: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

Size: px
Start display at page:

Download ": 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j ="

Transcription

1 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r =

2 : 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = e r r δ( r r (t 208 d dt 2 m r 2 = = m r r = e r ( E + r B e r E = d E j E = E( r, B = B( r

3 : 2005 ( r Maxwell 209 P = E H E em = d E em E em = 2 (ɛ 0 E 2 + μ 0 H 2 d ( T + Eem + ds dt P =0 P E em ( P 209 Maxwell H rot E + μ 0 H H = 0 E rot H ɛ 0 E E = E j dv ( E H d 2 dt (ɛ 0E 2 + μ 0H 2 = E j dv P + dh em + E dt j =0 dv ( A B = ɛ jk A j B k = ɛ jk ( A j B k + ɛ jk A j ( B k = ɛ kj ( A j B k ɛ jk A j ( B k = rota B A rot B

4 : 2005 ( dv B =0 20 X B =rot A X = X T + X L dv X T =0 rot X L =0 X L X T (longtude (transverse X T = rota X L = gradφ 2 X( r = k X k e r dv X = k X k e r rot X = X k e r X L = k e kσ=0 = k, e =, e kσ=2 ( X k e k,0 e k,0 e k r = ( X k k k 2 e r ( X L α = k α k β k 2 X βe r X T = X k σ=,2( k e kσ e kσ e k r = ( X k ( X k k k k 2 e r ( X T α = (δ αβ k αk β k 2 X βe k r = ( ( e kσ α ( e kσ β X β e r σ=,2 σ ( e kσ α ( e kσ β = k αk β k 2 + ( e kσ α ( e kσ β = δ αβ σ=,2 ( e kσ α ( e kσ β = δ αβ k αk β σ=,2 k 2

5 : 2005 ( ( rot E + A =0 t v v = ( v e σ e σ v α = v β ( e σ β ( e σ α ( e σ β ( e σ α = δ αβ ψj (xψ j (x =δ(x x j 22 Ω 0 = f dω 0 = fdx :gradf d 2 Ω 0 = j fdx j dx = 0 : rot grad f =0 Ω = A dx : A dω = j A dx j dx :rota d 2 Ω = k j A dx k dx j dx =0 :dvrota =0 Ω 2 = A dx = ɛ jk A dx j dx k : A dω 2 = l A dx l dx = A dx dx 2 dx 3 :dva d 2 Ω 2 = 0 = dx dx 2 dx 3 dx = dx 2 dx 3, dx 2 = dx 3 dx, dx 3 = dx dx 2, (dx dx 2 = dx 3, (dx 2 dx 3 =dx, (dx 3 dx =dx 2, (dx dx 2 dx 3 = A = A dx da = rota =(rota dx d A = dva dφ = gradφ = φ d dφ = Δφ dv rot A = d ( da =d(da =0 rot grad f = d(df =0

6 : 2005 ( E = A t φ A φ χ( r, t A A = A + χ φ φ = φ χ t E, B E = E, B = B Maxwell rot H D = j 23 A A ΔA = (dv A + c 2 c φ+μ 2 0 j c 2 = ɛ 0 μ 0 dv D = ρ Δφ =dv A + ɛ 0 ρ dv A =0 Maxwell 2 S L dω 2 = dω = dω 0 = S L A = = μ 0 J Δφ = ɛ 0 ρ Ω 2 : Ω : Ω 0 : S L dv Ad = rot A ds = S A d S A d r grad f d r = f( r r= r fn r= r n 23 μ 0 rot rot A ɛ 0 ( ( A φ = j dv A ΔA + c A + φ = μ 2 0 j

7 : 2005 ( J = j ɛ 0 φ 24 φ( r = e 4πɛ 0 r r J = ( t e 4π r r + e rδ( r r 25 dv J =0 A 26 A = A k e k r = 2π L (n x,n y,n z, n =, 2,, 0,, 2, dv A =0 A k =0 27 ˆk e kσ= =0, ˆk e kσ=2 =0, e k e k2 =0 A( r, t = ɛ0 e kσ q kσ (te r σ=,2 24 Δf( r =δ( r f( r = 4πr 25 dv J = t ɛ 0Δφ +dv j = t ρ +dv j =0 26 A k = d A( re r 27 A k = ɛ0 e kσ q kσ (t σ=,2

8 : 2005 ( A e = e kσ A = A q (t = q (t φ( r, t = φ k (te k r j( r, t = j k (te k r A = μ 0 J ( dv A =0 ɛ 0 k 2 φ k j k =0 ɛ 0 Δ φ = ρ = r j k 2 φk = j k 28 q kσ + ω 2 k q kσ = ɛ0 e d j( re r = ɛ0 e ( e kσ r e r (ω = ck Maxwell e kσ 28 ( e kσ A( r = e kσ ɛ0 σ=,2 e kσ μ 0J( r = e kσ j( r =μ 0 e kσ j k e k r e kσ ( c 2 q + k 2 q kσ e r = ɛ0 ( c 2 q + k 2 q kσ e r ɛ0 c 2 q + k 2 q kσ = μ 0 ɛ0 e kσ j k = μ 0 d e kσ j( re r

9 : 2005 ( E em = d (ɛ 0 ( A + φ 2 + μ0 (rot A 2 2 = E rad + E coulomb E rad = d (ɛ 0 A 2 + μ0 (rot A 2 2 E coulomb = ɛ 0 d (2 A φ + φ φ 2 = ɛ 0 d (2φ dv A + φδφ 2 = d ρφ 2 = e e j 2 4πɛ 0 r r j = <j j e e j 4πɛ 0 r r j +( E coulomb ( E rad p kσ (t = q (t 29 A( r, t = A( r, t = d dv (f g = ɛ0 ɛ0 d f g = e kσ q kσ (te r σ=,2 e kσ p kσ (te r σ=,2 d f g + d fδg = d fδg = d (Δfg d S f g 220 dv (φ A= d S φ A =0 d φdv A = d A φ

10 : 2005 ( E rad 22 E rad = 2 T = 2 σ=,2 (p kσ p kσ + c 2 k 2 q kσ q kσ r 2 H = T + E rad + E coulomb q kσ,p kσ, r, P = m r + e A( r =m r + e A H = H part + H rad + H coulomb H part = ( P 2m e A( r 2 = ( P e e kσ q kσ e k r 2m ɛ0 H rad = + (p kσ p 2 kσ + c 2 k 2 q kσ q kσ H coulomb = <j σ=,2 e e j 4πɛ 0 r r j 2 22 H q kσ = ṗ kσ H p kσ = q kσ H r α kσ = P α kσ H P α = ṙ α dv ( A rot A = rota rot A A rot rot A, ( ( A B= A B A B = rota rot A A grad dv A + A ΔA dv A =0 d rot A rot A = d A Δ A

11 : 2005 ( Maxwell m r = e ( E( r + r B( r 222 ṙ α = H P α = (P α e A α ( r m P α = H r α = m ( P e A( r ( e α A( r +e α φ( r = e ṙ β αa β ( r +e α φ( r r α H coulomb = = r α r α 4πɛ 0 r a r b 4πɛ 0 a<b j( r a r b = α e φ( r = α e φ A = A( r d A dt = d A( r dt + r r A r= r m r α = P α e Ȧ α ( r e r A α ( r = e ṙ β αa β ( r e α φ( r e Ȧ α ( r e r β βa α ( r ( = e α φ( r Ȧα ( r +ṙ β αa β ( r r β βa α ( r ( r rot A α = ɛ αβγ ṙ β ɛ γηξ η A ξ = (δ αη δ βξ δ αξ δ βη ṙ β η A x = ṙ β α A β ṙ β β A α m r = e ( E( r + r B( r

12 : 2005 ( q + c 2 k 2 q = ɛ0 r = m ( P e A( r e ( r e kσ e r E = A φ = e kσ p kσ e k r φ ɛ0 B =rot A = e kσ q kσ e k r b ɛ0.4 G em 223 ṗ kσ = H q kσ = c 2 k 2 q + = c 2 k 2 q + = c 2 k 2 q ɛ0 q kσ = H p kσ = p q = ṗ = c 2 k 2 q + ɛ0 ( P e ɛ0 e kσ q kσ e k r m ( P m e A ( e ɛ0 e e r e ( r e kσ e r e ( r e kσ e r ( e ɛ0 e e r

13 = kσ : 2005 ( G = d P c = d E 2 c H 2 = d ( A + φ rot A c 2 μ 0 = G 0 em + G em G 0 em = d A rot A c 2 μ 0 G em = d φ c 2 μ rot A 0 G 0 em 224 G 0 em = kσ p kσ q kσ ( G em = d (φ c 2 μ rot A φ rot rot A 0 = d φ ΔA c 2 μ = d (Δφ A 0 c 2 μ 0 = d ρa c 2 ɛ 0 μ = e jaj 0 j G T G T = j m j rj + G em = j P j + G 0 em 224 G 0 em = c 2 d μ 0 = c 2 μ 0 ɛ0 = A rot A σ ɛ0 e kσ p kσ ( σ e kσ q kσ σσ p kσ q kσ e kσ ( e kσ p kσ q kσ e ( e =, ( e =

14 : 2005 ( J em J em = d r P c = d r ( E 2 c H 2 = d r ( A + φ rot A c 2 μ 0 = J em 0 + J em J em 0 = d r ( A rot A c 2 μ 0 J em = d r ( φ c 2 μ rot A 0 J 0 em 225 J em = J em l + J em s J em l = d 3 r A μ 0 c 2 j laj J em s = d 3 r A A μ 0 c 2 = ( e kσ e kσ p kσ q kσ k,σσ 225 (Ȧ rot A =ɛ jk A j ɛ klm l A m =(δ l δ jm δ m δ jl A j l A m =Ȧj A j Ȧj j A = Ȧj A j j (ȦjA + t ( ja j A =Ȧj A j j ( A j A ( r (Ȧ rot A a =ɛ abc r b Ȧ j c A j ɛ abc r b j ( A j A =ɛ abc r b Ȧ j c A j j (ɛ abc r b Ȧ j A +ɛ abc j (r b j (ȦjA c = ɛ abc r b Ȧ j c A j j (ɛ abc r b A j A c +ɛ abc Ȧ b A c = Ȧj( la j a j (ɛ abc r b A j A c +ɛ abc Ȧ b A c d 3 r r (Ȧ rot A= d 3 r Ȧj la j + d 3 r A A

15 : 2005 ( J em = ɛ 0 d Δφ r A = d ρ r A = r j (e jaj j J T J T = j r j (m j rj + J em = j L j + J 0 em L j = r j (m r j + e j A j = r j P j 2 2. Maxwell 226 A = (dv A + c φ μ 2 0 j c Δφ = c t dv A μ 0 cρ φ rot A = (φrot A φrot rot A = (φrot A+φΔ A r ( φ rot A= r ( (φrot A + r φδa [ r ( (φrot A] =ɛ jk r j ɛ klm l (φrot A m =(δ l δ jm δ m δ jl r j l (φrot A m =r j (φrot A j r j j (φrot A = (r j φ(rot A j φ(rot A j (r j φ(rot A +3φ(rot A = (r j φ(rot A j j (r j φ(rot A +2φ(rot A [ r φδa] =ɛ jk r j φ l l A k = l (ɛ jk r j φ l A k ɛ jk φ j A k ɛ jk r j ( l φ l A k ( = l (ɛ jk r j φ l A k ɛ jk φ j A k l ɛjk r j ( l φa k + ɛjk ( j φa k + ɛ jk r j ( l l φa k ( = l (ɛ jk r j φ l A k ɛ jk φ j A k l ɛjk r j ( l φa k + j (ɛ jk φa k ɛ jk φ( j A k +ɛ jk r j ( l l φa k ( = l (ɛ jk r j φ l A k l ɛjk r j ( l φa k + j (ɛ jk φa k 2φ(rot A +(Δφ( r A J em = ɛ 0 d Δφ r A = d ρ r A = j r j (e j A j

16 : 2005 ( Maxwell μ ( μ A ν ν A μ =μ 0 j ν A 0 = c φ μ f μν = μ 0 j ν A = A = A x A 2 = A 2 = A y A 3 = A 3 = A z f μν = μ A ν ν A μ j 0 = cρ j =( j (τ ( dτ ( = dt v2 c A = (dv A + c φ 2 μ 0 j c Δφ = c t dv A μ 0 cρ dv A + c 2 φ t = μa μ μ μ A = μ A μ μ 0 j 2 c φ + φ c 3 t = ( μ A μ c t c 2 t φ μ 0 cρ μ μ A 0 = 0 μ A μ μ 0 j 0 Maxwell μ ( μ A ν ν A μ =μ 0 j ν μ f μν = μ 0 j ν

17 : 2005 ( S em = S 0 + S rad + S el = d 4 x ( L 0 (x+l rad (x+l el (x (d 4 x = dx 0 dx dx 2 dx 3 = cdtd 3 r L 0 (x = dx μ ( dx ν ( m c dτ ( g μν δ 4 (x x ( dτ ( dτ ( S 0 = dx μ ( dx ν ( m c dτ ( g μν = m c dt g μν ẋ μ dτ ( dτ (ẋν ( ( L rad (x = 4μ 0 c f μνf μν S rad = dtd 3 rf μν f μν 4μ 0 L el (x = j μ (xa μ (x S el = d 4 x L el (x = dt e A μ (x ( ẋ μ ( = ( dt e φ( r,t+ r A( r,t j μ (x = ce dτ ( δ 4 (x x ( x μ ( =(c e δ 3 ( r r,e r δ 3 ( r r δl rad δa μ (x = ν 4μ 0 = μ 0 ν f νμ δl el δa μ (x = jμ ( κ A ρ ρ A κ ( κ A ρ ρ A κ ν A μ

18 : 2005 ( Maxwell ( μ f μν = μ 0 j ν f λν 228 μ T μ λ = f λν j ν T μ λ = μ 0 ( f κμ f κλ 4 δμ λf κν f κν T μ λ T μν = g λν T μ λ T μν = ( g λν g κα g λβ f κμ f αβ μ 0 4 gλν δ μ λf κν f κν = μ 0 ( g κα f κμ f αν 4 gμν f κν f κν 228 f λν μ f μν = μ (f λν f μν f μν μ f λν = μ (f λν f μν 2 f μν ( μ f λν ν f λμ, f μν = f νμ = μ (f λν f μν 2 f μν ( μ f λν + ν f μλ + λ f νμ + 2 f μν λ f νμ = μ (f λν f μν + 2 f μν λ f νμ = μ (f λν f μν 4 λ(f μν f μν = μ (f λν f μν 4 λ(f κν f κν = μ (f λν f μν 4 δμ λ μ (f κν f κν ( = μ f κμ f κλ 4 δμ λf κν f κν μ f λν + ν f μλ + λ f νμ = μ ( λ A ν ν A λ + ν ( μ A λ λ A μ + λ ( ν A μ μ A ν =0

19 : 2005 ( T μν = T νμ. 229 T 00 = 2 (ɛ 0 E 2 + μ 0 H 2 = H em T k0 = c ( P k, P = E H T kl = ɛ 0 E k E l + μ 0 H k H l δ kl 2 (ɛ 0 E 2 μ 0 H 2 μ T μκ = f κν j ν 229 f μν = E x c E y c E z c 0 Ex c 0 B z B y Ey c B z 0 B x Ez c 0 B x 0 f αβ = g αμ g nuβ f μν E { x E y E z c c c = Ex c 0 B z B y Ey c B z 0 B x Ez c 0 B x 0 0 Ex c Ey c Ez c = E x c 0 B z B y E y c B z 0 B x E z c B y B x 0 μν αβ f αβ f αβ = 2 c 2 E 2 +2 B } αβ T 00 = ( μ 0 c 2 E 2 4 ( 2 c 2 E 2 +2B 2 = 2 (ɛ 0E 2 + μ 0H 2 = H em T 0 = ( B z E y + B y E x = cμ 0 c ( E H T k0 = c P k, P = E H T kl = μ 0 ( c 2 E ke l + B k B l + δ kl 2 ( c 2 E 2 + B 2 = ɛ 0 E k E l + μ 0 H k H l δ kl 2 (ɛ 0 E 2 μ 0 H 2

20 : 2005 ( dπμ ( dt d 3 rj ( x= = e x κ( f μκ e x κ( f μκ 230 d dt π μ ( = c d 3 rt 0μ t M c 2 + d 3 r H em ( r =const. M v + d 3 r P ( r =const. 3 q kσ,p kσ, r, P = m r +e A [q kσ,p k σ ] = δ k δ σσ [r α,pβ j ] = δ jδ αβ P = 230 d dt π μ ( = = c t = c t d 3 r ν T νμ d 3 rt 0μ + d 3 rt 0μ + T μ S ds T μ = c d 3 rt 0μ t

21 : 2005 ( q kσ = (a 2ω + a kσ kσ k ωk p kσ = 2 (a a [a kσ,a σ ] = δ δ σσ [a kσ,a σ ] = 0 [a,a σ ] = 0 23 A( r = ɛo 2ω k e kσ (a e r + a kσ e r 23 A( r = = = ɛo ɛo ɛo e kσ q kσ e k r e kσ (a 2ω k + a kσ e r e kσ (a e k r + a 2ω k kσ kσ e k r

22 : 2005 ( [A α ( r,a β ( r ] =0 [E α ( r,e β ( r ] =0 [B α ( r,b β ( r ] =0 [E α ( r,a κ ( r ] = ɛ 0 ɛ αβγ γ δ( r r 3. Hamltonan [A α ( r,a β ( r ] =0 [E α ( r,e β ( r ] =0 [B α ( r,b β ( r ] =0 [E α ( r,a β ( r ] = ( e kσ α ( e kσ β [p kσ,q kσ ]e k ( r r ɛ 0 = ( e kσ α ( e kσ β e k ( r r ɛ 0 = (δ αβ k αk β ɛ 0 k 2 e ( r r [E α ( r,b β ( r ] =ɛ βγκ γ[e α ( r,a κ ( r ] = ɛ 0 = ɛ 0 (δ ακ k αk κ k 2 ɛ βγα k γ e k ( r r = ɛ 0 ɛ αβγ γδ( r r ɛ βγκk γ e ( r r (p kσ p kσ + ω 2kq kσ q kσ k = k = k = k = k ( ω k (a 4 kσ a (a a kσ +(a + a kσ (a + a ω k 4 (a a + a a kσ +a a +a a ω k 2 (a a + a a kσ ω k (a a kσ + 2

23 : 2005 ( H = H part + H rad + H coulomb H part = ( 2m e A( r 2 A( r = e kσ (a ɛo 2ω kσ e r + a kσ e r k H rad = k σ=,2 n kσ = a a kσ H coulomb = e e j r r j ω k (n kσ G 0 em = n kσ 234 A( r = ɛo 2ω k e kσ (a e r + a kσ e r 235 G 0 em = p kσ q kσ kσ = 2 (a a kσ (a + a kσ = 2 (a a a kσ a + a a kσ a a kσ = a a kσ kσ ( (

24 : 2005 ( G T = G p + G 0 em = + G p = n kσ 236 [H, G T ]=0 4 A, A P A( r = A( r P 236 H = H 0 + H nt [e r j, j ] = e r j [a, a a] = a [a,a a] = a [( A( r α, G T ] = ( ( e kσ α [a e r, 2ω k kσ + n kσ ] ɛ0 +[a kσ e r, + n kσ ] =0 [H part, G T ] = 0 [H, G T ] = [H part + H rad + H coulomb, G p + G 0 em ] = [H rad + H coulomb, G p + G 0 em] = [H coulomb, G p + G 0 em ] = [H coulomb, G p ]=0 237 [ P, A( r ] = A P ( +( P A A ( P = dv A( r =0

25 : 2005 ( H 0 H 0 = H p + H rad H p = 2 Δ + e e j 2m r r j H rad = ω k (n kσ + 2 k σ=,2 H nt H nt = H ( + H (2 H ( = = H (2 = = ɛo e m A( r e m (e 2 2m A( r 2 (e 2 2m ɛ o 2ω k (a + a e r ( e kσ ( e kσ e k σ 2 (a ω k ω k + a kσ kσ (a + a k σ σ e ( r + r σσ Ψ m ({ r } E m {n kσ } ( H 0 m; {n kσ } = (E m + kσ n k ω k m; {n kσ } m; {n kσ } = {n kσ } Ψ m ({ r } H p Ψ m ({ r } = E m Ψ m ({ r } H rad {n kσ } = n k ω k {n kσ } kσ H ( H (2 2 e 2m σ rot A

26 : 2005 ( H (s = = ɛ0 e σ rot A = 2m e 2m k,σ e 2m σ A 2ω k (a + a e r σ ( e kσ 4. H 0 n = E n n ( H = H 0 + H nt 0 a b t Ψ=(H 0 + H nt Ψ 238 Ψ=e H 0t/ Ψ I t Ψ I = H I ntψ I H I nt = e H 0t/ H nt e H 0t/ Ψ I (t = n c n (t n ċ n = m n H I nt m c m = m n H nt m e (En Emt/ c m 238

27 : 2005 ( (? d dt c n (t 2 =0 n c a (t =0=, c n (t =0=0, (n a 239 c b (t = b H nt a e(e b E at/ E b E a c b (t 2 = b H nt a 2 2 cos(e b E a t/ (E b E a cos αx δ(x = lm α παx 2 a b w a b 242 w a b = t c b(t 2 2π b H nt a 2 δ(e b E a b de b ρ(e b ρ(e b de b w a b ρ(e b de b = 2π b H nt a 2 ρ(e b ċ b (t = b H nt a e (E b E at/ c a b H nt a << E b E a cos αx dy y 2 = π E a E b t >> 243.

28 : 2005 ( m b ; {n kσ } b H ( m a ; {n kσ } a = kσ M p ba (, σ = = M rad ba (, σ = M p ba (, σm rad ba (, σ ( d r Ψ b({ r } e e r ( e kσ m Ψ a ({ r } {n kσ } b (a ɛo 2ω + a kσ kσ {n kσ } a k 244 n a n = n 2ω 2ω 2ω n + a n = n + 2ω Ψ m ({ r } (m = a, b M p ba ( a E k E = ω e2 4πɛ 0 a e 2 k = 2π λ = ω c = E c a 4πɛ 0 c = α a k α a << a, α = e2 4πɛ 0 c 37, α =0 H p 245 [H p, r ]= 2 m [H p,r,α ]= 2 m, α [ p2 2m,r]= p 2[p, r] = p 2m 2m 2( = p m

29 : 2005 ( M p ba M p,e dpole ba M p,e dpole ba = (E b E a = (E b E a b d r Ψ b ({ r } ( ( e k=0,σ r e a ( e k=0,σ r e Ψ a ({ r } μ T σ,ba = = ω ba μ T σ,ba b μ σ a, ω ba = E b E a b a d r Ψ b ({ r }( Ψ a ({ r }, μ σ = e k,σ μ, μ = e r ( e r b a f ba f ab = 2m M p e 2 ba ω 2 ba 246 f ba =N b [ N N [ r,α, [H p, r j,β ]] = N 2m [ N N r,α, [ p 2 k, r j,β ]] j = 2 N 2m [ N r,α, p j,β ] N N 2 ( e σ r, [H p, ( e σ r j ]] =( e σ α ( e σ α j =( 2 ( 2m Nδ αβ = 2 m Nδ αβ k j j m N = 2 m N [x, [H, x]] = [x, Hx xh] =xhx x 2 H Hx 2 + xhx =2xHx x 2 H Hx 2 a [x, [H, x]] a =2 a xhx a a x 2 H a a Hx 2 a =2 a xhx a E a a x 2 a E a a x 2 a =2 a x b b Hx a 2E a a x b b x a b b =2 (E b E a b x a 2 b

30 : 2005 ( O( 0 e r + r ( M p ba M p,e d ba + d r Ψ b ({ r e } r ( e k,σ Ψ a ({ r } m 247 ( r( e = 2 ( e l + 2 [H p, ( r( e r] M p ba M p,e d ba M p,e q ba =(E b E a ( M p,m d ba = d r Ψ b ({ r } + M p,e q ba + M p,m d 2 ba ( d r Ψ b ({ r } ( r ( e k,σ r e 2 ( e m 2 ( e kσ l Ψ a ({ r } Ψ a ({ r } M p,e q ba 2 M p,m d ba H (s e k r = M p,m d 2 ba x = e σ r a a = f ba = b b 247 2m e 2 ω ba μ T σ,ba 2 = b 2 e 2 m 2 (E b E a μ T σ,ba 2 = N ( e( r =ɛ jk k j e k ɛ ab r a b =(δ ja δ kb δ jb δ ka k j e k r a b =k j e k r j k k j e k r k j [H p,r r j ]=r [H p,r j ]+[H p,r ]r j = 2 m (r j + j r ( r( e =k r e j j = 2 k e j (r j r j + 2 k e j (r j + r j = 2 ( e ( r + 2 [H p, ( r( e r]

31 : 2005 ( ( M p,m d ba = d r Ψ b ({ r } M = l + σ = l +2 s e 2m ( e kσ M Ψ a ({ r } L [E,E + de] ρ(ede dω [k, k + dk] 248 ρ(e = (2π 3 ω 2 c 3 dω 4.3 a E a {n } b E b νn ν + ( ω = E a E b dω σ wdω wdω = 2π ɛ 0 ω2 μ T σ 2 2ω ( n kσ + ρ(e k σ n kσ 248 w = w sp + w nd = w sp = w nd = ω 3 8π 2 ɛ 0 c 3 μt σ 2 n kσ ω 3 8π 2 ɛ 0 c 3 μt σ 2 ω 3 8π 2 ɛ 0 c 3 μt σ 2 ( n kσ + ρde = dkk2 dω ( 2π = k2 dkdω L 3 (2π 3 E = ck ρ(e = E 2 (2π 3 ( c 3 dω = ω 2 (2π 3 c 3 dω

32 : 2005 ( n kσ w nd 4.4 n kσ + n kσ ω 3 w a = 8π 2 ɛ 0 c 3 μt σ 2 n kσ I(ωdω 249 I(ωdω = c ωn ρ ωdω =( ( ρ ω dω w a = π ɛ 0 2 c μt σ 2 I(ω a, b (E b E a = ω N a, N b, A a b = A b a N b A b a (n +=N a A a b n N b N a = e (E b E a/k B T = e hbarω/k BT n = e ω/k BT 249 ρ(ede = ρ(ωdω ρ(ω =ρ(e I(ω = 2 ωcn ρ(e

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

untitled

untitled 20 11 1 KEK 2 (cosmological perturbation theory) CMB R. Durrer, The theory of CMB Anisotropies, astro-ph/0109522; A. Liddle and D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

( ) (ver )

( ) (ver ) ver.3.1 11 9 1 1. p1, 1.1 ψx, t,, E, p. = E, p ψx, t,. p, 1.8 p4, 1. t = t ρx, t = m [ψ ψ ψ ψ] ρx, t = mi [ψ ψ ψ ψ] p4, 1.1 = p6, 1.38 p6, 1.4 = fxδ ϵ x = fxδϵx = 1 π fxδ ϵ x dx = fxδ ϵ x dx = [ 1 fϵ π

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

τ τ

τ τ 1 1 1.1 1.1.1 τ τ 2 1 1.1.2 1.1 1.1 µ ν M φ ν end ξ µ ν end ψ ψ = µ + ν end φ ν = 1 2 (µφ + ν end) ξ = ν (µ + ν end ) + 1 1.1 3 6.18 a b 1.2 a b 1.1.3 1.1.3.1 f R{A f } A f 1 B R{AB f 1 } COOH A OH B 1.3

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

2 1 (10 5 ) 1 (10 5 ) () (1) (2) (3) (4) (1) 2 T T T T T T T T? *

2 1 (10 5 ) 1 (10 5 ) () (1) (2) (3) (4) (1) 2 T T T T T T T T? * 1 2011 2012 1 30 1 (10 5 ) 2 2 6 2.1 (10 12 )..................... 6 2.2 (FP) (10 19 ).............. 14 2.3 2 (10 26 )...................... 26 2.4 (2. )(11 2 )..... 35 3 40 3.1 (11 9 )..........................

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

(9 30 ) (10 7 ) (FP) (10 14 ) (10 21 ) (2

(9 30 ) (10 7 ) (FP) (10 14 ) (10 21 ) (2 1 2009 2010 1 18 1 (9 30 ) 2 2 7 2.1 (10 7 )...................... 7 2.2 (FP) (10 14 ).............. 14 2.3 2 (10 21 )...................... 26 2.4 (2. )(10 28 ).......... 35 3 42 3.1 (11 4 )..........................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx x E E E e i ω t + ikx k λ λ π k π/λ k ω/v v n v c/n k nω c c ω/π λ k πn/λ π/(λ/n) κ n n κ N n iκ k Nω c iωt + inωx c iωt + i( n+ iκ ) ωx c κω x c iω ( t nx c) E E e E e E e e κ e ωκx/c e iω(t nx/c) I I

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 12 12.1? finite deformation infinitesimal deformation large deformation 1 [129] B Bernoulli-Euler [26] 1975 Northwestern Nemat-Nasser Continuum Mechanics 1980 [73] 2 1 2 What is the physical meaning? 583

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

i

i 18 16 i 1 1 1.1....................................... 1 1.................................. 3 1.3............................. 5 1.4........................................... 6 7.1..................................

More information