Shen, Xiaofang Zhou. Discovering popular routes from trajectories. In ICDE 11, pp , [2] 22 / (2010) [3],,. MPR. DEIM2013, [4] Trucks Data Set: [5] Chengxuan Liao, Jiaheng Lu, and Hong Chen. Synthesizing routes for low sampling trajectories with absorbing Markov chains. In WAIM 11, pp , [6] Yu Zheng, Lizhu Zhang, Xing Xie, Wei-Ying Ma. Mining interesting locations and travel sequences from gps trajectories. In WWW 09, pp , [7] Jing Yuan, Yu Zheng, Xing Xie, Guangzhong Sun. Driving with Knowledge from the Physical World. In KDD 11, pp ,2011. [8] Ling-Yin Wei, Yu Zheng, Wen-Chih Peng. Constructing Popular Routes from Uncertain Trajectories. In KDD 12, pp , [9] Julia Letchner, John Krumm, Eric Horvitz. Trip Router with Individualized Preferences (TRIP): Incorporating Personalization into Route Planning. In IAAI 06, pp , [10] Kai-Ping Chang, Ling-Yin Wei, Mi-Yeh Yeh, Wen-Chih Peng. Discovering personalized routes from trajectories. In LBSN 11, pp.33-40,2011. [11] Hsun-Ping Hsieh, Cheng-Te Li, Shou-De Lin. Exploiting Large-Scale Check-in Data to Recommend Time- Sensitive Routes. In UrbComp 12, pp.55-62,2012. c 2013 Information Processing Society of Japan 6

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q, (ver. 4:. 2005-07-27) 1 1.1 (mixed matrix) (layered mixed matrix, LM-matrix) m n A = Q T (2m) (m n) ( ) ( ) Q I m Q à = = (1) T diag [t 1,, t m ] T rank à = m rank A (2) 1.2 [ ] B rank [B C] rank B rank

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

福岡大学人文論叢47-3

福岡大学人文論叢47-3 679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.

More information

Gray [6] cross tabulation CUBE, ROLL UP Johnson [7] pivoting SQL 3. SuperSQL SuperSQL SuperSQL SQL [1] [2] SQL SELECT GENERATE <media> <TFE> GENER- AT

Gray [6] cross tabulation CUBE, ROLL UP Johnson [7] pivoting SQL 3. SuperSQL SuperSQL SuperSQL SQL [1] [2] SQL SELECT GENERATE <media> <TFE> GENER- AT DEIM Forum 2017 E3-1 SuperSQL 223 8522 3 14 1 E-mail: {tabata,goto}@db.ics.keio.ac.jp, [email protected],,,, SuperSQL SuperSQL, SuperSQL. SuperSQL 1. SuperSQL, Cross table, SQL,. 1 1 2 4. 1 SuperSQL

More information

合併後の交付税について

合併後の交付税について (1) (2) 1 0.9 0.7 0.5 0.3 0.1 2 3 (1) (a), 4 (b) (a), (c) (a) 0.9 0.7 0.5 0.3 0.1 (b) (d),(e) (f) (g) (h) (a) (i) (g) (h) (j) (i) 5 (2) 6 (3) (A) (B) (A)+(B) n 1,000 1,000 2,000 n+1 970 970 1,940 3.0%

More information

88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88

More information

IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info

IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Information Science and Technology, Osaka University a) [email protected] 1 1 Bucket R*-tree[5] [4] 2 3 4 5 6 2. 2.1 2.2 2.3

More information

ì â~î’éëóø01

ì â~î’éëóø01 SPORTS-VIDEO 3030 400 200 14 197080 40 6 10 1990 68 46 10-1- 6 1 6 2 12 3 6 4 6 5 8 6 7 3 6 2 3 3 2 10 1 19901.5kg 51 00 55 40 2kg 4330 112.5kg 16 2 3 2kg -2- 1 30 1 31 2 1 2 2 AM 9:30 12:00 20 200 4

More information

浜松医科大学紀要

浜松医科大学紀要 On the Statistical Bias Found in the Horse Racing Data (1) Akio NODA Mathematics Abstract: The purpose of the present paper is to report what type of statistical bias the author has found in the horse

More information

P.3 P.4 P.9 P.11

P.3 P.4 P.9 P.11 MOST is the best! P.3 P.4 P.9 P.11 P. P.6 P.7 P.8 P.19 P.14 1 2 P.14 1 2 12,036 P.14 4 13,40 P.14 3 P.12P.14 P.12P.14 6 P.12 P.1 7 P.1 7 P.1 8 P.1 9 P.16 11 P.12 P.1 P.1 P.16 12 P.16 13 P.16-13 P.12 P.16

More information

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple 1 2 3 4 5 e β /α α β β / α A judgment method of difficulty of task for a learner using simple electroencephalograph Katsuyuki Umezawa 1 Takashi Ishida 2 Tomohiko Saito 3 Makoto Nakazawa 4 Shigeichi Hirasawa

More information

2. Apple iphoto 1 Google Picasa 2 Calendar for Everything [1] PLUM [2] LifelogViewer 3 1 Apple iphoto, 2 Goo

2. Apple iphoto 1 Google Picasa 2 Calendar for Everything [1]  PLUM [2] LifelogViewer 3 1 Apple iphoto,   2 Goo DEIM Forum 2012 D9-4 606 8501 E-mail: {sasage,tsukuda,nakamura,tanaka}@dl.kuis.kyoto-u.ac.jp,,,, 1. 2000 1 20 10 GPS A A A A A A A 2. Apple iphoto 1 Google Picasa 2 Calendar for Everything [1] Email PLUM

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

.......p...{..P01-48(TF)

.......p...{..P01-48(TF) 1 2 3 5 6 7 8 9 10 Act Plan Check Act Do Plan Check Do 11 12 13 14 INPUT OUTPUT 16 17 18 19 20 21 22 23 24 25 26 27 30 33 32 33 34 35 36 37 36 37 38 33 40 41 42 43 44 45 46 47 48 49 50 51 1. 2. 3.

More information

22 / ( ) OD (Origin-Destination)

22 / ( ) OD (Origin-Destination) 23 2 15 22 / ( ) OD (Origin-Destination) 1 1 2 3 2.1....................................... 3 2.2......................................... 3 2.3.......................................... 5 2.4............................

More information

untitled

untitled Track Stick...1...2...7...8...9...10...10...14...14...17...19...23 1. CD CD 2. INSTALL TRACK SITCK MANAGER 3. OK 2 4. NEXT 5. license agreement I agree 6. Next 3 7. 8. Next 9. Next 4 10. Close 9 OK PDF

More information

untitled

untitled -1- -2- -3- AED -4- 2-5- -6- -7- -8-6-1-28 048-833-1231 2-1-1 048-261-3119 4389-1 048-556-3005 1-13-11 04-2924-1311 2097-1 048-738-3111 1172 04-2953-7111 990-1 048-565-1919 537 048-775-1311 2-2-2 048-924-2111

More information

clover-375.pdf

clover-375.pdf 8:4511:00 9:0012:30 9:0016:3003-5986-3188 AM PM AM PM AM PM AM PM AM PM AM PM - - - - - - 1 2 3 5 6 7 8:4515:00 9:0016:30 AM PM AM PM AM PM AM PM AM PM AM PM - - - - - - - - - () - - - - - - - 8 10 12

More information

Hospitality-mae.indd

Hospitality-mae.indd Hospitality on the Scene 15 Key Expressions Vocabulary Check PHASE 1 PHASE 2 Key Expressions A A Contents Unit 1 Transportation 2 Unit 2 At a Check-in Counter (hotel) 7 Unit 3 Facilities and Services (hotel)

More information

HASC2012corpus HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus

HASC2012corpus HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus HASC2012corpus 1 1 1 1 1 1 2 2 3 4 5 6 7 HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus: Human Activity Corpus and Its Application Nobuo KAWAGUCHI,

More information

,, WIX. 3. Web Index 3. 1 WIX WIX XML URL, 1., keyword, URL target., WIX, header,, WIX. 1 entry keyword 1 target 1 keyword target., entry, 1 1. WIX [2

,, WIX. 3. Web Index 3. 1 WIX WIX XML URL, 1., keyword, URL target., WIX, header,, WIX. 1 entry keyword 1 target 1 keyword target., entry, 1 1. WIX [2 DEIM Forum 2013 B10-4 Web Index 223-8522 3-14-1 E-mail: [email protected], [email protected], URL WIX, Web Web Index(WIX). WIX, WIX.,,. Web Index, Web, Web,, Related Contents Recommendation

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

コンピュータ概論

コンピュータ概論 4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For

More information

IPSJ SIG Technical Report Vol.2013-HCI-152 No /3/13 1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a)

IPSJ SIG Technical Report Vol.2013-HCI-152 No /3/13 1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a) 1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a) [email protected] b) [email protected] c) [email protected] / 2. Apple iphoto Google Picasa GPS GPS GPS [1][2]

More information

untitled

untitled C08036 C08037 C08038 C08039 C08040 1. 1 2. 1 2.1 1 2.2 1 3. 1 3.1 2 4. 2 5. 3 5.1 3 5.2 3 6. 4 7. 5 8. 6 9. 7 10. 7 11. 8 C08036 8 C08037 9 C08038 10 C08039 11 C08040 12 8 2-1 2-2 T.P. 1 1 3-1 34 9 28

More information

SNS Flickr Flickr Flickr SNS 2. SNS Twitter [2] Flickr [3] [4] Twitter Twitter Flickr Flickr Flickr Flickr Flickr Twitter 1 document 3. Flickr API Fli

SNS Flickr Flickr Flickr SNS 2. SNS Twitter [2] Flickr [3] [4] Twitter Twitter Flickr Flickr Flickr Flickr Flickr Twitter 1 document 3. Flickr API Fli SNS 1 2 2 2 2 2 2 SNS Detection of posted convergences with a photo post type SNS as a target and application to the tourism potential map Shusaku Yano 1 Masahiro Migita 2 Masashi Toda 2 Takayuki Nagai

More information

10 2000 11 11 48 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) CU-SeeMe NetMeeting Phoenix mini SeeMe Integrated Services Digital Network 64kbps 16kbps 128kbps 384kbps

More information

main.dvi

main.dvi DEIM Forum 2018 J7-3 305-8573 1-1-1 305-8573 1-1-1 305-8573 1-1-1 () 151-0053 1-3-15 6F URL SVM Identifying Know-How Sites basedonatopicmodelandclassifierlearning Jiaqi LI,ChenZHAO, Youchao LIN, Ding YI,ShutoKAWABATA,

More information

nakayama15icm01_l7filter.pptx

nakayama15icm01_l7filter.pptx Layer-7 SDN SDN NFV 50 % 3 MVNO 1 2 ICM @ 2015/01/16 2 1 1 2 2 1 2 2 ICM @ 2015/01/16 3 2 Service Dependent Management (SDM) SDM Simple Management of Access-Restriction Translator Gateway (SMART-GW) ICM

More information

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So 1,a) 2 2 1 2,b) 3,c) A choreographic authoring system reflecting a user s preference Ryo Kakitsuka 1,a) Kosetsu Tsukuda 2 Satoru Fukayama 2 Naoya Iwamoto 1 Masataka Goto 2,b) Shigeo Morishima 3,c) Abstract:

More information

P.5 P.6 P.3 P.4 P.7 P.8 P.9 P.11 P.19

P.5 P.6 P.3 P.4 P.7 P.8 P.9 P.11 P.19 MOST is the best! P.5 P.6 P.3 P.4 P.7 P.8 P.9 P.11 P.19 P.14 1 2 P.14 1 2 12,036 17,025 P.14 3 P.14 4 NEW P.12P.14 5 P.12P.14 6 P.12 P.15 7 NEW P.15 8 P.15 9 P.15 7 P.15 10 P.15 10 NEW P.12 P.15 11 P.15

More information

Sport and the Media: The Close Relationship between Sport and Broadcasting SUDO, Haruo1) Abstract This report tries to demonstrate the relationship be

Sport and the Media: The Close Relationship between Sport and Broadcasting SUDO, Haruo1) Abstract This report tries to demonstrate the relationship be Sport and the Media: The Close Relationship between Sport and Broadcasting SUDO, Haruo1) Abstract This report tries to demonstrate the relationship between broadcasting and sport (major sport and professional

More information

MOTIF XF 取扱説明書

MOTIF XF 取扱説明書 MUSIC PRODUCTION SYNTHESIZER JA 2 (7)-1 1/3 3 (7)-1 2/3 4 (7)-1 3/3 5 http://www.adobe.com/jp/products/reader/ 6 NOTE http://japan.steinberg.net/ http://japan.steinberg.net/ 7 8 9 A-1 B-1 C0 D0 E0 F0 G0

More information

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came 3DCG 1,a) 2 2 2 2 3 On rigid body animation taking into account the 3D computer graphics camera viewpoint Abstract: In using computer graphics for making games or motion pictures, physics simulation is

More information

2

2 1 2 2005 15 17 21 22 24 25 67 95 3 1 2 3 4 17 4 5 6 7 8 9 PR PR PR 10 11 12 PR 419 844 1,490 950 590 20 12 50 13 12/20 2/28 3/30 14 17 349 666 15 59 6 11 15 17 14 15 15 17 3,525,992 15 59 15 17 18 910

More information

soturon.dvi

soturon.dvi 12 Exploration Method of Various Routes with Genetic Algorithm 1010369 2001 2 5 ( Genetic Algorithm: GA ) GA 2 3 Dijkstra Dijkstra i Abstract Exploration Method of Various Routes with Genetic Algorithm

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website

The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website by the author(s) under the agreement with the IPSJ.

More information