2

Size: px
Start display at page:

Download "2"

Transcription

1 III Kepler ( ) p(0)

2 2

3 . x y = y(x) F F (x, y, y,..., y (n) ) = 0 (.) ( ) n C n y(x) x (n) = f(t, x, x,..., x (n ) ) y 2 = log x + C (C ) y 2xyy = A, B x = Ae t + Be 2t 2 x 3x + 2x = 0 2 n n,, (I) dy dx = f(x)g(y) g(y) 0 dy = f(x) g(y) dx dy g(y) = f(x) dx. y = x( y 2 ) dy : y ± y 2 = x dx 2 log + y y = 2 x2 + C + y y = ±e2c e x 2 ±e 2C C y = Cex2 Ce x2 + (C 0 ) y =, y = ( C =, 0 ). 3 () y + xy = x (2) y = xy 2 4x (3) y = xy 2 + 4x (4) (x )y + y = 0 (5) (cos 3 x)y 2 sin x cos 2 y = 0 (6) ( x)y + x( + y)y = 0 URL sugiura/ [K] : [KM], : [Y] : 2 t x 3. : () y = Ce 2 x2, (2) y = 2(+Ce2x2 ) Ce 2x2, y = 2, (3) y = 2 tan(x 2 + C), (4) (x )(y ) = C, (5) tan y = cos 2 x + C, y = π 2 + nπ (n Z), (6) xyey x = C 3

4 (II) dy ( y ) dx = f x u = y/x y = ux u x + u = y = f(u),.2 xy = y + x 2 + y 2 u = f(u) u x : x > 0 y = y ( y ) 2 x + + u = y/x u + xu = u + + u x 2. du + u 2 = dx x, i.e., log(u + + u 2 ) = log x + c. y y + x 2 + y 2 = kx 2. (k = e c > 0:.) x 2 + y 2 y x2 + y 2 y = /k y = ( kx 2 ), (k > 0: ) (.2) 2 k x < 0 y = y ( y ) 2 x + (.2) x x = 0 y < 0 0 (.2).2 4 () xy = xe y/x + y (2) x + yy = 2y (3) (x y) + (x + y)y = 0 (4) y 2 + x 2 y = xyy (5) x tan y ( x y + xy = 0 (6) x cos y x y sin y ) ( y + y sin y x x + x cos y ) xy = 0 x.3 dy ( ) ax + by + c dx = f (aβ αb 0) am + bn + c = 0, αm + βn + γ = 0 αx + βy + γ m, n x = s + m, y = t + n dt ds = dt/dx ds/dx = dy ( ) ( ) as + bt a + bt/s dx = f = f αs + βt α + βt/s 5 () (2x y + 3) (x 2y + 3)y = 0 (2) (x + y + ) 2 y = 2(y + 2) 2 (3) (3x + y 5) (x 3y 5)y = 0 (4) (5x 7y 3) (x 3y + )y = 0.4 ( ) a 6 () (x + y) 2 y = a 2 (x + y = u) (2) yy = (2e x y)e x (e x = s) 4.2 : () y = x log(log x + C), (2) y x = Ce x y x, y = x, (3) 2 log(y2 + x 2 ) + arctan y x = C, (4) y = Cey/x, (5) y = x arcsin C x, (6) xy = C cos y x, y = x( π + nπ) (n Z) : () (y ) 2 (x + )(y ) + (x + ) 2 = C, (2) log y arctan y+2 = C, y + 2 = 0, x (3) 3 2 log{(x 2)2 + (y + ) 2 } arctan y+ x 2 = C, (4) (3y 5x + 7)2 = C(y x + ), y = x 6.4 : () y a arctan x+y = C, (2) (y + 2e a x ) 2 (y e x ) = C 4

5 (III) ( ) : q(t) = 0 x = p(t)x x = Ce R p(t) dt (.3) C t x = p(t)x + q(t) (.3) x = C(t)e R p(t) dt (.4) (.3) x = C (t)e R p(t) dt + C(t)e R p(t) dt p(t) = C (t)e R p(t) dt + p(t)x C (t) = q(t)e R p(t) dt (.4) (.3) x = e R { p(t) dt C + q(t)e R } p(t) dt dt (C: ).3 dx dt = x + cos t + t : dx dt = x + t x = C C(t). x = + t + t x = C (t) + t C(t) ( + t) 2 = C (t) + t x + t. C (t) = ( + t) cos t C(t) = ( + t) sin t + cos t + C.5 7 x = sin t + cos t + t + C + t (C: ) () x + x = cos t (2) x 3x = e 2t (3) x 3t 2 x = t 2 (4) x cos t + x sin t = (5) tx x = 3t 4 log t. (Bernoulli ) dx dt = p(t)x + q(t)xα (α 0, ) α = 0,, u = x α.4 t 2 x = tx + x 3 u = ( α)p(t)u + ( α)q(t) : x 0 u = x 3 = x 2 u = 2x 3 x t 2 u = 2tu 2 t 2 u = 2tu u = Ct 2. u = C(t)t 2 ( t 2 u = t 2 2C(t) ) t 3 + C (t) t 2 = 2tu + C (t). 7.5 : () x = 2 (cos t + sin t) + Ce t, (2) x = e 2t + Ce 3t, (3) x = Ce t3, (4) x = sin t + C cos t, 3 (5) x = t 4 log t 3 t4 + Ct 5

6 C (t) = 2 C(t) = 2t + C x 2 = u = 2t + C t 2 x = 0 (C: ).6 8 () x + x t = 2x2 log t (2) t 2 x = tx + x 4 (3) tx + x = tx 3 dx.2 (Riccati ) dt = p(t)x2 + q(t)x + r(t) Riccati x 0 (t) x = u + x 0 (t) u + x 0 = p(u + x 0 ) 2 + q(u + x 0 ) + r = pu 2 + (2px 0 + q)u + (px qx 0 + r) x 0 (t) Bernoulli (α = 2).5 x t x + t t 2 x2 = 0 : x = t x = u + t u + (u + t) + t t t 2 (u2 + 2tu + t 2 ) = u t u + t t 2 u2 = 0. z = u 2 z z = t z + t t2 C log t z = x = t x = z + t = t + t (C t C log t )..7 9 () x (t 2 t + ) + (2t )x x 2 = 0 (2) x + e 3t ( + 2e 2t) x + e t x 2 = 0 (IV) C - ϕ(x, y) ϕ P (x, y) dx + Q(x, y) dy = 0 (.5) ϕ/ x = P, ϕ/ y = Q (.6) dϕ = ϕ ϕ dx + dy = P dx + Q dy = 0 x y ϕ(x, y) = c (.6) ϕ (.5) ( ) 8.6 : () x = t(c (log t) 2, x = 0, (2) ) x 3 = 3 2 t + C t 3, x = 0, (3) x 2 = 2t + Ct 2, x = 0 9.7: () x = t + Cet Ce t, x = t, (2) x = e t +, x = 2 et +Ce t et. () x = t, (2) x = e t. 6

7 . xy D P (x, y), Q(x, y) D C C : x = x(t), y = y(t) (a t b) (x(a), y(a)) (x(b), y(b)) C b b P (x, y) dx = P (x(t), y(t))x (t) dt, Q(x, y) dy = Q(x(t), y(t))y (t) dt C a C a P (x, y) dx + Q(x, y) dy = P (x, y) dx + Q(x, y) dy C C C C C,..., C l (C = C + + C l ). () C C P (x, y) dx + Q(x, y) dy = l j= C C j P (x, y) dx + Q(x, y) dy P (x, y) dx + Q(x, y) dy C (2) C C P (x, y) dx + Q(x, y) dy = C. (Green ) C P (x, y) dx + Q(x, y) dy C K K D P (x, y), Q(x, y) D C ( Q P (x, y) dx + Q(x, y) dy = x P ) dxdy y C C K P : P dx = C K y dxdy K : ϕ (x) y ϕ 2 (x), a x b K = C + C 2 + C 3 + C 4, C : x = t, y = ϕ (t) (a t b), C 2 : x = b, y = t (ϕ (b) t ϕ 2 (b)), C 3 : x = t, y = ϕ 2 (t) (a t b), C 4 : x = a, y = t (ϕ (a) t ϕ 2 (a)) C 2, C 4 x = 0 b b b ( ϕ2(t) P ) P dx = P (t, ϕ (t)) dt P (t, ϕ 2 (t)) dt = C a a a ϕ (t) y (t, s) ds dt = K K Q dy = C K K K P (t, s) dtds y Q dxdy x.8 0 () y dx + x 2 dy, C (a) x = t, y = t 2 (0 t ) (b) x = t 2, y = t (0 t ) (2) (3) (4) C C C C x 2 dx + y 2 dy, C x 2 + y 2 = (, 0) (, 0) (a) y 0, (b) y 0 y x 2 + y 2 dx + x x 2 + y 2 dy, C x2 + y 2 = (, 0) (, 0) (a) y 0, (b) y 0 e x cos y dx e x sin y dy, C x 2 + y 2 = a 2 (a > 0) 0 p : () (a) 5/6 (b) 3/5, (2) (a) 2/3 (b) 2/3, (3) (a) π (b) π, (4) 0 (hint: Green ) 7

8 .2 Ω R 2 P, Q C - (.6) C 2 - ϕ P y = Q x 3 (x 0, y 0 ), (x 0, y), (x, y) Ω ϕ(x, y) = x x 0 P (s, y) ds + y ϕ ϕ(x, y) = c (.5) (.7) y 0 Q(x 0, t) dt (.8) : (.6) ϕ (.7) ϕ C 2 - (.7) (x 0, y 0 ) Ω (x, y) Ω C (x 0, y 0 ), (x, y) Ω ( ) P (s, t) ds + Q(s, t) dt (x, y) C C C K Ω K = C C Ω K Ω C C Green ( Q P (s, t) ds + Q(s, t) dt P (s, t) ds + Q(s, t) dt = C C x P ) dsdt = 0 y K = C C ϕ(x, y) = P (s, t) ds + Q(s, t) dt C ϕ (.6) C δ > 0 U := {(s, t); s x δ, t y δ} Ω C U (x, y ) C (x 0, y 0 ) (x, y ) C 3 (x, y ), (x, y), (x, y) C 2 ϕ(x, y) = P (s, t) ds + Q(s, t) dt + P (s, t) ds + Q(s, t) dt C C 2 = ϕ(x, y ) + x ϕ/ x = P ϕ (x, y) = y x x x P (s, y) ds + P y (s, y) ds + Q(x, y) = y K y Q(x, t) dt x = Q(x, y) Q(x, y) + Q(x, y) = Q(x, y) x Q x (s, y) ds + Q(x, y) ϕ (.6) ϕ C 2 - (.8) (x 0, y 0 ) = (x, y ).6 (2x + y) dx + (x + 2y) dy = 0 : (2x + y)/ y = (x + 2y)/ x =.2 ϕ = x x 0 (2s + y) ds + y y 0 (x 0 + 2t) dt = x 2 + xy x 2 0 x 0 y + x 0 y + y 2 x 0 y 0 y 0 x 2 + xy + y 2 = c.9 () (2xy + 2x) dx + (x 2 ) dy = 0 (2) (y sin x 2x) dx + (2y cos x) dy = 0 ( (3) log y + ) ( ) x dx + x y + 2y dy = 0 (4) ( + x ) x 2 + y 2 dx + ( + y ) x 2 + y 2 dy = 0.9 : () x 2 y + x 2 y = C, (2) y cos x x 2 + y 2 = C, (3) x log y + log x + y 2 = C, (4) x + 3 (x2 + y 2 ) 3 2 y = C 8

9 P dx + Q dy = 0 µ(x, y) (µp ) dx + (µq) dy = 0 µ(x, y) 2 µ.2 (.7) (µp ) y = (µq) x (.9) x (y ) µ P, Q x, y µ = x m y n µ x (.9) Qµ (x) = (P y Q x )µ (P y Q x )/Q R P y Qx x µ = e Q dx (.9) (P y Q x )/P y µ = e R Py Qx P dy (.9).7 y dx + x log x dy = 0 : P = y, Q = x log x P y Q x = log x (P y Q x )/Q = /x. µ(x) = e R x dx = x y dx + log x dy = 0 (.8) x ϕ = x x 0 y y s ds + log x 0 dt = y log x y 0 log x 0. y 0 y log x = c.8 y dx + x( + xy 2 ) dy = 0 : µ = x m y n µ m, n (x m y n y) y = (n + )x m y n, (x m y n x( + xy 2 )) x = (m + )x m y n + (m + 2)x m+ y n+2 n + = m +, m + 2 = 0 m = n = 2 (.8) ϕ = x x 0 s 2 y ds + y y 0 x 0 t 2 ( + x 0 t 2 ) dt = xy + y + x 0 y 0 y 0. xy + y = c.0 3 () (xe x + 2y) dx + dy = 0 (2) (cos y sin y 3x 2 cos 2 y) dx + x dy = 0 (3) y dx + 2x( + x 2 y 3 ) dy = 0 (4) (y 3 + xy) dx 2x 2 dy = 0 (V) Clairaut ( ) y = x dy dx + f ( ) dy dx (.0) f(s) C 2 - f (s) 0 2 [K] 3.0 : µ () µ = e 2x, xe x e x + ye 2x = c, (2) µ = (3) µ = x 3 y 5, 2x 2 y y = c, (4) µ = x y 3, x y 2 + log x = c. cos 2 y, x tan y x3 = c, ([K] ) 9

10 x y + xy + f (y )y y = (x + f (y ))y = 0 y = 0, x + f (y ) = 0 y = c x + c 2 c 2 = f(c ) y = cx + f(c) (.) 2 f (s) 0 f ψ(x) y = xψ(x) + f(ψ(x)) (.2) y(x) y(x) y (x) = ψ(x) c (.) (.2) (.2) (.) 4 (.0).2 Clairaut.9 y = xy e y : y = y + xy e y y y (x e y ) = 0. x = e y y = 0. x = e y y = log x y = x log x x. y = 0 y = c (c ) y = cx e c. ([K] p ) () y = xy + y 2 (2) y = xy log y (VI) F (t, x, x, x ) = 0 (a) F (x, x, x ) = 0 : p = x d2 x dt 2 = dp dt = dp dx dx dt = p dp dx x p F (x, p, p dp dx ) = 0 (b) F (t, x, x ) = 0 : p = x p = x t p F (t, p, p ) = 0 (c) α γ F (λt, λ α x, λ α x, λ α 2 x ) = λ γ F (t,( x, x, x ) λ : ) t = e s, x = ye αs t > 0 x = dx ds ds dt = e s αs dy e ds + yαeαs = e ( (α )s d ds + α) y, x = dx ds ds dt = ( e(α 2)s d ds + α ) ( d ds + α) y, F (t, x, x, x ) = 0 e γs F (, y, ( d ds + α)y, ( d ds + α )( d ) ds + α)y = 0 (a) t < 0 4 p : () y = cx + c 2, y = x 2 /4, (2) y = cx log c, y = + log x. 0

11 .0 (3) t > 0 () xx + 2x 2 = 0 (2) x = + x 2 (3) t 3 x + (x tx ) 2 = 0 : () p = x x = p dp dp dx xp dx + 2p2 = 0. p 0 p = C x. p = 0 x = C 2 x 2 3 x3 = C t + C 2 (2) p = x p = + p 2. arctan p = t + C, p = tan(t + C ). dx dt = tan(t + C ) x = log cos(t + C ) + C 2 (3) (λt) 3 λ α 2 x + (λ α x λtλ α x ) 2 = λ α+ t 3 x + λ 2α (x tx ) 2 α + = 2α, α =, γ = 2 (c) t = e s, x = ye s x = dy ds + y, x = e s ( d2 y ds 2 d 2 y ds + dy 2 ds +(dy ds )2 = 0 p = dy ds dp ds = p dp dy p 0 p = C e y. dy + dy ds ) p dp dy +p+p2 = 0 ds = C e y C e y = C 2 e s. x = t log(c C 2 /t). p = 0 y = C 2 x = C 2 t.2 (5), (6) t > 0 ([K] pp.26 29, [KM] p ) () 2xx x 2 = (2) xx = (x + )x (3) x + tx 2 = 0 (4) x = + x 2 (5) txx tx 2 + xx = 0 (6) t 4 x (x tx ) 3 = 0 (d) 2 x (t) + a(t)x (t) + b(t)x = 0 x = ϕ(t) x = ϕ(t)y x y y. ( t 2 )x 2tx + 2x = 0 : x = t x = ty x = ty + y, x = ty + 2y ( 2 t( t 2 )y + 2( 2t 2 )y = 0 y = t + t + ) y. t + y y c ( = { t 2 (t 2 ) = c 2 t ) } t + t 2. { y = c 2 log t t + + } + c 2 x t { t x = c 2 log t } t c 2 t..3 ([K] p ) () t 2 (2 t)x + 2tx 2x = 0 (2) ( 2t)x + 2x (3 2t)x = : () x = C 4 (t + C 2 ) 2 +, (2) x C = x = t + C, x = 0 x = C, x 0, x = C 2 e Ct +, (3) x C = 0 x = C 2 x = 2 C = 0 x = 2 t + C 2, C > 0 x = 2 C arctan t C + C 2, C < 0 x = t 2 +C C log t C t+ C + C2, (4) x = 2 (et+c + e t C ) + C 2, (5) x = C 2 t C, (6) x = t(arcsin C 2 t C ). 7.3 ( ) : () t, x = c ( t ) + c 2t, (2) e t, x = 2c te t + c 2 e t.

12 .2 Kepler ( ) Newton Kepler ( ) ( ) 8 Kepler 9 (Kepler ) I. II. III. ( ) O = t (0, 0, 0) ( ) t x(t) = t (x (t), x 2 (t), x 3 (t)) 20 ẍ = k x 3 x (.3) ẋ x t ẍ = d2 x k = GM G dt2 M 0 x(0), ẋ(0) x(0) O x(0) ẋ(0) : x(0), ẋ(0) e = t (sin θ 2 cos θ, sin θ 2 sin θ, cos θ 2 ) cos θ 2 0 sin θ 2 cos θ sin θ 0 R = 0 0 sin θ cos θ 0 Re = t (0, 0, ) sin θ 2 0 cos θ Rx(0) = t (,, 0), Rẋ(0) = t (,, 0) R SO(3) t R = R Rx(0) t(0, 0, ) = x(0) tr t (0, 0, ) = x(0) e = 0, ẋ(0) y = t (y (t), y 2 (t), y 3 (t)) = Rx (.3) : ÿ i = k y 3 y i, (i =, 2, 3) y(0) = t (ξ, ξ 2, 0), ẏ(0) = t (η, η 2, 0) (.4) y 3 (t) 0 (.4) y 3 (t) 0 d dt { 2 ( y 2 + y 2 k 2 ) } = 0 E y2 + y 2 2 E = 2 ( y 2 + y 2 k 2 ) y2 + y 2 2 (.5) : t (x, x 2, x 3 ) (x, x 2, x 3 ) 2

13 (.4) y = r cos ϕ, y 2 = r sin ϕ ( ) ( ) ( ) y cos ϕ sin ϕ = ṙ + r ϕ y 2 sin ϕ cos ϕ ( ) ( ) ( ) ÿ = ( r r ϕ 2 cos ϕ sin ϕ ) + (2ṙ ϕ + r ϕ) sin ϕ cos ϕ ÿ 2 (.4) (.7) d dt (r2 ϕ) = 0 r r ϕ 2 = k r 2 (.6) 2ṙ ϕ + r ϕ = 0 (.7) r 2 ϕ c (c 0) (.8) Kepler II ( ) r 2 ϕ = c (.6) r = c2 r 3 k (.5) E r2 E = 2ṙ2 + c2 2r 2 k r (.9) ( ) ( ) Kepler I ρ = /r ρ ϕ (.8) dr dt = dρ dϕ dρ ρ 2 = c dϕ dt dϕ, d 2 r dt 2 = c d2 ρ dϕ 2 dϕ dt = c2 ρ 2 d2 ρ dϕ 2. (.6) d2 ρ dϕ 2 + ρ = k c 2 2 ρ(ϕ) = A cos ϕ + B sin ϕ + k c 2 = A 2 + B 2 cos(ϕ ϕ 0 ) + k c 2 ϕ(t 0 ) = 0 A = r(t 0 ) k c, B = ṙ(t 0) 2 c (r, ϕ) p r = + e cos(ϕ ϕ 0 ) (.20) p = c 2 /k, e = k A2 + B 2 (e ) 0 < e < (.6) e = e > (Kepler I) Kepler III T (.20) (x + ae) 2 a 2 + y2 b 2 =, a = p e 2, b = p e 2, (.2) (.8) 2 ct = T T = 2πab/c (.2) 0 T 2 = 4π2 a 2 b 2 c 2 2 r2 ϕ dt = πab, = 4π2 k a3 T a 2 3 3

14 .4 0 < e < (.20) (.2) e = e > (cf. (.2)).5 x(0) ẋ(0) e x(0) = r(0)e, ẋ(0) = ṙ(0)e, (r(0) > 0) R SO(3) y(t) = Rx(0) (.4) ξ > 0, ξ 2 = η 2 = 0 y 2 (t) 0, y 3 (t) 0 (.9) E = 2 y 2 k y E = 0 y (0) < 0 t c y (t c ) = 0 y (0) > 0 E > 0 t y (t) ( ) y (0) dx k dt = f k (t, x,, x n ) k =,..., n (2.) x k (a) = b k k =,..., n (2.2) x = t (x,..., x n ), b = t (b,..., b n ), f = t (f,..., f n ) (2.), (2.2) dx dt = f(t, x) x(a) = b (2.3) 2. n x (n) = f(t, x, x,..., x (n ) ) (2.) x k = x (k ), k =,..., n f k (t, x,..., x n ) = x k, k =,..., n ; f n (t, x,..., x n ) = f(t, x,..., x n ) 2. (Lipschitz ) Ω R R n (R n ) f(t, x) x Lipschitz L > 0 (t, x), (t, y) Ω f(t, x) f(t, y) L x y (2.4) x = (x,..., x n ) R n x = { n k= x k 2} /2 4

15 2. f(x) = x α, x R () α = R Lipschitz (2) α > Lipschitz R Lipschitz (3) 0 < α < 0 Lipschitz 2. f(t, x) x D R R n x C f(t, x) x D Lipschitz 2. f = t (f,..., f n ) I R R n f dt n f dt I f dt = t ( I f dt,..., I f n dt) 2 : f dt = ( 2 ( f k dt) ) 2 ( 2 n max f k dt n f dt) I k I k I I I 2. : D (t, x), (t, y) D 0 θ (t, θx + ( θ)y) D. L < f x k (t, x) L, (t, x) D, k =,..., n f(t, x) f(t, y) = d f(t, θx + ( θ)y) dθ 0 dθ n n f (t, θx + ( θ)y) x k y k dθ n nl x k y k nl x y x k 0 k= Schwarz (2.3) f(t, x) D R R n (a, b) D I R = { (t, x) ; t a r, x b ρ } D (2.5) r, ρ > 0 M = n max (t,x) R f(t, x), α = min{r, ρ M } 2.2 f(t, x) x R Lipschitz (2.3) I = [a α, a + α] x(t; a, b) : x(t) = b + x(t) : {x m (t)} : t x 0 (t) b, x m (t) = b + a k= f(s, x(s)) ds (2.6) t a f(s, x m (s)) ds (2.7) α 2. x m (t) b M t a αm ρ (t, x m (t)) R (2.7) f(t, x) Lipschitz L (2.4) x m+ (t) x m (t) ( nl t a ) m ρ (2.8) m! m = 0 m m t x m+ (t) x m (t) {f(s, x m (s)) f(s, x m (s))} ds t nl x m (s) x m (s) ds a a ( nl) m (m )! ρ t s a m ds ( nl t a ) m ρ m! a 5

16 ( nlα) m m=0 m! e nlα < m > m 2 m max x m (t) x m2 (t) t [a α,a+α] k=m 2 max x k+(t) x k (t) t [a α,a+α] m ( k=m 2 nlα) k ρ k! {x m (t)} Cauchy [a α, a + α] x(t) (2.7) m x(t) (2.6) ( (2.7) {x m } ) : x(t), y(t) (2.6) Lipschitz x(t) y(t) t a {f(s, x(s)) f(s, y(s))} ds nl t a x(s) y(s) ds. Gronwall (ϕ 0 ) x(t) y(t) (Gronwall ) ϕ(t), ψ(t), w(t) [a, b] ψ(t) 0 w(t) ϕ(t) + w(t) ϕ(t) + t a t a ψ(s)w(s) ds (a t b) (2.9) ψ(s)ϕ(s)e R t s ψ(u) du ds (a t b) (2.0) : v(t) = t a ψ(s)w(s) ds v (s) = ψ(s)w(s) (2.9) ψ(t) 0 v (t) ψ(t)ϕ(t) + ψ(t)v(t). 2 e R t a ψ(u)du d R t dt (v(t)e a ψ(u)du ) ψ(t)ϕ(t)e R t a ψ(u)du. a t v(a) = 0 v(t) t a v(t)e R t a ψ(u)du t a ψ(s)ϕ(s)e R s a ψ(u)du ds. ψ(s)ϕ(s)e R t s ψ(u)du ds (2.9) 2 (2.0) f(t, x) (t, x) C r x(t) C r+ 22 : x(t) (2.6) 2.2 dx dt = cx, x(0) = (2.7) x m(t) x m (t) x(t) = e ct 22 f(t, x) x(t) ϕ(t) t = a ϕ ϕ(t) = P c n(t a) n t = a ( C ) 6

17 () x = x +, x(0) = (2) x = 2t(x + ), x(0) = 0 (3) x = 4x 2y, y = 2x y, x(0) = 3, y(0) = 0 (4) x = y, y = x, x(0) = 0, y(0) = 2.2 () 2.2 Lipschitz c 0 x(t) = (t c) 2, t c; x(t) = 0, t < c dx dt = 2 x /2, x(0) = 0 2. x /2 x = 0 Lipschitz (2) 2.2 f(t, x) 2.5 f(t, x) R (2.3) I = [a α, a + α] R, α (2.5) Ascoli-Arzelà 2.6 (Ascoli-Arzelà) compact K R n {f λ (x)} λ Λ (I), (II) {f λ (x)} λ Λ compact, ( ) (I) (II) sup sup f λ (x) < ( ) λ Λ x K lim sup sup δ 0 λ Λ x,y K: x y <δ f λ (x) f λ (y) = 0 ( ) : {x m } K (I) m N {f λ (x m )} λ Λ Bolzano- Weierstrass {λ k } Λ m N {f λk (x m )} k= {f λ k } k= Cauchy ε > 0 (II) δ > 0 sup sup λ Λ x,y K: x y <δ f λ (x) f λ (y) < ε 3 K compact M N K M m=b δ (x m ) B δ (x) = { y ; y x < δ} x,..., x M k 0 k, l k 0 m =,..., M f λk (x m ) f λl (x m ) < ε 3 x K x x m < δ m {,, M} f λk (x) f λl (x) f λk (x) f λk (x m ) + f λk (x m ) f λl (x m ) + f λl (x m ) f λl (x) < ε 2.5 : 2.2 (2.6) x(t) x m (t) 24 : t k = a + k mα, k = m,...,, 0,,..., m x m (a) = b x m (t) = x m (t k ) + (t t k )f(t k, x m (t k )), t k t t k+, k = 0,,..., m x m (t) = x m (t k ) + (t t k )f(t k, x m (t k )), t k t t k, k = 0,,..., m : () 2e t, (2) e t2, (3) x = 4e 3t, y = 2e 3t 2, (4) x = sin t, y = cos t, : (3) x m(t) = 4 m P y m (t) = 2 m P (3t) k k! 2, (4) x 2m (t) = x 2m (t) = m P ( ) k (2k )! t2k, y 2m (t) = y 2m+ (t) = k=0 k= k=0 ) (), (2) 24 x m (t) m P (3t) k k!, k=0 ( ) k (2k)! t2k ( 7

18 g m (t) = f(t k, x m (t k )) t k t < t k+ (k 0), t k < t t k (k 0) x m (t) = b + 2. M ((2.5) ) t x m (t) x m (s) M t s, s, t [a α, a + α], a g m (s) ds (2.) s = a Ascoli-Arzelà {x m (t)} compact {x m (t)} x(t) {g m (t)} f(t, x(t)) f(t, x) compact R ε > 0 δ > 0 (s, x), (t, y) R : s t + x y < δ = f(s, x) f(t, y) < ε {x m (t)} x(t) N N m N x m (t) x(t) < δ/2 N max{n, 2(M+)α δ } m N t k t + x m (t k ) x(t) t k t + x m (t k ) x m (t) + x m (t) x(t) < ( + M) t k t + δ 2 < δ g m (t) f(t, x(t)) < ε (2.) m x(t) (2.6) 2.4 dx dt = cx, x(0) = α = 2.5 α = ([KM] p ) () x = x +, x(0) = (2) x = 2x + 2, x(0) = 2 (3) x = 2t(x + ), x(0) = D R R n ( ) f C(D; R n ) 2.2 (t, x) D (t, x) U f U x Lipschitz f Lipschitz Lip x (D; R n ) D Lipschitz 2. C (D; R n ) Lip x (D; R n ) f Lip x (D; R n ), (a 0, b 0 ) D dx dt = f(t, x) x(a 0) = b 0 (2.2) (a 0, b 0 ) f Lipschitz 2.2 α 0 > 0 I 0 := [a 0 α 0, a 0 +α 0 ] x(t; a 0, b 0 ) a = a 0 +α 0, b = x(a ; a 0, b 0 ) (a, b ) D x(a ) = b (2.2) 2.2 α > 0 I := [a α, a + α ] x(t; a, b ) x(t; a 0, b 0 ) = x(t; a, b ) t I 0 I x(t) = x(t; a 0, b 0 ) (t I 0 ); x(t) = x(t; a, b ) (t I ) x(t) (2.2) : () 2e t, (2) e 2t +, (3) e t2, : () x m( k m ) = 2( + m )k (3) x m ( k m ) + = Q k l= ( + 2l P [mt] ) lim m m m m l= log( + 2l m m )m = R t 0 log e2s ds 8

19 2.7 f Lip x (D; R n ), (a 0, b 0 ) D (2.2) [a 0, a ) x(t) t m a b := lim m x(t m ) (a, b ) D (t, x(t)) (a, b ) (t a ) x(t) a : (a, b ) D ε > 0 R = {(t, x); t a ε, x b ε} D M ε := n sup R f(t, x) t m a x(t m ) b N m N = 0 < a t m < ε 2M ε, x(t m ) b < ε 2 t N t < a x(t) (2.2) x(t) x(t N ) t x(t) b x(t) x(t N ) + x(t N ) b < ε. t N f(s, x(s)) ds M ε (t t N ) < ε f Lip x (D; R n ) (2.2) (α, ω) t α or t ω (t, x(t)) D D compact [α, ω ] (α, ω) t (α, ω)\[α, ω ] (t, x(t)) D\ : ( ) 2 x(t), y(t) [a, ω ), [a, ω 2 ) (ω ω 2 ) t = inf{t > a x(t) y(t)} t ω, t < ω 2. ε > 0 x(t ) = y(t ) x(t) y(t) (t < t < t + ε) (t, x(t )) D (2.2) ( ) ω = ω < {t m } t m ω (t m, x(t m )) compact (t m, x(t m )) (ω, b ) b 2.7 I R, D = I R n (2.2) I 2.9 D = I R n, I = (t 0, t ) ( t 0 < t ) f Lip x (D; R n ) (a 0, b 0 ) D (2.2) x(t) f(t, x(t)) A x(t) + B A, B t x(t) (2.3) x(t) I : ( ) x(t) ω < t [a, ω) x(t) x(t) = b + t a f(s, x(s)) ds x(t) b + n t a f(s, x(s)) ds b + n t a (A x(s) + B) ds. A = 0 x(t) b + nb(t a ) lim t ω x(t) < 2.7 A > 0 0 x(t) + A B b + B A + na Gronwall ( 2.3) t x(t) + B A ( b + B A )e na(t a ). a ( x(s) + B A ) ds lim t ω x(t) < 2.7 ω = t 9

20 2.3 I p > dx dt = xp, x(0) = x(t) = { t/(p )} /(p ) (2.3) t p x(t) ( ) 3 3. dx dt = A(t)x + b(t), t I := (t 0, t ) (3.) ( t 0 < t ) A(t) n b(t) R n b 0, n A = (a ij ) A ( n A = a ij 2) /2 i,j= (3.2) 3. Ax A x. : Schwarz Ax 2 = n n 2 a ij x j i= j= n i= ( n a ij 2)( n x j 2) = A 2 x 2. j= 3.2 ( ) (a, ξ) I R n x(a) = ξ (3.) x(t; a, ξ) : [τ 0, τ ] (t 0, t ) c = max τ0 t τ A(t), c 2 = max τ0 t τ b(t) 3. A(t)x + b(t) c x + c (3.) dx dt x(t; a, ξ) j= = A(t)x, x(a) = ξ (3.3) V = { x( ; a, ξ) ; ξ R n } (3.4) 3.3 ( ) () V dim V = n (2) v,..., v n V v,..., v n V t I( t I) v (t),..., v n (t) R n 20

21 : () ξ, ξ R n, α, α 2 R α x( ; a, ξ) + α 2 x( ; a, ξ ) = x( ; a, α ξ + α 2 ξ ) (3.5) V e = t (, 0,..., 0),..., e n = t (0,..., 0, ) ϕ k = x( ; a, e k ) ξ = t (ξ,..., ξ n ) (3.5) x( ; a, ξ) = n k= ξ kϕ k. ϕ,..., ϕ n V c,..., c n R c ϕ + + c n ϕ n = 0 t = a c e + + c n e n = 0 c = = c n = 0. ϕ,, ϕ n dim V = n (2) t v (t),..., v n (t) R n v,..., v n dim V = n v,..., v n V v (t),..., v n (t) R n c,..., c n j c jv j (t) = 0 v( ) = x( ; t, v(t)) (3.5) cj v j ( ) = x( ; t, c j v(t)) = x( ; t, 0) = 0 v,..., v n ϕ k n R(t, a) = (ϕ (t) ϕ n (t)) R(t, a) (3.3) (resolvent matrix) 3.3 x(t; a, ξ) = R(t, a)ξ 3.4 (0) R(t, t) = I ( ) () R(s, t) = R(s, u)r(u, t) (s, u, t I) (2) R(s, t) R(s, t) = R(t, s) (3) s R(s, t) = A(s)R(s, t), R(s, t) = R(s, t)a(t). t : (0). () ξ R n x(s; u, R(u, t)ξ), x(s; t, ξ) x = A(s)x u x(u; u, R(u, t)ξ) = R(u, t)ξ = x(u; t, ξ) x(s; u, R(u, t)ξ) = x(s; t, ξ). R(s, u)r(u, t)ξ = R(s, t)ξ (2) () s = t (0) I = R(t, t) = R(t, u)r(u, t) (3) R d ds ϕ k = A(s)ϕ k R(t, s)r(s, t) = I t R (t, s)r(s, t) + R(t, s) R (s, t) = O t t R R(s, t) = R(t, s) (t, s)r(s, t) = R(s, t)a(t)r(t, s)r(s, t) = R(s, t)a(t). t t 3.5 (Wronskian, ) (x (t) x n (t)) ( t det U(t) = exp dx dt = A(t)x x,..., x n U(t) = s ) tr A(u) du det U(s) (3.6) A = (a ij ) tr A = a + + a nn A (trace) 3. n = : y(t) := det U(t) y (t) = {tr A(t)}y(t) 3.2 A(t) t A(t) = A(t) x = A(t)x () x(t) x(0). (2) R(s, t). : () d dt x(t) 2 = 0, (2) s {t R(s, t)r(s, t)} = O 2

22 3.6 v,..., v n (3.3) n V (t) = (v (t) v n (t)) 3.3 (2) V (t) R(t, a) = V (t)v (a) : v k (t) = x(t; a, v k (a)) = R(t, a)v k (a) V (t) = R(t, a)v (a) 3..2 dx dt = A(t)x + b(t), x(a) = ξ (3.7) x(t; a, ξ) A(t) (3.3) x 0 (t; a, ξ) V b = { x( ; a, ξ) ; ξ R n }; V 0 = { x 0 ( ; a, ξ) ; ξ R n } (3.8) 3.7 () x V b V b = { x 0 + x ; x 0 V 0 }. (2) ( ) R(s, t) (3.3) x(t; a, ξ) = R(t, a)ξ + : () ; x V b ˆx := x x t d dt ˆx = A(t)x + b(t) (A(t)x + b(t)) = A(t)ˆx ˆx V 0 (2) () ξ = { d t } R(t, s)b(s) ds dt a a = R(t, t)b(t) + = b(t) + A(t) R(t, s)b(s) ds. (3.9) t a t a A(t)R(t, s)b(s) ds R(t, s)b(s) ds M n (C) n (3.2) A A M n (C) C n2 ( R 2n2 ) 3.8 A, B M n (C) c C (0) ca = c A () A + B A + B (2) AB A B. : (0) () A C n2 (2) Schwarz A = (a ij ), B = (b ij ) n AB 2 n 2 = a ik b kj n i,j= k= i,j= k= k= ( n a ik 2)( n b kj 2) = A 2 B 2. 22

23 3.9 A M n (C) m () S m (A) := k! Ak Cauchy C n2 k=0 e A (2) e ta (t R) t ( ) d dt eta = Ae ta. : () m > m 3.8 S m (A) S m (A) = m k=m + m k! Ak k=m + k! A k 0 as m, m. (2) () R > 0 t < R {S m (ta)} e ta d dt S m(ta) = m k= m k! ktk A k = A l! tl A l = AS m (ta) l=0 d dt eta = Ae ta 2 l = k 3.0 A M n (C) dx dt x(t) = e (t a)a ξ = Ax, x(a) = ξ (3.0) : x(t) = e (t a)a ξ (3.0) 3.9 (2) A t x = A(t)x e R t s A(u) du A(t) t s A(u) du A, B M n (C) () (a) (c) : (a) AB = BA (b) e ta e sb = e sb e ta (s, t R) (c) e ta e tb = e t(a+b) (t R). (2) e A (e A ) = e A. (3) P P e A P = e P AP. (4) det e A = e tr A. : () (a) = (c): m S m (ta)s m (tb) S m (t(a + B)) k,l m:k+l m+ t k+l A k B l k!l! m2 C 2m 2([m/2]!) 2 0 C = max{ ta, tb, } (c) = (a): t 2 t = 0 A 2 + 2AB + B 2 = (A + B) 2 (a) = (b): S m (ta)s m (sb) = S m (sb)s m (ta) m (b) = (a): s, t s = t = 0 (2) A A () (c) e A e A = e A A = I. (3) P A k P = (P AP ) k, k N, P S m (A)P = S m (P AP ) m (4) A(t) = a(t)i + b(t)c (C ) cf. [K] p.0. 23

24 e ta : (a) A : A = λ λ n e ta = k=0 Ak = t k k! Ak = e tλ e tλ n λ k λ k n (b) J Jordan : t k = t k /k!, λ λ. J = e tj = e tλ λ 0 0 λ t 0 t t 2 t n 0 t 0 t t2 t 0 t 0 0 t 0 (c) A P Jordan 3. (3) : P AP = J J r P e ta P = e tp AP = e tj e tjr Jordan 3.2 A M n (C) Φ(λ) = det(λi A) = (λ λ ) m (λ λ r ) m r (3.) 27 λ,..., λ r A m,..., m r P j : Φ(λ) = h (λ) (λ λ ) + + h r(λ) (3.2) m (λ λ r ) mr (h j (λ) m j ) Φ(λ) = h (λ)g (λ) + + h r (λ)g r (λ). g j (λ) = k r:k j (λ λ k) m k 28 P j = h j (A)g j (A) (3.3) () P j G λj = {x C; (A λ j I) mj x = 0} P j x G λj (x C n ) P 2 i = P i ; P i P j = O (i j) P + + P r = I f(λ) = λ n + a λ n + + a n λ + a n f(a) = A n + a A n + + a n A + a ni 24

25 (2) l j m j l j (λ j I A) lj P j O, (λ j I A) lj P j = O. G λj = {x C; (A λ j I) l j x = 0} ϕ(λ) = (λ λ ) l (λ λ r ) l r ϕ(a) = 0 29 (3) N = A r j= λ jp j N : (a) N = O (b) A (c) l = = l r =. (4) A P j Lagrange : P j = k r:k j (A λ ki) k r:k j (λ, j λ k ) j =,..., r. (3.4) 3.2 P,..., P r A A = r j= λ jp j + N (3.5) λ j P j A, N A Jordan, N = O A A P j A (A ) A P,..., P r e ta = r { e λ jt I + t! (A λ ji) + + tm j } (m j )! (A λ ji) m j P j (3.6) j= : e ta = e ta (P + + P r ) e ta P j = e t(a λ ji+λ j I) P j = e tλ ji e t(a λ ji) P j = e tλ j e t(a λ ji) P j (A λ j I) lj P j = O e ta P j = e tλj l j k=0 tk k! (A λ ji) k P j 30 ( ) 3. () A =. 2 Cayley-Hamilton (A 2I) 2 = 0. 3 ( ) e ta = e 2tI e t(a 2I) = e 2t (I + t(a 2I)) = e 2t t t. t + t ( ) 0 (2) A =, ω > 0. ω 2 iω, iω 0 ( P = A + iωi iω + iω = 2 iω iω ) (, P 2 = A iωi iω iω = 2 (P = P 2 ) e iωt = cos ωt + i sin ωt ( ) e ta = e iωt P + e iωt cos ωt ω sin ωt P 2 =. ω sin ωt cos ωt (3) A = iω iω. A (2 ), 2 29 ϕ(λ) 30 (3.6) (A λ j I) k = O (k l j ) l j ) 25

26 (3.4) P = A 2I 2 = , P 2 = A + I 2 + = 3 e ta = e t P + e 2t P 2 0 (4) A = 2. A λ = (2 ), λ 2 = 2 A P, P 2 (λ ) 2 (λ 2) = λ (λ ) 2 + λ 2 = λ(λ 2) + (λ ) 2 P = A(A 2I) = , P 2 = (A I) 2 = P 2 λ 2 = 2 l 2 = m 2 = (A I)P = O e ta = e t {I + t(a I)}P + e 2t P 2 = e t 3.3 x(0) = x 0 () x = (4) x = ( 5 3 ) x. (2) x = te t + e 2t ( x. (5) x = 2 2 ) x. (3) x = x. (6) x = (7) x = x. (8) x = x : (2) { ( ± 2i. ) + 2i, 2i ( )} P, P 2 P = P 2 x(t) = e t 0 cos 2t + e t 0 sin 2t x 0. (6) 0 0 { } x(t) = e t 0 + cos t + sin t 2 3 x x. x. 26

27 3. () ( ) mẍ = kx (ẍ = d2 x dt.) x(0) = a, x (0) = b ( ) ( ) 2 ( ) ( ) ( ) x x = x 2 x d x x 0 = A, A = dt x 2 x 2 ω 2 0 ( ) ( ) ( ) k ω = m 3. (2) cos ωt ω sin ωt x (t) eta =. = e ta a ω sin ωt cos ωt x 2 (t) b x(t) = x (t) = a cos ωt + b sin ωt ω (2) ( ) f(t) ẍ + ω 2 x = f(t), f(t) = ε cos νt (ν > 0) ( ) ( ) ( ) ( ) ( ) x x () = x 2 x d x x 0 = A + dt x 2 x 2 f(t) e (t s)a (3.9) : ( ) ( ) ( ) e (t s)a 0 = ε sin ω(t s) cos νs = ε sin(ω(t s) + νs) + sin(ω(t s) νs). f(s) ω ω cos ω(t s) cos νs 2ω ω cos(ω(t s) νs) + ω cos(ω(t s) + νs) (i) ω ν (ii) ω = ν x(t) = x (t) = ( [ R(t, 0) a b ) + t 0 R(t, s) ( 0 f(s) ) ] ds = a cos ωt + b ω sin ωt + ε ω 2 (cos νt cos ωt). ν2 x(t) = a cos ωt + b ω ε sin ωt + t sin ωt. 2ω (i) lim t x(t) = (resonance) 3.4 x(0) = t (0, 0) ([KM] p.89.) () ( ) ( ) ( ) ( ) x 2 e t = x +. (2) x 3 4 = x + e 2t. 0 e 2t 0 (3) ( ) ( ) ( ) ( ) x = x + e t sin t. (4) x = x + sin t. cos t (Cayley-Hamilton) (3.) Φ(λ) Φ(A) = O : A = (a ij ) e = t (, 0,..., 0),..., e n = t (0,..., 0, ) Ae j = a j e + + a nj e n a j e + + (a jj A)e j + + a nj e n = 0, j n. 27

28 a I A a 2 I a n I a 2 I a 22 I A a n2 I a n I a 2n I a nn I A e e 2. e n = (3.7) ij ã ij ã ij = a ij I, i j, ã jj = a jj I A (ã ij ) (A) (A) A (A) (3.7) ( ) n Φ(A) O O O ( ) n. Φ(A) O O O ( ) n Φ(A) e e 2. e n 0 = Φ(A)e j = 0 ( j n) Φ(A) = O n A (3.) C n G λj = { x ; (λ j I A) m j x = 0 } λ j : 3.5 G λ G λr = C n ( ) 3.6 λ f (λ),..., f r (λ) 2 E j := { x ; f j (A)x = 0 } (j =,..., r); E 0 := { x ; f (A) f r (A)x = 0 } E 0 = E E r : r = 2 ( ) 2 h, h 2 f (λ)h (λ) + f 2 (λ)h 2 (λ) 32 λ A f (A)h (A) + f 2 (A)h 2 (A) = I. (3.8) x x = f 2 (A)h 2 (A)x, x 2 = f (A)h (A)x x = x + x 2 f (A)x = h 2 (A){f (A)f 2 (A)x} = 0, f 2 (A)x 2 = h (A){f (A)f 2 (A)x} = 0 x E, x 2 E 2 x E 0 x = x + x 2 = y + y 2, x, y E, x 2, y 2 E 2 z := x y = y 2 x 2 E E 2 (3.8) z = h (A)f (A)z + h 2 (A)f 2 (A)z = 0. 3 A B BA = (det A)I 32 28

29 3.5 : 3.4 Φ(A) = O (3.) : () , P j x G λj (x C), P i P j = O (i j), P + + P r = I Pi 2 = P i (P + + P r ) = P i (2) (λ j I A) m j P j = 0 ϕ(a) = ϕ(a){p + + P r } { } ϕ(a)p j = (A λ ki) l k (A λ j I) l j P j = O ϕ(a) = O k r:k j (3) N = A r j= λ jp j = r j= (A λ ji)p j A P,..., P r P i P j = O (i j) N n = r j= (A λ ji) n P j = O N (a) (c) NP j = r k= (A λ ki)p k P j = (A λ j I)P j (b) (a) A T T AT = D (D ) AT = T D T = (l l n ) l j λ k Al j = λ k l j λ j F λj = { x ; (λi A)x = 0 } l,..., l n C n F λ,..., F λr F λ F λr = C n F λj G λj F λj = G λj N = r j= (A λ ji)p j = O (c) (b): (2) 3.6 F λ F λr = C n l F λj Al = λ j l C n l,..., l n F λ,..., F λr T = (l l n ) T AT (4) (3.2) Φ(λ) ϕ(λ) h j (A)g j (A) (3.4) (3.2) /ϕ(λ) = a /(λ λ )+ +a r /(λ λ r ) = a g (λ) + + a r g r (λ), (g j (λ) := k r:k j (λ λ k)) λ = λ j a j g j (λ j ) = P j = g j (A)/g j (λ j ) (3.4) 3.3 n d n x dt n + a (t) dn x dt n + + a n (t) dx dt + a n(t)x = f(t) (3.9) f(t) f(t) 0 d n x dt n + a (t) dn x dt n + + a n (t) dx dt + a n(t)x = 0 (3.20) (3.9) a (t),..., a n (t) I 2. x k = x (k ), k =,..., n x x d x 2 dt. = A x 2.., A = x n x n a n a n a 2 a (3.2) x(t) (3.20) t (x(t), x (t),, x (n ) (t)) (3.2) t (x (t), x 2 (t),, x n (t)) (3.2) x (t) C n - (3.20) (3.20) n x (t),..., x n (t) 29

30 3.7 I C n x (t),..., x n (t) Wronskian ( ) W (t) := x (t) x n (t) x (t) x n(t) W (t) 0 x (n ) (t) x (n ) n (t) : c x (t) + + c n x n (t) = 0 k c x (k) (t) + + c nx n (k) (t) = 0 Wronskian 0 c = = c n = (3.20) n x (t),..., x n (t) Wronskian W (t) 0 (3.2) tr A(t) = a (t) 3.5 W (t) = e R t s a (u) du W (s) t I W (t) 0 t I W (t) (3.20) a,..., a n P (D)x = 0 D = d dt, P (λ) = λ n + a λ n + + a n λ + a n (3.) P (λ) = (λ λ ) m (λ λ r ) m r 33 λ j (j =,..., r) P (λ) m j m + + m r = n 3.8 P (D)x = 0 n e tλ, te tλ,, t m e tλ ; e tλ 2, te tλ 2,, t m 2 e tλ 2 ; ; e tλ r, te tλ r,, t m r e tλ r (3.22) 3.9 (D λ) m x = 0 V = {x; (D λ) m x = 0} e tλ, te tλ,, t m e tλ : 3.7 dim V = m x j = tj (j )! etλ (j =,..., m) (D λ) m x j = 0 (j =,..., m) (D λ) j x j = (D λ) j { t j 2 (j 2)! etλ + tj (j )! λetλ λ tj (j )! etλ} = (D λ) j x j = = (D λ)x = λe λt λe λt = 0, j =, 2..., m, y =, y 2 = t!,, y m = tm (m )! Wronskian λ P (λ),..., P r (λ) 2 V j := { x ; P j (D)x = 0 } (j =,..., r); V 0 := { x ; P (D) P r (D)x = 0 } V 0 = V V r 33 f(λ), g(λ) f(d)g(d) = g(d)f(d) d : dt ( d dx t)x = dt dt (x tx) = x tx x, ( d dt t) d dt x = x tx d dt ( d dt t) ( d dt t) d dt. 30

31 : 34 r = 2 ( ) 2 h, h 2 P (λ)h (λ) + P 2 (λ)h 2 (λ) λ D P (D)h (D) + P 2 (D)h 2 (D) =. (3.23) x x = P 2 (D)h 2 (D)x, x 2 = P (D)h (D)x x = x + x 2 P (D)x = h 2 (D){P (D)P 2 (D)x} = 0, P 2 (D)x 2 = h (D){P (D)P 2 (D)x} = 0 x V, x 2 V 2 x V 0 x = x + x 2 = y + y 2, x, y V, x 2, y 2 V 2 z := x y = y 2 x 2 V V 2 (3.23) z = h (D)P (D)z + h 2 (D)P 2 (D)z = : V = {x; P (D)x = 0}, V k = {x; (D λ k ) m k x = 0} 3.20 V = V V r 3.9 (3.22) V k 3.2 () x + x x x = 0. (2) x + 2x + 5x = 0. (3) x + 2x + x = 0. : () D 3 + D 2 D = (D + ) 2 (D ) x = (c e t + c 2 te t ) + c 3 e t. (2) D 2 + 2D + 5 = (D + + 2i)(D + 2i) x = c e ( +2i)t + c 2 e ( 2i)t = c 3 e t cos 2t + c 4 e t sin 2t. c 3 = c + c 2, c 4 = i(c c 2 ) (3) D 4 + 2D 2 + = (D 2 + ) 2 = (D i) 2 (D + i) 2 x = c e it + c 2 te it + c 3 e it + c 4 te it = (c 5 + tc 6 ) cos t + (c 7 + tc 8 ) sin t. c 5 = c + c 3, c 6 = c 2 + c 4, c 7 = i(c c 3 ), c 8 = i(c 2 c 4 ) (3.9) a,..., a n 3.7 (3.9) x (t) (3.20) x(t) x (t) + x(t) (3.9) x (t) 3.2 t t t 0 tn f(t n ) dt n dt 2 dt = t 0 t 0 t t 0 (t s) n (n )! : n = n n + f(s) ds t t t 0 t = tn t τ (τ s) n f(t n+ ) dt n+ dt n dt = f(s) dsdτ t 0 t 0 t 0 t 0 (n )! t (τ s) n t [ ] (τ s) n t t (t s) n f(s) dτds = f(s) dτds = f(s) ds. t 0 s (n )! t 0 n! n! τ=s t 0 3

32 () : (D a) n x = f(t) (3.24) D = d dt e at Leipniz D n (e at x) = n k=0 ( ) n ( a) k e at D n k x = e at (D a) n x = e at f(t) k n 3.2 e at x = x = n j= t t 0 (t s) n (n )! t c j t j e at + t 0 e as f(s) ds + n c j t j. j= (t s) n e a(t s) f(s) ds (n )! (3.24) f(t) 0 (D a) n x = f(t) : (2) : x = t (D a) n f(t) = t 0 (t s) n e a(t s) f(s) ds (3.25) (n )! P (λ) := λ n + a λ n + + a n λ + a n = (λ λ ) m (λ λ r ) m r, λ k λ j (k j) P (λ) = h (λ) (λ λ ) m + + h r(λ) (λ λ r ) m r x(t) = P (D) f(t) = h (D) (D λ ) m f(t) + + h r(d) (D λ r ) m r (3.26) f(t) (3.27) x(t) P (D)x = f(t) f k (t) = (D λ k ) m f(t) = k t t 0 (t s) mk e λ(t s) f(s) ds (m k )! () (D λ k ) m k f k (t) = f(t) P k (λ) := j r:j k (λ λ j) m j P (D)x(t) = P (D){h (D)f + + h r (D)f r } = h (D)P (D)(D λ ) m f + + h r (D)P r (D)(D λ r ) m r f r = {h (D)P (D) + + h r (D)P r (D)}f (3.26) h (λ)p (λ) + + h r (λ)p r (λ) = (3.27) P (D)x = f(t) (a) (3) : f(t) P (D)x = c (c ) P (0) = a n 0 Dx = = D n x = 0 x = c/a n P (0) = 0 P (D) = D p P 0 (D), P 0 (0) 0 D p x = c/p 0 (0), x = (c/p 0 (0)) t p /p! 32

33 (b) ( D)x = p(t) (p(t) m ) ( D)( + D + + D m ) = D m+ t k (k m) ( D)( + D + + D m )t k = t k. p(t) t k (k m) x = ( + D + + D m )p(t) (c) P (D)x = p(t) (p(t) m ) P (0) 0 P (λ) = P (0)( λq(λ)) (Q(λ) ) (b) k m ( DQ(D))( + DQ(D) + D 2 Q(D) D m Q(D) m )t k = ( D m+ Q(D) m+ )t k = t k x = (/P (0))( + DQ(D) + D 2 Q(D) D m Q(D) m )p(t) ( P (0) DQ(D) p(t) ) P (0) = 0 P (D) = D p P 0 (D) (P 0 P 0 (0) 0 ) P 0 (D)(D p x) = p(t) D p x p (d) P (D)x = p(t)e αt (p(t) ) (D + α)(e αt x) = D(e αt x) + αe αt x = e αt Dx p (D + α) p (e αt x) = e αt D p x e αt P (D)x = P (D + α)(e αt x) = p(t) (a) (c) (e) f(t), P (D)x = p (t)e αt + p 2 (t)e α2t k =, 2 (d) P (D)x = p k (t)e α kt x k (t) x (t)+x 2 (t) P (D)x = p (t)e α t + p 2 (t)e α 2t P (D)(x + x 2 ) = P (D)x + P (D)x 2 = p (t)e α t + p 2 (t)e α 2t 3.3 () x + 3x 2x = 2t 3 t (2) x x + x = t 3 (3) x 3x + 2x = te t (4) x + 2x = t cos t (5) x + x + x = e t + t : () (D 2 + 3D 2)x = 2t 3 t 2( ( 3 2 D + 2 D2 ))x = 2t 3 t. x = ( 3 2 D + 2 D2 ) ( t3 + 2 t) ( ( 3 = + 2 D + ( 3 2 D2) + 2 D + 2 D2) 2 ( D + 3) 2 D2) ( t t) ( = D + 4 D D3) ( t t) = t3 9 2 t2 6t α = ( 3 + 7)/2, α 2 = ( 3 7)/2 c e α t + c 2 e α 2t c e αt + c 2 e α2t t t2 6t (2) (D 3 D 2 + D)x = ( D + D 2 )(Dx) = t 3 Dx = (D D 2 ) t3 = { + (D D 2 ) + (D D 2 ) 2 + (D D 2 ) 3 }t 3 = ( + D D 3 )t 3 = t 3 + 3t 2 6. x = t 4 /4 + t 3 6t. λ 3 λ 2 + λ = 0 λ = 0, ( ± 3i)/2 x = c + c 2 e t/2 cos( 3t/2) + c 3 e t/2 sin( 3t/2) + t 4 /4 + t 3 6t. (3) e t (D 2 3D + 2)x = ((D ) 2 3(D ) + 2)(e t x) = (D 2 5D + 6)(e t x) = t e t x = 5D 6 + t ( ) 5D D2 6 = { + 6 D2 } t 6 6 = t λ 2 3λ + 2 = 0 λ =, 2 x = c e t + c 2 e 2t + ( t )e t. 33

34 (4) cos t = Re e it (D 2 + 2)x = te it e it (D 2 + 2)x = ((D + i) 2 + 2)(e it x) = (D 2 + 2iD + )(e it x), e it x = + 2iD + D 2 t = ( (2iD + D2 ))t = t 2i, x = e it (t 2i) = t cos t + 2 sin t + i(t sin t 2 cos t). λ = 0 λ = ± 2i x = c cos 2t + c 2 sin 2t + t cos t + 2 sin t. (5) (D 2 + D + )x = e t x (D 2 + D + )x = t x 2 (D 2 +D+)x = e t e t (D 2 +D+)x = {(D+) 2 +D++}(e t x) = (D 2 +3D+3)(e t x) = e t x = +D+ 3 D2 3 = 3. x = 3 et. (D 2 + D + )x = t x = +D+D 2 t = t x 2 = t x = 3 et + t λ 2 + λ + = 0 λ = ± 3i 2 x = c e t/2 cos 3 2 t + c 2e t/2 sin 3.5 (cf. [K] p ) 3 2 t + 3 et + t. () x x x 2x = t 2 (2) x + 4x + 3x = t 2 e 2t (3) x x = 3t 2 2t (4) x + x = t sin t (5) x 3x + 3x x = e t cos t (6) x + x = 2 cos 2 t t p(t)x + q(t)x + r(t)x = 0 (4.) x(t) = c n(t a) n p(t), q(t), r(t) t = a a = 0 t = p(0) 0 p(0) 0 p(t) p q(t), r(t) : q(t) = q m t m, r(t) = m=0 r m t m ( t < r ) (4.2) m=0 x(t) = m=0 c mt m t x (t) = x (t) = mc m t m = m= (m + )c m+ t m, m=0 m(m )c m t m 2 = (m + )(m + 2)c m+2 t m m=2 m= : () c e 2t + c 2 e 2 t cos 3 2 t + c 3e 2 t sin 3 2 t 2 t2 + 2 t + 4, (2) c e t + c 2 e 3t (t 2 + 2)e 2t, (3) c + c 2 e t (t 3 + 2t 2 + 4t), (4) c cos t + c 2 sin t + 4 t sin t 4 t2 cos t, (5) c e t + c 2 te t + c 3 t 2 e t e t sin t, (6) c + c 2 cos t + c 3 sin t 6 sin 2t + t + 3t2 4 t4. 36 [Ku] : ( ) 34

35 (4.): p(t) (m + )(m + 2)c m+2 t m + m=0 q m t m m=0 m=0 2 3 [ m q m k (k + )c k+ ]t m, m=0 k=0 (m + )c m+ t m + r m t m m=0 [ m r m k c k ]t m, m=0 t m {c m } k=0 k=0 m=0 c m t m = 0. m m (m + )(m + 2)c m+2 + q m k (k + )c k+ + r m k c k = 0 (4.3) {c m } c 0, c (c 0 = x(0), c = x (0) ) (4.2) t < r (4.3) m c mt m t < r 4. x + q(t)x + r(t)x = 0 q(t), r(t) t a < r x(t) x a < r : x(t) = k=0 c m (x a) m. (4.4) m=0 c 0 = x(a), c = x (a) c m (m 2) (4.4) c 0, c : a = 0 0 < ρ < r m q mρ m, m r mρ m M > 0 (4.3) q m ρ m M, r m ρ m M (m = 0,,...) m (m + )(m + 2) c m+2 Mρ m [(k + ) c k+ + c k ]ρ k k=0 {A m } A 0 = c 0, A = c m (m + )(m + 2)A m+2 = Mρ m [(k + )A k+ + A k ]ρ k + MA m+ ρ (4.5) c m A m k=0 (m + 2)(m + 3)A m+3 ρ m = Mρ m [(k + )A k+ + A k ]ρ k + M[(m + 2)A m+2 + A m+ ]ρ + MA m+2 ρ 2 k=0 = (m + )(m + 2)A m+2 MA m+ ρ + M[(m + 2)A m+2 + A m+ ]ρ + MA m+2 ρ 2 = [(m + )(m + 2) + M(m + 2)ρ + Mρ 2 ]A m+2. A m+3 (m + )(m + 2) + M(m + 2)ρ + Mρ2 = A m+2 (m + 2)(m + 3)ρ ρ, m m A mt m t < ρ m c mt m t < r 35

36 4. x + ω 2 x = 0 x(t) = m=0 c mt m m=0 (m + )(m + 2)c m+2t m + ω 2 m=0 c mt m = 0 t m ω 2 c m+2 = (m + )(m + 2) c m c 2n = ( ω 2 ) n c 0 /(2n)!, c 2n+ = ( ω 2 ) n c /(2n + )! x(t) = c 0 cos ωt + c sin ωt 4.2 (Legendre ) ( t 2 )x 2tx + α(α + )x = 0 (α ) t < : q(t) = 2t t 2 = ( 2)t 2m+, r(t) = m=0 α(α + ) t 2 = α(α + )t 2m. x(t) = m=0 c mt m ( ) [(m + 2)(m + )c m+2 m(m )c m 2mc m + α(α + )c m ]t m = 0 m=0 c m m=0 (m + 2)(m + )c m+2 + (α + m + )(α m)c m = 0. c 2n = l 2n c 0, c 2n+ = l 2n+ c n (α + 2n )(α + 2n 3) (α + )α(α 2) (α 2n + 2) l 2n = ( ), (2n)! n (α + 2n)(α + 2n 2) (α + 2)(α )(α 3) (α 2n + ) l 2n+ = ( ) (2n)! x (t) = l 2nt 2n, x 2 (t) = l 2n+t 2n+ x(t) = c 0 x (t) + c x 2 (t) α α 2n > α c 2n = 0 α = 0, 2, 4 x (t), 3x 2, 0x + (35/3)x 4 α 2n + > α c 2n+ = 0 α =, 3, 5 x 2 (t) x, x (5/3)x 3, x (4/3)x 3 + (2/5)x 5 Legendre α α P α (t) (2α)! 2 α (α!) Legendre P 2 α (t) = d α 2 α α! dt (t 2 ) α α (cf. p.43, p.7 22, p.27 2.) 4. t = 0 ([Ku] p ) () x 2tx 2x = 0 (2) x 2tx = 0 (3) x + tx + x = 0 (4) x tx = 0 (5) ( t 2 )x 5tx 4x = 0 (6) ( t 2 )x 6tx 6x = 0 (6) +t2 ( t 2 ) 2, t ( t 2 ) : () x (t) = P n! t2n = e t2, x 2 (t) = P 2 n (2n+)!! t2n+, (2) x (t) =, x 2 (t) = P (2n+) n! t2n+, (3) x (t) = P (4) x (t) = + P n= t r 3n, x 2 (t) = t + P 3n r 3n n= (k =, 0,, n N) (5) x (t) = P (n!) 2 (2n)! (2t)2n, x 2 (t) = P ( ) n (2n)!! t2n, x 2 (t) = P ( ) n (2n+)!! t2n+, r 3n+ r 3n t 3n+, r 3n+k = (3n + k)(3n 3 + k) (3 + k) (2n+)! (n!) 2 ( t 2 )2n+ (6) x (t) = P (2n + )t2n, x 2 (t) = P n= nt2n, x (t) = ( P t2n+ ) x 2 (t) 36

37 4.2 Chebyshev ( t 2 )x tx + α 2 x = 0 ([Ku] p ) () (2) α α (3) α = 0,, 2, 3 (4) t = cos s 4.2 (4.) a (t a) 2 x + q(t)(t a)x + r(t)x = 0 (q(t), r(t) a ) (4.6) a (4.) Frobenius a = 0 : t 2 x + tq(t)x + r(t)x = 0. (4.7) q(t), r(t) t = 0 (4.2) x(t) = t ρ c n t n = c n t n+ρ (c 0 0) (4.8) n c nt n t < r (4.7) (ρ + n)(ρ + n )c n t ρ+n + q k t k k=0 m=0 k=0 m=0 2 3 (ρ + m)c m t ρ+m + r k t k c m t ρ+m = 0 [ n (ρ + k)q n k c k ]t n+ρ, k=0 [ n r n k c k ]t n+ρ, k=0 t n+ρ c n ρ(ρ ) + q 0 ρ + r 0 = 0 (4.9) n {(ρ + n)(ρ + n ) + (ρ + n)q 0 + r 0 }c n = [(ρ + k)q n k + r n k ]c k (n ) (4.0) (4.9) (4.6) 2 ρ, ρ (4.6) (i) ρ ρ 2 : x (t) = t ρ c n (ρ )t n, x 2 (t) = t ρ 2 c n (ρ 2 )t n (c 0 (ρ ) 0, c 0 (ρ 2 ) 0) : () x (t) = + P ( α 2 )(2 2 α 2 ) ((2n 2) 2 α 2 ) n= t (2n)! 2n, x 2 (t) = t + P ( α 2 ) ((2n ) 2 α 2 ) n= t (2n)! 2n+ (4) y(s) = x(cos s) d 2 y/ds 2 + α 2 y = 0. k=0 37

38 (ii) ρ ρ 2 = l (l ) : x (t) = t ρ c n (ρ )t n, x 2 (t) = cx (t) log t + t ρ 2 c n (ρ 2 )t n. (ii) c 0 (ρ ) 0 l = 0 c 0, c 0 (ρ 2 ) = 0 l c 0 (ρ 2 ) 0 c 0 (i), (ii) c 0 (ρ ), c 0 (ρ 2 ), c x q(t), r(t) t < r : ( ) (i) ρ ρ 2 : I(ρ) = ρ(ρ ) + q 0 ρ + r 0, J k,n (ρ) = (ρ + k)q n k + r n k (4.) (4.0) n I(ρ + n)c n (ρ) = J k,n (ρ)c k (ρ) (n =, 2,...) (4.2) k=0 c n ρ c n (ρ) I(ρ + n) 0, n =, 2,..., (4.2) {c n (ρ)} n c 0 (ρ) ρ ρ 2 I(ρ + n), I(ρ 2 + n) (n ) 0 ρ = ρ, ρ 2 (4.2) c n (ρ) (4.7) x(t; ρ) = c n (ρ)t n+ρ (ρ = ρ, ρ 2 ) (4.3) t < r (ii) ρ ρ 2 = l (l ) : (i) c 0 (ρ ) = (4.2) c n (ρ ) (4.3) x(t; ρ ) l = 0 x(t; ρ ) l I(ρ 2 + l) = I(ρ ) = 0 (4.2) c k (ρ 2 ) ρ ρ 2 c 0 (ρ) = (l = 0), c 0 (ρ) = ρ ρ 2 (l ) (4.4) (4.2) c n (ρ) (n ) l l I(ρ + l)c l (ρ) = J k,l (ρ)c k (ρ) I(ρ + l) = (ρ ρ 2 )(ρ + l ρ 2 ) c k (ρ) (k = 0,,, l ) ρ ρ 2 ρ ρ 2 c l (ρ) c n (ρ) (4.3) x(t; ρ) t 2 2 t 2 x(t; ρ) + q(t)t t x(t; ρ) + r(t)x(t; ρ) = c 0(ρ)I(ρ)t ρ = c 0 (ρ)(ρ ρ )(ρ ρ 2 )t ρ ρ t ρ ( ) k=0 [ t 2 2 ] t 2 ρ x(t; ρ) + q(t)t [ ] [ ] t ρ x(t; ρ) + r(t) ρ x(t; ρ) = (ρ ρ 2 )K(ρ, t)t ρ (4.5) 38

39 l = 0 K(ρ, t) = 2+(ρ ρ ) log t, l K(ρ, t) = 3ρ ρ 2ρ 2 +(ρ ρ )(ρ ρ 2 ) log t ρ ρ 2 ((4.5) ) 0 [ ρ x(t; ρ)] ρ=ρ 2 (4.7) [ ρ x(t; ρ) ] ρ=ρ 2 = c n (ρ 2 )t n+ρ 2 log t + c n(ρ 2 )t n+ρ 2 = x(t; ρ 2 ) log t + c n(ρ 2 )t n+ρ 2. (4.6) l c 0 (ρ) = ρ ρ 2 c 0 (ρ 2 ) = c (ρ 2 ) = = c l (ρ 2 ) = 0. n= c n(ρ 2 )t n+ρ 2 t l+ρ 2 = t ρ t ρ x(t; ρ ) c 0 (4.4) c 0(ρ) = 0 (l = 0), c 0(ρ) = (l ) 4.3 (Bessel ) t 2 x + tx + (t 2 α 2 )x = 0, α 0. t = 0 ρ(ρ ) + ρ α 2 = 0 ρ = α, ρ 2 = α 4.2 x(t; ρ ) = t α c nt n (c 0 0) 0 c 0 t α + [(α + ) 2 α 2 ]c t α+ + {[(α + n) 2 α 2 ]c n + c n 2 }t n+α = 0 c = 0, n=2 [(α + n) 2 α 2 ]c n + c n 2 = 0 (n = 2, 3,...) (4.7) (α + n) 2 α 2 = n(2α + n) 0 (n 2) c = 0 c 3 = c 5 = = 0 39 c c 0 = 2 α Γ(α+) (4.7) c 2n = ( )n 2 α 2n c n!γ(+α+n). c = Bessel ( ) n t ) α+2n J α (t) = (4.8) n!γ( + α + n)( 2 α Bessel ( ) n ( t ) 2n, J 0 (t) = J/2 (n!) 2 (t) = 2 2 πt sin t, J /2(t) = 2 cos t. (4.9) πt J /2 (t) n!γ(+ 2 +n)22n+ = (2n)!! (n+ 2 )(n 2 ) 2 Γ( 2 )2n+ = (2n)!!(2n+)!! π = (2n + )! π sin t Taylor J /2 (t) ρ 2 = α ρ ρ 2 = 2α 4.2 (i) (4.8) J α (t) J α (t), J α (t) 40 2α 2α J α (t), J α (t) ( 4.2 (ii) c = 0 ) α : 4.2 (ii) x(t; ρ) (4.3) c n (ρ) (4.0) (cf. (4.7)) c (ρ) = 0, (ρ + n + α)(ρ + n α)c n (ρ) + c n 2 (ρ) = 0, n = 2, 3,..., (4.20) α = 0 c 0 (ρ) = (4.20) c 2n (ρ) = 0, c 2n (ρ) = ( ) n [(ρ + 2)(ρ + 4) (ρ + 2n)] 2 39 Γ(s) = R 0 e u u s, s > 0. Γ(s + ) = sγ(s) s, 2,... Γ(s) 40 α Γ( α + n) 39

40 ρ c 2n(ρ) = 2c 2n (ρ) n k= ρ+2k. ρ 0 x (t) = J 0 (t) (4.6) x 2 (t) = J 0 (t) log t n= ( ) n H ( n t ) 2n (n!) 2 (4.2) 2 H n = n (4.2) 2 0 Bessel α = m ( ) c 0 (ρ) = ( ) m (ρ + m)(ρ + m 2) (ρ + 2 m) = ( ) m m l= (ρ m + 2l) (4.20) c 2n (ρ) ( ) n+m (ρ + m) m n k= (ρ + m 2k) n 0 n < m l= (ρ + m + 2l) c 2n (ρ) = n = m (ρ + m + 2l) n k=m+ m l= ( ) n+m n (ρ m + 2k) l= (ρ + m + 2l) n > m c 2n(ρ) ρ m (4.6) x 2 (t) = 2 ( [ t m m 2) + (m n )! ( t n! 2 n=m+ ) 2n H ( m t 2m + m! 2) (4.22) c 2(n+m) ( m) = ( ) n m (H n m + H n ) ( ] t 2n + J m (t) log t (4.22) (n m)! n! 2) ( )n (n+m)! n! (cf. (4.8) α = m) (4.22) 2 m Bessel ([Ku] p ) 2 2n+m () 2tx + x + tx = 0 (2) t 2 x + 3tx + ( + t)x = 0 (3) t 2 x + tx + 2tx = 0 (4) t 2 x + 2tx + tx = 0 (5) t 2 x + 5tx + 3( + t)x = Legendre ( t 2 )x 2tx + α(α + )x = 0 (α ) ([Ku] p ) () x =, Legendre (2) x = (3) Legendre x = (t ) ρ c n(t ) n 4.5 () t 2 x + ( λ 2 β 2 t 2β + 4 α2 β 2) x = 0 ±α Bessel J α (t), J α (t) (cf. (4.8)) tj α (λt β ), tj α (λt β ) (2) Airy x tx = 0 x = t [ c J /3 ( 2 3 t3/2 ) + c 2 J /3 ( 2 3 t3/2 ) ] ([Ku] p.45.) : (c 0, H 0 = 0) () x (t) = P (2) x (t) = t P ( ) n (n!) 2 t n P, x 2 (t) = x (t) log t 2 ( ) n 2 n H n (n!) 2 t n P, (4) x (t) = P 2 (5) x (t) = t P 42 P 4.4 : (3) x(t) = + ( ) n 8 n n!γ(n+ 3 4 ) t2n, x 2 (t) = t 2 ( ) n H n (n!) 2 t n P, (3) x (t) = ( ) n n!(n+)! tn, x 2 (t) = x (t) log t + t ˆ P ( ) n 3 n n!(n+2)! tn, x 2 (t) = 9x (t) log t t 3ˆ P + 3t + n= n= H n+h n 2 ( ) n!(n 2)! n 3 n t n P ( ) n 8 n n!γ(n+ 5 4 ) t2n, ( ) n 2 n (n!) 2 t n, x 2 (t) = x (t) log t ( ) n (H n +H n ) t n, n!(n )! n=2 (α+n) 2n 2 n (n!) 2 (t ) n ( t < 2 ), (a) n = a(a ) (a n + ). 40

III Kepler ( )

III Kepler ( ) III 20 6 24 3....................................... 3.2 Kepler ( ).......................... 2 2 4 2.................................. 4 2.2......................................... 8 3 20 3..........................................

More information

III Kepler ( )

III Kepler ( ) III 9 8 3....................................... 3.2 Kepler ( ).......................... 0 2 3 2.................................. 3 2.2......................................... 7 3 9 3..........................................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q( 1 1 y = y() y, y,..., y (n) : n y F (, y, y,..., y (n) ) = 0 n F (, y, y ) = 0 1 y() 1.1 1 y y = G(, y) 1.1.1 1 y, y y + p()y = q() 1 p() q() (q() = 0) y + p()y = 0 y y + py = 0 y y = p (log y) = p log

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ { K E N Z OU 2008 8. 4x 2x 2 2 2 x + x 2. x 2 2x 2, 2 2 d 2 x 2 2.2 2 3x 2... d 2 x 2 5 + 6x 0 2 2 d 2 x 2 + P t + P 2tx Qx x x, x 2 2 2 x 2 P 2 tx P tx 2 + Qx x, x 2. d x 4 2 x 2 x x 2.3 x x x 2, A 4 2

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information