c 2009 i

Size: px
Start display at page:

Download "c 2009 i"

Transcription

1 I 2009

2 c 2009 i

3 ii c K

4 c 2009 iii 11.4 T π A 217

5

6 c (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 6.2 ( ) (16) 1.3 ( ) 0.1

7 2 c (1) = 6.3 (2) = 8.0 (3) = 3./4 5 /8 = 3.5 (4) = 1/4 5./5/7 = 15 (5) = 1.4 (6) = 2.0 (7) = 1./0 1 /8 3 = 1.1 (8) = 5.9 (9) = 4.0 (10) = 10.0 (11) = 2.3 (12) = 7.2 (13) = 2/1 2./5 = 22 (14) = = = 3./0 1 /8 = 3.1 (15) 6.2 ( ) = = 2/1 2./7 = 22 (16) 1.3 ( ) = = 1.4/4/3 = (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 1.6 ( ) (12) 1.5 ( ) 0.2 x 10 n x 1 x < 10 n

8 0.1 c (1) 150 Ω (2) 4.7 kω (3) 20 mh (4) 5.0 µh (5) 150 pf (6) 2.5 nf 0.2 (1) Ω (2) Ω (3) H(= H) (4) H (5) F(= F) (6) F 0.2 x 10 n x 1 x < 10 n (1) 300 Ω (2) 1.5 MΩ (3) 3.0 mh (4) 100 µh (5) 15 pf (6) 0.15 µf (1) i a 2.3 A i b 5.7 A i (2) i 7.7 A i a 2.7 A i b

9 4 c i ia ib a b (1) i = i a + i b = 2.3 A A = 8.0 A (1) (2) i b = i i b = 7.7 A 2.7 A = 5.0 A (2) C (1) 1.0 C (2) 1.5 A 2.0 s (3) 8.0 s I A I A I A I 3 I

10 0.2 c (1) v ac 2.3 V v ab 4.5 V v bc (2) v ab 1.50 V v bc 0.72 V v ac v ab 6.0 V v bc 1.5 V v ad 9.0 V v ac v dc (1) 3.3 kω R 3.0 ma i v (2) 4.2 ma i 0.21 µwb L (3) 15 V v C q C

11 6 c (1) v = Ri = 3.3 kω 3.0 ma = ( Ω) ( A) = 9.9 V (3) (2) L = φ i = 0.21 µwb 4.2 ma = Wb A = H = 50 µh (4) (3) C = q v = C 15 V = F = 3.0 pf (5) 0.7 (1) 5.0 kω R 12 V i (2) L 30 mh φ 0.60 mwb i (3) C 4.8 nf q C v

12 c E R (1) R 5.0 Ω 0.30 A I E (2) E 10 V 2.5 A I R 1.1 (1) E = RI = 5.0 Ω 0.30 A = 1.5 V (1.1) (2) R = E I = 10 V = 4.0 Ω (1.2) 2.5 A

13 8 c (1) 2.0 kω 7.0 V (2) 1.3 kω 3.0 ma (3) 1.20 V 0.60 A E r R 1 R (1) 1.2 (a) V 1.20 V E (2) 1.2 (b) 2.20 Ω R 1 I 500 ma r (3) 1.2 (c) R 2 I 600 ma R 2 (4) 1.2 (c) V 1.2

14 1.3 c (1) E = 1.20 V (1.3) (2) (3) (4) I = E r + R 1 (1.4) r = E I R 1 = 1.20 V 2.20 Ω = 2.40 Ω 2.20 Ω = 0.20 Ω (1.5) 500 ma I = E r + R 2 (1.6) R 2 = E I r = 1.20 V 0.20 Ω = 2.00 Ω 0.20 Ω = 1.80 Ω (1.7) 600 ma V = E ri = 1.20 V 0.20 Ω 600 ma = 1.20 V 0.12 V = 1.08 V (1.8) V 0.20 Ω 3.0 A V 0.15 Ω 1.22 V E r R V R 3.0 Ω 9.0 V R 5.0 Ω 10.0 V E r

15 10 c (1) 100 V V 5.00 A I P (2) 15 Ω R I 2.0 A P (3) 16 Ω R 24 V V P 1.3 (1) P = V I = 100 V 5.00 A = 500 W (1.9) (2) P = RI 2 = 15 Ω (2.0 A) 2 = 60 W (1.10) (3) P = E2 R = (24 V)2 16 Ω = 36 W (1.11) 1.5 (1) 1.5 V 30 ma (2) 100 V 1.0 kw (3) 3.0 kω 12 V (4) 500 ma 1.0 W (5) 10 V 1.5 A (6) 100 V 1.2 kw (7) 120 V 60 W (8) 60 W 5

16 1.4 c E r R R [1] [6] R I [1] R V [2] R P [3] P = 2 a, b ( [4] ) a + b 2 ab a = b P [5] R = [6] E R 0 I V 1, V 2, V 3 R Ω R Ω R Ω E 24 V

17 12 c R 0 = R 1 + R 2 + R 3 = 2.0 Ω Ω Ω = 12.0 Ω (1.12) I = E = 24 V = 2.0 A R Ω (1.13) V 1 = R 1 I = 2.0 Ω 2.0 A = 4.0 V (1.14) V 2 = R 2 I = 3.0 Ω 2.0 A = 6.0 V (1.15) V 3 = R 3 I = 7.0 Ω 2.0 A = 14 V (1.16) (1) R Ω R Ω a b V ab 15 V V 1 V 2 (2) R Ω R Ω R 2 V V a b V ab R Ω R Ω E 2.4 V I 1 I 2 I

18 1.4 c I 1 = E = 2.4 V = 1.2 A R Ω (1.17) I 2 = E = 2.4 V = 0.80 A R Ω (1.18) I = I 1 + I 2 = 1.2 A A = 2.0 A (1.19) (1) R Ω R Ω a b I 3.0 A I 1 I 2 (2) R Ω R Ω R 2 I A a b I R Ω R Ω R Ω a b I 9.0 A (1) a b R ab (2) R 1 I (1) 11.3 Ω 2.7 Ω (2) 1.6 Ω 2.4 Ω (3) 1.2 Ω 2.7 Ω 14.5 Ω 3 (4) 3.0 Ω 4.0 Ω 12 Ω 3

19 14 c (1) P 1 (2) P 2 P 1 : P 2 k (a) (d) R a, R b, R c, R d 1.6 (a) R 1, R 2 R 1 R 2 R 1 + R 2 (1.20)

20 1.5 c (b) R 1 (R 2 + R 3 ) (c) (R 1 + R 2 ) R 3 (d) R a = R 1R 2 R 1 + R 2 + R 3 = R 1R 2 + R 2 R 3 + R 3 R 1 R 1 + R 2 (1.21) R d = R b = R 1(R 2 + R 3 ) R 1 + R 2 + R 3 (1.22) R c = (R 1 + R 2 )R 3 R 1 + R 2 + R 3 (1.23) 1 R d = 1 R R R 3 (1.24) R 1 R 2 R 3 R 1 R 2 + R 2 R 3 + R 3 R 1 (1.25) Ω R 1 10 Ω R 2 15 Ω R (a) (d)

21 16 c A B R AB C D R CD a b 92 V R L 20 V r R 12 Ω R L 10 Ω 1.7 R L 20 V = 2.0 A (1.26) 10 Ω

22 1.5 c R 92 V 20 V 12 Ω = 72 V = 6.0 A (1.27) 12 Ω r 6.0 A 2.0 A = 4.0 A (1.28) r 20 V 4.0 A = 80 W (1.29) E 9.0 V R Ω R Ω R Ω (1) R (2) R 1 I 1 (3) R 2 I 2 (4) R 3 I 3 (5) R 1 P 1 (6) R 2 P 2

23 18 c (7) R 3 P R Ω R Ω a b V ab 144 V R 3 V 3 84 V (1) R 3 I 3 (2) R 2 I 2 (3) R 1 I 1 (4) R 1 V 1 (5) R R Ω R Ω E 6.8 V R 3 P W (1) R 3 I 3 (2) R 2 V 2 (3) R 2 I 2 (4) R 1 I 1 (5) R 1 V 1 (6) R 1

24 1.5 c I, I 1, I 2, I 3, I 4 V 1, V 2 R 1 16 Ω R 2 40 Ω R 3 60 Ω R Ω E 40 V R, I, I 1, I 2, I 3, I 4 V ac V bc R Ω R Ω R 2 12 Ω R Ω R Ω E 4.0 V

25 20 c V R (1) a b I (2) d b V db (3) c I c (4) a c V ac (5) c d V cd 1.20 R 1, R 2, R 3 J 1.21 I 1 I 2, I 3 V 1, V 2, V R Ω R Ω SW

26 1.5 c V SW 0.96 V E r R Ω R Ω SW1 SW V SW A (1) E (2) r (3) SW1 SW2 (4) SW1 SW C D A B R AB A B C D R CD a V a b V b c V c d V d E

27 22 c I R E r R 1 R

28 1.6 c (1) A B R AB (2) R AB R 0 R 0 R 1 R 2 (3) (2) R 0 R 2 R 1 R R 0 : R 1 : R 2 = 1 : 2 2 : ( ) (1) A B R AB R AB/R 0 (2) R 1 V 1 A B V AB V 1/V AB (3) R 0 V 0 A B V AB V 0 /V AB A B R 0 V = 2V R 1 R 2 R 0 1.6

29 24 c a b R ab R Ω R Ω R Ω R 4 12 Ω R Ω R 1 R 4 = R 2 R 3 (1.30) R 5 R 1 + R 3 = 5.0 Ω (1.31) R 2 + R 4 = 20 Ω (1.32) R ab = 5.0 Ω 20 Ω = 4.0 Ω (1.33) 5.0 Ω + 20 Ω R 5 R Ω R Ω R Ω R Ω E 1.8 V

30 1.6 c (1) R 4 (2) A R 16 Ω (1) a b R ab (2) c d R cd (3) a d R ad R Ω R Ω R Ω R Ω R Ω (1) a b R ab (2) a c R ac (3) a d R ad (4) b c R bc (5) c d R cd

31 26 c A B R 1 10 Ω R 2 12 Ω R Ω R Ω R Ω (1) SW1 SW2 (2) SW1 SW2 (3) SW1 SW2 (4) SW1 SW SW I 25 A R 3 R 4 R Ω R Ω E 100 V R 1, R 2, R 3, R 4 R x E A R 1R 4 R 2R 3 (1) R x A R x R 1 R 4 (2) (1) I 1 I 2 I 3 R 1 R 4 E

32 1.6 c SW V V ON SW V V OFF V ON = 2V OFF R r (1) V ON E

33 28 c (2) V OFF E, R, r (3) r R (1) 1.39 (a) A B 2R I (2) 1.39 (b) A B r I = 0 r R R Ω R Ω R Ω E 8.0 V I A I A I (1) c d V cd (2) c b V cb (3) a c V ac (4) R 1 I 1

34 1.6 c (5) R 1 (6) d b V db (7) a d V ad (8) R 2 I 2 (9) R 3 I 3 (10) R b c I 0 b c Ω I 0 b c 0 Ω I 0 = 0 V I 0 (1) a d (2) I (3) I a I 1 I 2 R 1 I 1 (4) d I 3 I 4 I R 3 I 3 (5) b I 1 I 0 I 3 I 0

35 30 c I V 1, V 2 E 1 20 V E V E 3 10 V R 1 20 Ω R 2 30 Ω E 1 E 2 + E 3 = R 1 I + R 2 I (2.1) I = E 1 E 2 + E 3 R 1 + R 2 = 20 V 5.0 V + 10 V 20 Ω + 30 Ω = 25 V = 0.50 A (2.2) 50 Ω

36 2.1 c V 1 = R 1 I = 20 Ω 0.50 A = 10 V (2.3) V 2 = R 2 I = 30 Ω 0.50 A = 15 V (2.4) (1) a b c (2) A B C

37 32 c I 1, I 2, I I 1 I 2 I 3 = 0 (2.5) E 1 = R 1 I 1 + R 3 I 3 (2.6) E 2 = R 2 I 2 R 3 I 3 (2.7)

38 2.2 c (2.5) (2.6) (2.7) E 1 = (R 1 + R 3 ) I 1 R 3 I 2 (2.8) E 2 = R 3 I 1 + (R 2 + R 3 ) I 2 (2.9) I 1 = (R 2 + R 3 ) E 1 + R 3 E 2 R 1 R 2 + R 2 R 3 + R 3 R 1 (2.10) I 2 = R 3E 1 + (R 1 + R 3 ) E 2 R 1 R 2 + R 2 R 3 + R 3 R 1 (2.11) R 2 E 1 R 1 E 2 I 3 = I 1 I 2 = R 1 R 2 + R 2 R 3 + R 3 R 1 (2.12) I 1, I 2, I 3 E 1 12 V E 2 30 V R 3.0 Ω r 5.0 Ω

39 34 c V o a b I 0 = (1) I 1 I 2 (2) V 1 V 2 (3) V 1 E 1, R 1, I 1 (4) V 2 E 2, R 2, I 2 (5) I 1, I 2 (6) V o I 1, I 2, I (1) I 1, I 2, I 3 (2) A B (3) I 1, I 2, I 3

40 2.3 c (1) I A, I B (2) I A, I B (3) R (1) I A E 1 E 2 = (R 1 + R 2 ) I A + R 2 I B (2.13) I B E 3 E 2 = R 2 I A + (R 2 + R 3 ) I B (2.14) (2) [ (2.13) (R 2 + R 3 ) (2.14) R 2 ] I A = (R 2 + R 3 ) (E 1 E 2 ) R 2 (E 3 E 2 ) (R 1 + R 2 ) (R 2 + R 3 ) R 2 2 = (R 2 + R 3 ) E 1 R 3 E 2 R 2 E 3 R 1 R 2 + R 2 R 3 + R 3 R 1 (2.15) [ (2.13) R 2 (2.14) (R 1 + R 2 )] I B = R 2 (E 1 E 2 ) (R 1 + R 2 ) (E 3 E 2 ) R 2 2 (R 1 + R 2 ) (R 2 + R 3 ) = R 2E 1 R 1 E 2 + (R 1 + R 2 ) E 3 R 1 R 2 + R 2 R 3 + R 3 R 1 (2.16)

41 36 c (3) R 3 R 3 I A + I B = R 3E 1 (R 1 + R 3 ) E 2 + R 1 E 3 R 1 R 2 + R 2 R 3 + R 3 R 1 (2.17) R 3 E 1 + R 1 E 3 = (R 1 + R 3 ) E 2 (2.18) R Ω R 2 10 Ω R Ω E 1 10 V E 2 15 V I a I b (1) I a, I b (2) I a, I b

42 2.3 c I 1, I 2, I 3 R 1 10 Ω R 2 30 Ω R 3 20 Ω R Ω R 5 10 Ω E 1 10 V E 2 40 V E 1 = (R 1 + R 4 ) I 1 R 4 I 2 (2.19) 0 = R 4 I 1 + (R 2 + R 4 + R 5 ) I 2 + R 5 I 3 (2.20) E 2 = R 5 I 2 + (R 3 + R 5 ) I 3 (2.21) 10 = 15I 1 5.0I 2 (2.22) 0 = 5.0I I I 3 (2.23) 40 = 10I I 3 (2.24) (2.23) I 3 = 0.50I 1 4.5I 2 (2.25) (2.25) (2.24) 40 = 15I 1 125I 2 (2.26) [ (2.26) (2.22)] 30 = 120I 2 (2.27) I 2 = 0.25 A (2.28) [25 (2.22) (2.26)] 210 = 360I 1 (2.29) I 1 = 0.58/3 = 0.58 A (2.30)

43 38 c (2.25) I 3 = 0.50I 1 4.5I 2 = 1.4/1 = 1.4 A (2.31) I 1 = 0.58 A, I 2 = 0.25 A, I 3 = 1.4 A (2.32) E V E V, R Ω R Ω R Ω R Ω R Ω (1) (2) I 1, I 2, I (1)

44 2.3 c (2) I a I b I c (1) I a, I b, I c (2) E V E V R 1 R 3 R Ω R Ω I a I b (1) (2) R Ω R Ω R Ω R Ω R Ω E a 2.1 V E b 4.2 V I a, I b, I c

45 40 c (1) I a I b I c (2) R a, R b, R c, R d R I a, I b, I c E 1, E 2, E 3, R 2.14 R E a E b 2.18 I 1 I 2 I 3 I (1) (2) R 2 I (1) E 1 R 2 I 1

46 2.4 c (2) E 2 R 2 I 2 (3) E 3 R 2 I 3 (4) I (1) (2) (3) I 1 = E 1 R 1 + R 2R 3 R 2 + R 3 I 2 = E 2 R 2 + R 1R 3 R 1 + R 3 R 3 R 2 + R 3 = R 3 E 1 R 1 R 2 + R 2 R 3 + R 3 R 1 (2.33) (R 1 + R 2 ) E 2 = (2.34) R 1 R 2 + R 2 R 3 + R 3 R 1 I 3 = E 3 R 3 + R 1R 2 R 1 + R 2 R 1 R 1 + R 2 = R 1 E 3 R 1 R 2 + R 2 R 3 + R 3 R 1 (2.35)

47 42 c (4) I = I 1 + I 2 + I 3 = R 3E 1 + R 1 E 3 (R 1 + R 2 ) E 2 R 1 R 2 + R 2 R 3 + R 3 R 1 (2.36) I I E 1, E 2 R R 2 I R Ω R Ω R Ω R Ω E V E V a V a

48 2.4 c R 3 V a

49 44 c V V I E V E V R Ω R Ω R Ω R Ω R Ω I E 1, E 2 R I E V E V R Ω R Ω R Ω R Ω R Ω R Ω

50 2.4 c

51 46 c (a) (c) E 0 R 0 E V E V R Ω R Ω R Ω (a) E 0 = R 2E Ω 2.4 V = R 1 + R Ω Ω R 0 = R 1R 2 R 1 + R 2 = 2.32 (b) 2.32 (c) = 1.8 V (2.37) 2.0 Ω 6.0 Ω = 1.5 Ω (2.38) 2.0 Ω Ω E 0 = R 2E Ω 2.4 V = = 1.8 V (2.39) R 1 + R Ω Ω R 0 = R 1R 2 R 1 + R 2 + R 3 = 1.5 Ω Ω = 2.7 Ω (2.40) E 0 = R 2E 1 R 1 + R 2 + E 2 = 1.8 V V = 2.9 V (2.41) R 0 = R 1R 2 R 1 + R 2 + R 3 = 1.5 Ω Ω = 2.7 Ω (2.42) E 3.0 V R Ω R Ω B

52 2.5 c (1) E 0 R 0 (2) J 0 G E 0 R 0 B E 0 R 0 B E 0 R 0 B

53 48 c E 0 R 0 B B (1) 2.38 E 0 R 0 (2) 2.38 J 0 G (1) E 0 R 0

54 2.5 c (2) A B I (1) E 0 R 0 (2) A B I E 0 R 0 E 1 = 1.5 V, E 2 = 2.0 V, E 3 = 1.2 V, R 1 = 1.5 Ω, R 2 = 1.0 Ω, R 3 = 0.40 Ω E 0 R 0

55 50 c E r 2.43 (a) (e) 2.43 (a) (e) E 0 R

56 c (1) f 1.6 khz ω (2) T 2.5 µs f (3) I e 17 ma I m (4) V m 3.5 V V e (5) f 50 Hz C 64 µf X C (6) f 3.2 khz L 50 mh X L 3.1 (1) (2) ω = 2πf = 2π ( Hz ) = 1.0/ rad/s = rad/s = 10 krad/s (3.1) f = 1 T = s = Hz = 0.40 MHz (3.2)

57 52 c (3) (4) I m = 2I e = 2 ( A ) = 24./ A = A = 24 ma (3.3) V e = Vm 2 = 3.5 V 2 = 2./4 5 /7 V = 2.5 V (3.4) (5) X C = 1 ωc = 1 2πfC = 1 2π 50 Hz ( F) = /4 5 /9 0./7 Ω = 50 Ω (3.5) (6) X L = ωl = 2πfL = 2π ( Hz ) ( H ) = 1.0/ Ω = Ω = 1.0 kω (3.6) µs/div 2 V/div f V m (1) 1.6 khz (2) 8.00 khz

58 3.1 c (3) 2.5 µs (4) 220 rad/s (5) 17 ma (6) 110 V (7) 212 V (8) 3.5 V (9) 17.0 ma (10) 71 ma V 100 rad/s π rad t v(t) ω i(t) i(t) = 2 sin(ωt + π ) [A] (3.7) 3 t i(t) T (1) t = T/12 (2) t = 5T/24 (3) t = 2T/3 (4) t = 2T (5) t = 7T/ Hz 100 V π rad t = ms v(t) v(t) = 70.7 sin(629t ) [V] (3.8) π 3.14 (1) V m (2) V e (3) ω (4) f (5) θ (6) t 2.50 ms v(t) 3.7

59 54 c i(t) v(t) C (1) 5.0 mh 2.0 krad/s (2) 25 pf 2.0 Mrad/s (3) 13 mh 60 Hz (4) 10 nf 0.80 khz (5) 2.0 mh 44 Ω (6) 0.10 µf 4.0 kω (7) 4.0 µf 60 Hz (8) 50 mh 3.2 khz (9) 50 Hz 100 V 47 ma (10) 1.5 khz 50 V 76 ma µf C v(t) v(t) = 49.2 sin(250t 30 ) [V] (3.9) (1) ω (2) V e (3) X C (4) I e (5) i (t) 3.2 (1) ω = 250 rad/s (3.10)

60 3.1 c (2) 49.2 V (3) X C (4) V e = X C I e V e = 49.2 V 2 = 34./7 8 /8 V = 34.8 V (3.11) X C = 1 ωc = 1 = 8.00 Ω (3.12) 250 rad/s 500 µf I e = V e = 34.8 V = 4.35 A (3.13) X C 8.00 Ω (5) π 2 = 90 i (t) = 2I e sin (250t ) = 6.15 sin (250t + 60 ) [A] (3.14) Ω R v ( v(t) = 10 sin 200t + π ) 3 [V] (3.15) v (1) ω (2) V e (3) I e (4) i (t) mh L i ( i (t) = 8 sin 300t + π ) [A] 6

61 56 c (1) ω (2) I e (3) X L (4) V e (5) v (t) 3.10 L 450 mh v(t) = 141 sin (314πt ) [V] (3.16) π = = 1.41 (1) (2) (3) (4) (5) i (t) 3.11 v(t) = 212 sin (785t 30.0 ) [V] (3.17) 12.5 A π = = 1.41 (1) V e (2) f (3) X C (4) C (5) i (t)

62 3.2 c z 1 = 1 j z 2 = 3 + j (1) z 1 + z 2 (2) z 1 z 2 (3) z 1 z 2 (4) z 1 z 2 (5) z 1 (6) z 2 (7) z 1 z 2 (8) z 1 z (1) z 1 + z 2 = (1 j) + ( 3 + j) = 1 3 (3.18) (2) z 1 z 2 = (1 j) ( 3 + j) = (1 + 3) j2 (3.19) (3) z 1 z 2 = (1 j) ( 3 + j) = (1 3) + j(1 + 3) (3.20) (4) (5) (6) z 1 = z 1 = 1 j z j = 1 j 3 + j 3 j 3 j = ( 1 3) + j( 1 + 3) ( 1) tan 1 = ( 2 π ) 4 ( z 2 = ) tan = 2 5π 6 (3.21) (3.22) (3.23)

63 58 c (7) (8) z 1 z 2 = ( 2 π ) 4 = z 1 z 2 = ( 2 2 ) ( 2 π ) 4 2 5π 6 2 5π ( 6 π 4 + 5π 6 = = 1 ( 13π ) 2 12 θ π θ π ) = 2 2 7π 12 ( 2 2 π 4 5π ) 6 = π 12 (3.24) (3.25) 3.12 z 1 z 6 (1) z 1 = 1 + j (2) z 2 = 1 + j 3 (3) z 3 = j (4) z 4 = 1 π 4 (5) z 5 = 3 π 6 (6) z 6 = 2 7π (1) 3 + j (2) 1 j (3) 2 ( 3 exp j π ) 3 (4) ( 2 exp j 3π ) ( 4 (5) exp j π ) 2 (6) 2 e jπ (1) z 1 (2) z 2

64 3.2 c (3) z 3 (4) z (1) (5 + j2) (3 j4) (2) (4 + j2) (3 j) (3) 3 2π 5 2 3π ( 5 (4) 6 exp j 4π 7 ) 2 exp ( j 3π ) z 1 = 3 + j 2 z 2 = 6 j2 (1) z 1 + z 2 (2) z 1z 2 (3) z 1 z 2 (4) z 1 z z 1 = 2 π ( 4 z 2 = 2 π ) 6 (1) z 1z 2 (2) z 1z 2 (3) z 1 /z 2 (4) z 1 + z z = 1 + j 3 2 (1) z 2 (2) z 3 (3) z + z 2 + z 3 (4) z 1

65 60 c (5) z z i(t) v(t) (1) i(t) = 2 sin ωt [A] (2) i(t) = 2 2 sin ( ) ωt π 2 (3) v(t) = 5 sin ωt [V] (4) v(t) = 6 sin ( ) ωt + π 6 [A] [V] 3.4 (1) i (t) = 2 sin ωt I = 1 e 0 = 1 0 = 1 (3.26) (2) (3) (4) i (t) = 2 ( 2 sin ωt π ) ( I = 2 e π 2 = 2 π ) = j2 (3.27) 2 2 v (t) = 5 sin ωt = 5 sin (ωt + π) V = 5 2 e π = 5 2 π = 5 2 (3.28) v(t) = ( 6 sin ωt + π ) = ( 6 sin ωt 5π ) 6 6 V = 3 e 5π 6 = 3 ( 5π 6 ) = 3 2 j 3 2 (3.29) 3.19 t ω

66 3.3 c ( (1) i(t) = 12 sin ωt + π ) ( 3 (2) v(t) = 10 sin ωt π ) ( 12 (3) I = 3 π ) A 4 [A] [V] (4) V = 8 π 2 V 3.20 (1) 3 π ( 3 (2) 5 π ) 6 (3) 2 π 2 (4) 1 + j 3 (5) 6 + j (6) j (1) i 1 = 2 sin ( ωt [A] I 1 (2) i 2 = 2 sin ωt + π ) [A] I 2 2 (3) i 3 = ( 6 sin ωt π ) [A] I 3 3 (4) i 4 = 2 ( 2 sin ωt + π ) [A] I 4 4 (5) I 1 I ( (1) 100 sin ωt 4π ) [A] ( 3 (2) 200 sin ωt + π ) [A] 2 (3) ( 2 cos ωt π ) [V] 4 (4) ( 2 sin ωt + π ) + ( 2 sin ωt π ) 3 3 [V] V 50 V I 10 A f 50.0 Hz (1) V I (2) I (3) v(t)

67 62 c (4) i(t) (5) L 3.5 (1) I V π V I (2) I = I e j π 2 = j I = j10 A (3.30) (3) V m V m = 2 V = 7/0 1./7 V = 71 V (3.31) ω ω = 2πf = 314./1 rad/s = 314 rad/s (3.32) v(t) = 71 sin 314t (3.33) (4) I m I m = 2 I = 14./1 A = 14 A (3.34)

68 3.3 c i(t) = 14 sin (314t 90.0 ) (3.35) (5) V = ωl I L = V ω I = 50 V 314 rad/s 10 A = 0.01/56 /9 H = 16 mh (3.36) L 96 mh f 50 Hz (1) 1.5 ( 30 ) A I V (2) (1) I V (3) 90 0 V I (4) (3) V I C 5.0 µf 1.0 A 100 krad/s 60 i v C (1) i(t)

69 64 c (2) I (3) X C (4) V (5) I V (6) v(t) 3.25 C 100 µf v(t) v(t) = 71 sin (100t 30 ) [V] (3.37) (1) I m (2) i(t) (3) V I (4) V I (5) 2 I m (6) 2 i (t) mh 21 V 200 rad/s 30 v(t) (1) v(t) (2) V (3) I (4) V I (5) i(t) (6) 3.0

70 c (1) (3.0 + j2.0) V V (4.0 j3.0) A I Z (2) (3.0 j4.0) V V (2.0 j2.0) A I Y (3) Z (3.0 + j4.0) Ω (5.0 + j6.0) V V I (4) Y (12 + j5.0) S (1.0 + j2.0) A I V 4.1 (1) Z = V (3.0 + j2.0) V (3.0 + j2.0)(4.0 + j3.0) = = I (4.0 j3.0) A Ω j17 = Ω = ( j0.68) Ω (4.1) 25

71 66 c (2) (3) (4) Y = I (2.0 j2.0) A (2.0 j2.0)(3.0 + j4.0) = = V (3.0 j4.0) V ( 4.0) 2 S 14 + j2.0 = S = ( j0.080) S (4.2) 25 I = V (5.0 + j6.0) V (5.0 + j6.0)(3.0 j4.0) = = Z (3.0 + j4.0) Ω A 39 j2.0 = A = (1./5 6 /6 j0.080) A = (1.6 j0.080) A (4.3) 25 V = I (1.0 + j2.0) A (1.0 + j2.0)(12 + j5.0) = = Y (12 + j5.0) S V 22 + j19 = V = (0.13/0 + j0.11/2 ) V = ( j0.11) V (4.4) Z Y V I (1) I (5.0 + j2.0) A Z (2.0 + j3.0) Ω V (2) V (2.0 + j1.0) V I (4.0 j3.0) A Z (3) V (3.0 + j1.0) V Z (3.0 + j4.0) Ω I (4) V (3.0 + j4.0) V I (2.0 + j4.0) A Y (5) I ( j4.0) A Y (3.0 j2.0) S V 4.2 (1) Z (4.0 + j2.0) Ω Y

72 4.1 c (2) Y (6.0 j8.0) S Z (3) Z (16 j12) Ω Z (4) Y (20 + j15) Ω Y 4.2 (1) (2) Y = 1 Z = 1 = (0.20 j0.10) S (4.5) (4.0 + j2.0) Ω Z = 1 Y = 1 = (60 + j80) mω (4.6) (6.0 j8.0) S (3) Z = ( 12) 2 = 20 Ω (4.7) (4) Y = = 25 S (4.8) 4.2 (1) 15 mh 1.0 khz (2) 4.0 µf 3.9 khz (3) 40 µh 8.0 khz (4) 1000 pf 1.0 MHz Ω (7.0 + j5.0) V V I X C 3.0 Ω (4.5 j9.0) V V Z I

73 68 c X L 1.3 Ω ( j2.6) V V Z I 4.6 Z (30 + j40) Ω 100 V V I 4.3 v i v(t) = 100 ( 2 sin 120πt + π ) [V] (4.9) 4 i(t) = 5 2 sin 120πt [A] (4.10) Z 4.3

74 4.2 c I V I = 5 e j0 A = 5 A (4.11) V = 100 e j π 4 V = ( j50 2) V (4.12) Z Z = V I = ( j50 2) V 5 A = ( j10 2) Ω (4.13) 4.7 Z ( 3 + j) Ω v(t) v(t) = 100 sin 200t (4.14) i(t) L 449 mh e(t) e(t) = 141 sin(100πt + π ) [V] (4.15) 4 3 i(t) e(t) L (1) E e (2) E

75 70 c (3) Z (4) I 4.4 (1) E m 141 V E e = E m 2 = 99.7 V (4.16) (2) E = V e e j π 4 = ( j70.5) V (4.17) (3) Z = jωl = j 100π 449 mh = j141 Ω (4.18) (4) V = ZI I = V Z = ( j70.5) V j141 Ω = ( j0.500) A (4.19) v(t) v(t) = 212 sin (785t 30.0 ) [V] (4.20) A i(t) e(t) C (1) V e 1

76 4.3 c (2) V (3) X C (4) C 4.9 e 1 = ( 2 sin ωt + π ) e 2 = ( 2 sin ωt + π ) (1) e 1, e 2 E 1, E 2 (2) E 1, E 2 e E (3) E e E, ω R C L I R I C I L ω R C L

77 72 c R C L 4.9 (a) (d) ω 4.9 (a) (d) (a) (b) (c) (d) 1 1 R + 1 jωl = jωlr R + jωl 1 R = 1 R + jωc 1 + jωcr 1 R + jωl = 1 R + jωl + jωc 1 ω 2 LC + jωcr 1 1 R + 1 jωc + 1 jωl = ω2 LCR + jωl 1 ω 2 LC + jωcr (4.21) (4.22) (4.23) (4.24) Z 1 = 2 j4, Z 2 = 4 + j2, Z 3 = 2 + j (a) (d)

78 4.3 c π 3.14 (1) R 15 Ω, f 50 Hz 4.11(a) (2) C 0.16 µf, f 1.0 MHz 4.11(b) (3) L 32 mh, f 5.0 khz 4.11(c) (4) R 20 Ω, C 2.1 µf, f 1.5 khz 4.11(d) (5) R 3.0 Ω, L 8.0 mh, f 50 Hz 4.11(e)

79 74 c R 4.0 Ω X L 3.0 Ω (1) 4.12(a) (2) 4.12(a) (3) 4.12(b) (4) 4.12(b) ω (1) 4.13 (a) Z a (2) 4.13 (b) Z b (3) ωc 2 R 2 = 1 Z a = Z b R 1 C 1 R 2 C Z ω

80 4.3 c RLC G B ω ω ω ( 0) (1) Z (2) Z = 0 ω 1 (3) Y (4) Y = 0 ω 2

81 76 c ω 1 0 ω A B R Ω R Ω X L Ω X L2 1.0 Ω A B R Ω R Ω X C Ω X C2 1.0 Ω

82 4.3 c R Ω R Ω X L1 10 Ω X L2 1.0 Ω (1) a b (2) a b R Ω R Ω X C1 2.0 Ω X C2 3.0 Ω (1) a b (2) a b Z Z 1 Z 1, Z 2, Z Z 1

83 78 c ω 4.25 R 0 L 0 R L ω R 1 R 2

84 4.4 c (1) Z (2) (1) Z 1 (3.5 + j2.0) Ω Z 2 (1.5 j2.0) Ω V (4.0 + j1.0) V V 1 (2) Z 1 j7.0 Ω Z Ω V 1 14 V V

85 80 c (1) (2) Z 1 (3.5 + j2.0) Ω V 1 = V = (4.0 + j1.0) V Z 1 + Z 2 (3.5 + j2.0) Ω + (1.5 j2.0) Ω (3.5 + j2.0) (4.0 + j1.0) = V = (2.4 + j2.3) V (4.25) 5.0 V = Z 1 + Z Ω + j7.0 Ω V 1 = 14 V Z 1 j7.0 Ω = (6.0 + j7.0) ( j2.0 V) = (14 j12) V (4.26) (1) 4.28 R 4.0 Ω X L 3.0 Ω V (15 j20) V I (2) 4.28 R 1.2 Ω X L 1.4 Ω V L 4.2 V V

86 4.4 c (1) 4.29 V R 24 V V C 10 V V (2) 4.29 R 4.0 Ω X C 2.0 Ω V 30 V V R R 6.0 Ω X L 13 Ω X C 5.0 Ω V (30 + j20) Ω (1) Z (2) I (3) V C E 100 V, R 3.0 Ω, X C 4.0 Ω (1) Z (2) I (3) V R (4) V C

87 82 c (1) Z = R jx C = (3.0 j4.0) Ω (4.27) (2) (3) I = E Z = 100 V = (12 + j16) A (4.28) (3.0 j4.0) Ω V R = RI = 3.0 Ω (12 + j16) A = (36 + j48) V (4.29) (4) V C = jx C I = j4.0 Ω (12 + j16) A = (64 j48) V (4.30) X L 1.0 Ω R 2.0 Ω E 20 V (1) Z (2) Y (3) I (4) E I (5) I (6) E I θ E 100 V, I 10 A, θ 60

88 4.4 c (1) E I (2) I (3) Z (4) Z (5) R (6) X L LR E (= E 0 + je 1 ) E 0, E 1 I I E R L ω

89 84 c (1) Z (2) I (3) I (4) V R (5) V L (6) E, V R, V L I V R (7) E I θ ω 10 krad/s R 3.0 Ω C 25 µf V (20 j10) V (1) Z C (2) Z (3) I (4) V R I 10 A R 4.0 Ω X C 3.0 Ω (1) Z (2) E (3) V R V C E I (4) E I θ

90 4.4 c (5) Z (6) E I θ ω (1) (a) Z a (b) Z b (2) (a) Z a (b) Z b (3) R = 3 r L = 2r/ω Z a = Z b L C r V 0.10 A 50 Hz 100 V 4.0 A (1) R 0 Ω (2) Z (3) X L (4) L (1) 4.40(a) 100 V V 20.0 A I 1 Z 3

91 86 c (2) Z R + jx Z R, X (3) 4.40(a) R 0 = 6.00 Ω (b) 100 V V 10.0 A I 2 Z + R 0 3 (4) Z + R 0 R, R 0, X (5) (2) (4) R X E = E 0 + je 1, E 0, E 1 ω E 0, E 1, C, R, ω (1) Z (2) I (3) ωcr = 1 I E 0, E 1, R (4) (3) θ E θ I tan θ E tan θ I (5) (4) (3) θ I = θ E + π ( 4 tan θ I = tan θ E + π ) E 13 V V R 12 V V L 8.0 V (1) V R E, V R, V L, V C (2) E, V R, V L, V C (3) V C

92 4.4 c X L 25.0 Ω X C 17.0 Ω I 600 ma E 6.00 V (1) V L (2) V C (3) E, V L, V C, V R, I (4) V R E 50 V X L 9.0 Ω X C 1.0 Ω I 5.0 A (1) Z (2) X (3) R (4) V R (5) 0.50 Z

93 88 c (1) Z 1 (1.8 + j1.6) Ω Z 2 (1.2 j1.6) Ω I 6.0 A I 1 (2) Z 1 (1.0 j2.0) Ω Z 2 (2.0 + j4.0) Ω I 1 (6.0 + j5.0) A I 4.8

94 4.5 c (1) (2) Z 2 (1.2 j1.6) Ω I 1 = I = Z 1 + Z 2 (1.8 + j1.6) Ω + (1.2 j1.6) Ω 6.0 A (1.2 j1.6) 6.0 = A = (2.4 j3.2) A (4.31) 3.0 I = Z 1 + Z 2 I 1 = = Z 2 (1.0 j2.0) Ω + (2.0 + j4.0) Ω (2.0 + j4.0) Ω (6.0 + j5.0) A j j22 A = A = (6.2 + j1.1) A (4.32) j (1) 4.46(a) R 2.0 Ω X L 4.0 Ω I 40 A I L (2) 4.46(a) R 13 Ω X L 7.0 Ω V 91 V I (3) 4.46(b) R 10 Ω X C 5.0 Ω I (2.0 + j4.0) A V (4) 4.46(b) R 5.0 Ω I R (6.0 j9.0) A I (9.0 j7.0) A X C E 120 V I L 3.0 A, R 40 Ω

95 90 c (1) I R (2) I (3) Y (4) X L (5) Y 4.9 (1) I R = E R = 120 V 40 Ω = 3.0 A (4.33) (2) I = I R 2 + I L 2 = (3.0 A) 2 + (3.0 A) 2 = A = 4.2 A (4.34) (3) Y = I A E = = 35 ms (4.35) 120 V (4) X L = E I L = 120 V = 40 Ω (4.36) 3.0 A (5) Y = 1 R + 1 = 1 jx L 40 Ω + 1 = (25 j25) ms (4.37) j40 Ω

96 4.5 c (1) 4.48(a) ωl = 2R I I R (2) 4.48(b) V 24 V I 10 A R 3.0 Ω C I C ω (1) I R (2) I C (3) E I R I C I (4) E I θ (12 + j28) V V R 5.0 Ω C 2.0 µf f 20 khz

97 92 c (1) R I R (2) C I C (3) I (4) I, I R, I C, V (5) Y E 20 V C I C 1.0 A R 10 Ω (1) R I R (2) I (3) Y (4) X C E 120 V R 20 Ω X L 15 Ω (1) Z (2) I R (3) I L

98 4.5 c (4) E, I, I R, I L (5) I (6) E I θ R 4.0 Ω L X L 3.0 Ω I R 12 A (1) V (2) I R V (3) I L (4) I L V (5) I (6) I (7) 4 I E 10 V I 5.0 A I R 3.0 A (1) I C (2) Y (3) R (4) X C (5) Y

99 94 c f 50 Hz, V 33 V R I R 5.5 A V I θ θ = (1) I, I R, I L, V (2) L I L (3) I (4) I (5) R (6) L R 3.0 Ω X C 4.0 Ω X L 6.0Ω E 12 V (1) I R (2) I C (3) I L (4) I (5) E I R I C I L I

100 4.5 c (1) (2) (3) (4) I C = I L = I R = E R = 12 V = 4.0 A (4.38) 3.0 Ω E = 12 V = j3.0 A (4.39) jx C j4.0 Ω E = 12 V = j2.0 A (4.40) jx L j6.0 Ω I = I R + I C + I L = (4.0 + j1.0) A (4.41) (5) I R 5.0 A I L 19.0 A I C 7.0 A

101 96 c (1) I R I L I C I E (2) I (3) I E 85 V I 13 A L I L 17.0 A C I C 5.0 A (1) R I R I, I R, I L, I C, E (2) I R (3) I (4) R (5) X L (6) X C 4.55 R X 4.60 (a) (b) (1) (a) Z a R X (2) (a) V V R V X (3) (a) V R X I (4) (b) Y b R X

102 4.6 c (5) (b) Z b R X (6) (b) I I R I X R 15 Ω X C 20 Ω E 60 V I X 3.0 A I E (1) I R (2) I, I R, I X, E (3) I (4) X C X L Z X

103 98 c (5) X L 4.11 (1) I R = E R = 60 V = 4.0 A (4.42) 15 Ω (2) I E I R E 4.62 IR E I IX (3) 4.62 I X = j I X = j3.0 A (4) I = I R + I X = (4.0 j3.0) A (4.43) (5) Z X = E I X = 60 V = j20 Ω (4.44) j3.0 A Z X = jx L jx C = j20 Ω (4.45) X C = 20 Ω (4.46) X L = 40 Ω (4.47) R I R 4.0 A X C 10 Ω X L 10 Ω R 5.0 Ω

104 4.6 c (1) V 1 (2) V 1 I R I L (3) I L (4) I (5) V 2 (6) V X C 5.0 Ω X L 8.0 Ω R 4.0 Ω I c 4.0 A (1) V 1 (2) I R (3) I (4) V 1, I R, I C I (5) V 2 (6) V (6.0 j9.0) V V (3.0 j2.0) A I

105 100 c X C 3.0 Ω R 4.0 Ω L 4.0 mh (1) V 1 (2) V 2 (3) I R (4) L I L (5) X L (6) ω X C 5.0 Ω X L 1.0 Ω R 2.0 Ω V 5.0 A I C (1) V I C V (2) I L I L V (3) I I C, I L I X L 5.0 Ω I L j2.0 A I (2.0 j1.0) A

106 4.6 c (1) V (2) I C (3) R X C Z (4) R (5) X C r 0.20 Ω R 1.0 Ω X C 0.40 Ω X L 2.0 Ω V 10 V (1) Z (2) I (3) V 1 (4) V 2 (5) I R (6) I L r 0.10 Ω R 3.0 Ω X L 0.60 Ω X C

107 102 c Ω V 25 V (1) Z (2) I (3) V 1 (4) V 2 (5) I R (6) I C R 20 Ω r 5.0 Ω X L 10 Ω X C 10 Ω V I R 6.0 A (1) V 2 (2) I C (3) I (4) I R, I C, I (5) V 1 (6) V

108 4.6 c I C 1.0 A R 15 Ω r 6.0 Ω X C 30 Ω X L 8.0 Ω (1) V C (2) I L (3) I (4) R V R (5) V R Ω R Ω X C 3.0 Ω X L 6.0 Ω V (30 + j60) V (1) I 1 (2) I 2 (3) I 2 (4) Z (5) V I 1 I 2 I

109 104 c (6) V I 2 θ V R C E ω R C E ω (1) c a V ac (2) c b V bc (3) b a V ab ω V R L C ω V L CR (1) a V a (2) b V b (3) a b V ab (4) V V ab (5) (4) V ab

110 4.7 c (1) I L (2) I C (3) I L = I C ω (4) ω V R R C L E (5) ω V C R C L E (6) ω V R = V C (7) (3) (6) I Maxwell R 1 L 1 0 A R 1 L 1 R 2 R 3 R 4 C 4 E ω 4.12 ( ) 1 (R 1 + jωl 1 ) 1 = R 2 R 3 (4.48) R 4 + jωc 4 R 1 + jωl 1 = R 2 R 3 ( 1 R 4 + jωc 4 ) (4.49)

111 106 c R 1 = R 2R 3 R 4 (4.50) L 1 = R 2 R 3 C 4 (4.51) Wien ω R 1 R 5 ω, R 1 R 2, R 3, R 4, C 3, C Hay ω

112 4.7 c Owen ω ω

113 108 c ω

114 c λ 96.0% 250 V V 2.00 A I (1) P a (2) P (3) P r 5.1 (1) P a = V I = 250 V 2.00 A = 500 VA (5.1) (2) P = P a λ = 500 VA = 480 W (5.2) (3) P 2 a = P 2 + P 2 r P r = ± P 2 a P 2 = ± var = ±140 var (5.3) 5.1 (1) 2.0 kva 90%

115 110 c (2) 300 VA 100 V (3) 4.0 kw 3.0 kvar (4) 1.5 kva 900 var (5) 2.4 kw 96% 5.2 (1) Z (3.0 + j4.0) Ω I 2.0 A P (2) V 10 V I 2.0 A θ 30 P (3) V 25 V I 3.0 A θ 60 P a V (3.0 + j4.0) A Z Y P 5.4 E (40 + j30) V Z (3.0 + j4.0) A I (1) Z (2) Z (3) (1) 2 λ (4) P a (5) P (6) P r V V P 3.2 kw I V (1) P a (2) P r (3) I (4) Z (5) Z V 25.0 A 2.50 kw

116 c (1) P a (2) λ (3) θ (4) I V 50 6 V E 10 V R 24 Ω X L 7.0 Ω (1) Z (2) I (3) P a (4) λ (5) P 5.2 (1) Z = R + jx L = R 2 + X L 2 = Ω = 25 Ω (5.4) (2) I = E Z = 10 V = 0.40 A (5.5) 25 Ω

117 112 c (3) P a = E I = 10 V 0.40 A = 4.0 VA (5.6) (4) (5) λ = R Z = 24 Ω = 0.96 (5.7) 25 Ω P = P a λ = 4.0 VA 0.96 = 3.8/4 W = 3.8 W (5.8) P = R I 2 = 24 Ω (0.40 A) 2 = 3.8/4 W = 3.8 W (5.9) R 48 Ω X L 14 Ω P 12 W (1) I (2) Z (3) λ (4) V R 4.0 Ω X C 3.0 Ω V I 10 A (1) Z (2) V (3) λ (4) P

118 c E 125 V P 600 W R 24 Ω (1) I (2) Z (3) X L R 2.0 Ω X L 2.0 Ω X C 4.0 Ω 2.0 V V

119 114 c (1) Z (2) I (3) Z I P (4) V 1 (5) V 2 (6) R P R V 2 P 5.3 (1) (2) I = V Z = (3) I (4) (5) (6) Z = jx L + R ( jx C) = j2.0 + j8.0 R jx C 2.0 j4.0 = j2.0 + (1.6 j0.80) = (1.6 + j1.2) Ω (5.10) 2.0 V 2.0 (1.6 j1.2) = A = (0.80 j0.60) A (5.11) (1.6 + j1.2) Ω 4.0 Z Re Z 1.6 Ω I = ( 0.60) 2 A = 1.0 A (5.12) P = Re Z I 2 = 1.6 Ω (1.0 A) 2 = 1.6 W (5.13) V 1 = jx L I = j2.0 Ω (0.80 j0.60) A = (1.2 + j1.6) V (5.14) V 2 = V V 1 = 2.0 V (1.2 + j1.6) V = (0.80 j1.6) V (5.15) P = V 2 2 R = ( 1.6) W = 3.2 W = 1.6 W (5.16) 2.0

120 c E 84 V R 3.5 Ω X C 32 Ω X L 20 Ω (1) I R (2) I X (3) I (4) E I R I X I (5) E I λ P 150 W R 6.0 Ω X L 8.0 Ω X C 25 Ω (1) I L (2) V (3) I C I A

121 116 c R 5.0 Ω X C1 3.0 Ω X C2 8.0 Ω X L1 4.0 Ω X L2 6.0 Ω (1) I 2 (2) I (3) R RLC ω E P λ (100 + j50.0) V ( j20.0) A (1) P c (2) P a (3) P (4) P r

122 c (5) λ 5.4 (1) P c = V I = (100 j50.0) V ( j20.0) A = ( j1.50) kva (5.17) (2) P a = P c = kva = 2.50 kva (5.18) (3) P P c P = Re P c = 2.00 kw (5.19) (4) P r P c P r = Im P c = 1.50 kvar (5.20) (5) λ = P P a = 2.00 kw = (5.21) 2.50 kva 5.15 (100 j50) V E (3.0 j4.0) A I 5 = 2.24 (1) Z (2) Y (3) P c (4) P a (5) P (6) P r (7) λ E 300 V Z 1 (16 j12) Ω Z 2 j75 Ω (1) SW λ (2) SW I

123 118 c (3) SW P c (4) SW Z 2 I 2 (5) SW I (6) SW P c (7) SW λ E I P a cos θ (1) 5.11(a) I (2) 5.11(a) I (3) 5.11(b) I 1 I 2 (4) 5.11(b) I (5) 5.11(b) P c (6) 5.11(b) P a (7) 5.11(b)

124 c (1) (2) (3) I 1 I 2 I (1) I 1 + I 2 I 3 = 0 (6.1)

125 120 c (2) E 1 = 1 jωc I 1 + RI 3 (6.2) E 2 = jωli 2 + RI 3 (6.3) (3) I 3 ( ) 1 E 1 = jωc + R I 1 + RI 2 (6.4) E 2 = RI 1 + (jωl + R) I 2 (6.5) I 1 = ( ω 2 LC + jωcr ) E 1 jωcre 2 R (1 ω 2 LC) + jωl I 2 = jωcre 1 + (1 + jωcr) E 2 R (1 ω 2 LC) + jωl I 3 = I 1 + I 2 = ω2 LCE 1 + E 2 R (1 ω 2 LC) + jωl (6.6) (6.7) (6.8) (1) I 1 I 2 I 3 (2) N V N (3) V N = I 1, I 2, I 3 E 1 E 3 Z 1 Z 3 I 4 I 6

126 6.2 c (1) (2) I 4 I 5 I 6 (3) (4) I 1 I 2 I E V E V X L 3.0 Ω X C 2.0 Ω R 12.0 Ω (1) (2) I 1 I 2 (3) R I R

127 122 c (1) E 1 = (R + jx L ) I 1 + RI 2 (6.9) E 2 = RI 1 + (R jx C ) I 2 (6.10) (2) 6.0 V = ( j3.0) Ω I Ω I 2 (6.11) 2.0 V = 12.0 Ω I 1 + (12.0 j2.0) Ω (6.12) I 1 = (0.80 j3.6) A (6.13) I 2 = ( j3.4) A (6.14) (3) I R = I 1 + I 2 = (0.80 j3.6) A + ( j3.4) A = ( 0.40 j0.20) A (6.15) V (1) (2) I 1 I 2 (3) V

128 6.2 c (1) I 1 I 2 (2) I 1 I 2 (3) ω 1 LC V E R, L, C 6.5 Z 1, Z 2, Z 3 E 1, E (1) I 1 I 2 (2) I 1 I ω

129 124 c (1) (2) I 1 I I 1, I 3 E 1, E 2, E 3 Z 1, Z 2, Z ω (1) (2) I 1 I 2 I I 1 I 3 (1) (2) E = (8.0 j8.0) V R 4.0 Ω X C1 X C2 2.0 Ω X L1 2.0 Ω X L2 1.0 Ω I 1 I

130 6.2 c (1) (2) L = CR 2 I 2 = I 3 (3) L = CR 2 I 1 I 2 I I 1, I 2, I 3 E 1, E 2 Z

131 126 c E a j7.0 V E b (12 + j5.0) V R 3.0 Ω X L1 6.0 Ω X L2 1.0 Ω X C 6.0 Ω (1) 6.14 (2) I 1 I 2 I 3 2 (3) R P E 1 (4.0 j4.0) V E 2 j2.0 V E 3 j2.0 V R 4.0 Ω X L 2.0 Ω X C 4.0 Ω (1) (2) I 1 I 2 I 3

132 6.2 c E 1 (8.0 + j8.0) V E 2 j4.0 V E 3 j4.0 V R 2.0 Ω X L 4.0 Ω X C 1.0 Ω (1) (2) I 1 I 2 I I a I c I c Z 1 Z 2 Z (1) (2) I a + I b + I c (3) E 1

133 128 c (4) E 1 + E 2 + E 3 = 0 Z 1 = Z 2 = Z 3 = Z E 1 E 1 Z (5) I a + I b + I c E 1 E 2 I a + I b + I c (1) I 1 I 2 I 3 (2) Z a = Z b = Z c = Z r 1 = r 2 = r 3 = r I 1 E 1 E 2 E 3 Z r (3) (2) Z a I a E 1 E 2 E 3 Z r (1) (2) E 1 = E 2 = E I 1 = I 2 I 3 = I 4 I 1 I 3 E Z

134 6.3 c (1) I 1 I 4 (2) I 1 = I 2 = I 3 = I 4 E2 E 1, E3 E 1, E4 E V 1 V 2 V 3 J 1 J 2 Y V 0 = J 1 Y (V 1 V 3 ) Y (V 1 V 3 ) = 0 (6.16) J 2 2Y (V 2 V 3 ) Y (V 2 V 1 ) = 0 (6.17) Y (V 3 V 1 ) Y (V 3 V 0 ) 2Y (V 3 V 2 ) = 0 (6.18)

135 130 c V 0 = 0 J 1 = 2Y V 1 Y V 2 Y V 3 (6.19) J 2 = Y V 1 + 3Y V 2 2Y V 3 (6.20) 0 = Y V 1 2Y V 2 + 4Y V 3 (6.21) V 1 = 8J 1 + 6J 2 5Y V 2 = 6J 1 + 7J 2 5Y V 3 = J 1 + J 2 Y (6.22) (6.23) (6.24) 6.19 J Y 2Y 6.22 V (1) (2) V 1 V 2 V V 0 0 (1) V 1, V 2, V 3 (2) J 1, J 2 Y a b V a V b ω ( 0, ) (C 1 + C 2)/LC 1C 2 (1)

136 6.3 c (2) V a V b (3) L ω (1) (2) V a V b (3) V b /V a = 1/ a b c d V a V b V c V d J A J A R Ω, R Ω, R Ω, R Ω, R Ω

137 132 c (1) b c d V a = 0 (2) V a 6.24 Y J 1 J a d V a V d V a = (1) (2) V b V d a b c V a V b V c (1) (2) V a V b V c

138 6.4 c ω( 1/ 3LC) (1) (2) a b c d Z (3) I 1 I 2 6.4

139 134 c (1) ( E 1 = jωl + 1 ) I 1 + jωli 2 (6.25) jωc ( E 2 = jωl + 1 ) I 2 + jωli 1 (6.26) j2ωc (2) [ E1 E 2 ] = [ jωl + 1 jωc jωl jωl jωl + 1 j2ωc ] [ ] I1 I 2 (6.27) Z = [ jωl + 1 ] jωc jωl jωl jωl + 1 j2ωc (6.28) (3) [ I1 ] = I 2 = [ jωl + 1 jωc jωl jωl jωl ω 2 LC 1 ] 1 [ ] E1 E j2ωc 2 [ ( jωc 2ω 2 LC 1 ) j2ω 3 LC 2 j2ω 3 LC 2 j2ωc ( ω 2 LC 1 ) ] [ ] E1 E 2 (6.29) I 1 = jωc {( 2ω 2 LC 1 ) } E 1 2ω 2 LCE 2 3ω 2 LC 1 I 2 = j2ωc {( ω 2 LC 1 ) } E 2 ω 2 LCE 1 3ω 2 CL 1 (6.30) (6.31) J 1, J 2 Y 1, Y 2, Y 3 (1) V 0 = 0 (2) a b c d (3) V 1, V (1) (2) I 3 a b c d

140 6.5 c (1)

141 136 c (2) I 1, I 2, I 3 (3) (4) V a V b, V c, V d 6.5 (1) I 1 (2) I 2, I 3 I 1 = J (6.32) 0 = Z 2 I 1 + (Z 1 + Z 2 + Z 3 ) I 2 + Z 3 I 3 (6.33) E = Z 4 I 1 + Z 3 I 2 + (Z 3 + Z 4 ) I 3 (6.34) Z 2 J = (Z 1 + Z 2 + Z 3 ) I 2 + Z 3 I 3 (6.35) E Z 4 J = Z 3 I 2 + (Z 3 + Z 4 ) I 3 (6.36) I 1 = J (6.37) I 2 = Z 3E + (Z 2 Z 3 + Z 3 Z 4 + Z 4 Z 2 ) J (Z 1 + Z 2 ) (Z 3 + Z 4 ) + Z 3 Z 4 (6.38) I 3 = (Z 1 + Z 2 + Z 3 ) E {Z 2 Z 3 + Z 4 (Z 1 + Z 2 + Z 3 )} J (Z 1 + Z 2 ) (Z 3 + Z 4 ) + Z 3 Z 4 (6.39) (3) a d J = 1 Z 1 (V b V a ) + 1 Z 2 (V b V c ) (6.40) 0 = 1 Z 2 (V c V b ) + 1 Z 3 (V c V a ) + 1 Z 4 (V c V d ) (6.41) V d = E + V a (6.42) (4) V a = 0 V d = E + V a = E ( 1 J = + 1 ) V b 1 V c (6.43) Z 1 Z 2 Z 2 E = 1 ( 1 V c ) V c (6.44) Z 4 Z 2 Z 2 Z 3 Z 4

142 6.5 c V b = Z 1Z 3 E Z 1 (Z 2 Z 3 + Z 3 Z 4 + Z 4 Z 2 ) J (Z 1 + Z 2 ) (Z 3 + Z 4 ) + Z 3 Z 4 (6.45) V c = Z 3 (Z 1 + Z 2 ) E Z 1 Z 3 Z 4 J (Z 1 + Z 2 ) (Z 3 + Z 4 ) + Z 3 Z 4 (6.46) V d = E (6.47) J = βi J Z (= E/I) I 1, I 2, I 3 Z 1, Z 2, Z 3, Z 4, Z 5 E J a b c d V a V b V c V d ω

143 138 c (1) a b V c = E 1, V d = E 2 (2) V a V b (3) a b V ab V ab E 1, E 3 Z 1, Z 2, Z (1) I 1, I 3 (2) V 1 V 0 = 0

144 c ω (1) V V (2) lim V ω 0 (3) lim V ω (4) V = E ω 0 2 (5) ω = ω 0 V E 7.1 (1) V = R R + 1 E = jωcr 1 + jωcr E (7.1) jωc

145 140 c V = ωcr E (7.2) 1 + (ωcr) 2 (2) ω (ωcr) 2 1 (3) ω 1 + (ωcr) 2 (ωcr) 2 = ωcr lim V = lim ωcr E = 0 (7.3) ω 0 ω 0 (4) ωcr lim V = lim E = E (7.4) ω ω ωcr V = E 2 (7.5) (5) (7.1) ω 0 CR = V = ω 0 CR 1 + (ω0 CR) = 1 (7.6) 2 2 2(ω 0 CR) 2 = 1 + (ω 0 CR) 2 (7.7) ω 0 CR = 1 (7.8) ω 0 = 1 CR V E π 4 (7.9) j 1 + j E = 1 + j 2 E = 1 exp(j π 2 4 ) E (7.10) 7.2 Z a, Z b, Z c, Z d ω ω 0 ω 7.2 RL kr (k > 1) 7.3 RC π 6 R ω

146 7.1 c (1) A B Z (2) lim ω Z = R 1 + R A B Z K R, L, C K ω (1) lim ω 0 V o V i (2) lim Vo ω V i

147 142 c a b V ab A B (1) V 1 V 2 V1 V 2 V 1 (2) lim ω 0 (3) lim ω V 2 V 1 V V i V o V i V o k ω

148 7.1 c V i V o C 1 R 1 C 2 R 2 R 2 1 R 1 j ωc 1 R 1 R = (7.11) 1 + j ωc 1 R 1 j ωc 1 1 R 2 j ωc 2 R 2 R = (7.12) 1 + j ωc 2 R 2 j ωc 2 V o 1 + j ωc = 2 R 2 R 2 (1 + j ωc 1 R 1 ) = V i R 1 R 2 R + 1 (1 + j ωc 2 R 2 ) + R 2 (1 + j ωc 1 R 1 ) 1 + j ωc 1 R j ωc 2 R 2 R 2 + j ωc 1 C 2 R 2 = (7.13) R 1 + R 2 + j ω (C 1 + C 2 ) R 1 R 2 (7.13) ω R 2 R 1 + R 2 = jc 1 R 2 R 2 j (C 1 + C 2 ) R 1 R 2 = C 1 C 1 + C 2 (7.14) C 1 R 1 = C 2 R 2 (7.15) (7.13) (7.15) V o R 2 = (7.16) V i R 1 + R 2

149 144 c (1) E a b V ab V ab E (2) V ab E ω (3) (2) ω 0 E V ab (4) (2) ω E V ab (5) (2) E V ab π/ V (1) V 1 (2) V 1 (3) V 2 (4) V 2 (5) V V 2 2 ω

150 7.2 c E (1) V C 2 + V L 2 ω (2) (1) P E ω I L 2 + I C 2 ω V = 1.5 V V 0 = 0.30 V V 7.3 V 0

151 146 c log V = 20 log 1.5 V 0.30 V = 20 log 5.0 = 13.9 db 14 db (7.17) V I = 3.2 ma I 0 = 1.0 A I I db W [dbm] dbm V 0 V A(ω) Θ(ω) V R = V 0 R + jωl (7.18) A(ω) = V = V V 0 = R R + jωl = R (7.19) R2 + (ωl) 2 V 0 Θ(ω) = arg V V 0 = arg V arg V 0 = tan 1 0 R tan 1 ωl R = tan 1 ωl R (7.20)

152 7.3 c V/V 0 A(ω) Θ(ω) R = 1.0 Ω, L = 5.0 mh, C = 2.0 µf ω 0 f 0 Q ω 0 ω 0 = 1 1 = = rad/s = 10 krad/s (7.21) LC 5.0 mh 2.0 µf f 0 Q f 0 = ω 0 2π = rad/s = 1./5 6 / Hz = Hz = 1.6 khz (7.22) 2π Q = ω 0L R = 1 ω 0 CR = 1 L = 50 (7.23) R C

153 148 c (a) 7.16 (b) f 0 Q 7.16(a) R Ω C µf L 1 10 mh 7.16(b) R kω C pf L 2 10 mh R 10 Ω L 5.0 mh E 150 V f 1.0 khz (1) C I C (2) (1) I max V R = 50 Ω L C 7.18 (a) I A 7.18 (b) I 2

154 7.3 c C 40 pf 800 pf C 1.0 MHz 3.0 MHz C 0 L L C0 C ω 0 C0 L0 C (1) C 0 L 0 Y 0 (2) Z (3) Z = 0 ω 0 (4) Z = ω

155 150 c (5) ω 0 ω (6) ω 0 Z 0 (7) ω Z (8) Z ω ω (1) Z (2) Z 0 ω 1 (3) ω = ω 1 Z 1 (4) CR Q C Q C = ωcr ω = ω 0 = 1 LC Q C Q 0 ω 1 ω 0 Q 0 (5) R ω 1 ω (1) Z = j ωl + = R 1 j ωc R + 1 j ωc R 1 + (ωcr) 2 + j ω = j ωl + R R (1 j ωcr) = j ωl j ωcr 1 + (ωcr) 2 [ ] CR 2 L 1 + (ωcr) 2 (7.24)

156 7.3 c (2) (3) (4) CR 2 L 1 + (ω 1 CR) 2 = 0 (7.25) L + ω 2 1 LC 2 R 2 = CR 2 (7.26) ω 2 1 = CR2 L LC 2 R 2 = 1 [ LC 1 L ] CR 2 (7.27) [ 1 ω 1 = LC 1 L ] CR 2 (7.28) R Z 1 = 1 + (ω 1 CR) 2 = R [ 1 L ] = LC CR 2 C 2 R 2 LCR = LC + (C 2 R 2 LC) = L CR R LC (C2 R 2 LC) (7.29) C Q 0 = ω 0 CR = R L (7.30) ω 1 = 1 LC [ 1 L ] CR 2 = 1 1 L LC CR 2 = ω (7.31) Q 0 (5) lim Q 0 = (7.32) R lim ω 1 = lim ω 0 R R 1 1 Q 0 2 = ω 0 (7.33) R LC (1) Y

157 152 c (2) B 0 ω 0 (3) Y 0 (4) I ω (1) Y (2) Y 0 ω 1 (3) ω = ω 1 Y 1 (4) LR Q L Q L = ωl/r ω = ω 0 = 1/ LC Q L Q 0 ω 1 ω 0 Q 0 (5) R 0 ω 1 ω ω 0 Z 0 CR 2 L R Ω R Ω C µf C F (1) C 1 L 500 rad/s L

158 7.3 c (2) (1) 500 rad/s V 20 A I V (3) (1) (2) A

159 154 c I (a) 8.2 (b) 8.2 I, I I E 2E = = 3R 2 + R 5R I R 3R = J 11R 4 + R 3R + R = J 5 I = I + I = 2E 5R + J 5 (8.1) (8.2) (8.3)

160 8.1 c I 1 I 2 I I (1) 8.5 (2) (1) A B V AB (3) 8.5 (4) (3) A B V AB (5) 8.5 A B V AB

161 156 c a V a V

162 8.2 c V A B V J 3.0 A R Ω R Ω B (1) E 0 (2) R 0 (3) J 0 (4) G 0

163 158 c (1) E 0 = R 1 J = 2.0 Ω 3.0 A = 6.0 V (8.4) (2) R 0 = R 1 + R 2 = 2.0 Ω Ω = 5.0 Ω (8.5) (3) (4) J 0 = J R Ω = 3.0 A = 1.2 A (8.6) R 1 + R Ω Ω G 0 = 1 = 1 = 0.20 S (8.7) R 1 + R Ω E 0 Z 0 J 0 Y 0 B

164 8.2 c E 0 Z 0 B I (1) A B E 0 Z 0 B

165 160 c (2) A B A B (1) 8.15 (a) E 0 Z 0 (2) 8.15 (b) E 0 Z E 0 Z R 1 = 4.0 Ω, R 2 = 1.0 Ω, J = 1.0 A, E = 6.0 V (1) 8.17 R 0 (2) 8.17 E R Ω R Ω, J 9.0 A E 12.0 V (1) A B R 0

166 8.2 c (2) A B E 0 B (3) A B J 0 A B (1) R 1 I 1 (2) R 1 R 1 + R R 1 I 1 (3) R 1 R 1 + R A I (4) (2) R 4 (5) R R 1 I R, I 1, R 1, R 2, R 3

167 162 c ω R L, C L (1) E 0 Z 0 (2) R L R L C L R S, L S, ω 8.3 (1) (2) Z E 0 = jωl se R s + jωl s (8.8) Z 0 = jωl sr s R s + jωl s (8.9) Z = R L + 1 jωc L (8.10)

168 8.3 c Z 0 = Z R L jωl s R s = R L 1 R s + jωl s jωc (8.11) (ωl s ) 2 2 R s + jωl s R s 1 R 2 s + (ωl s ) 2 = R L + j (8.12) ωc L R L = (ωl s) 2 R s R s 2 + (ωl s ) 2 (8.13) C L = 1 ω 2 L s + L s R s 2 (8.14) 8.17 E 0 R 0 R (1) R P max (2) R P P max R R

169 164 c (1) E 0 R 0 (2) r 8.19 R 1, R 2 L R 3 C 8.23 E ω (1) E 0 Z 0 (2) R 3 C R C R ω E 0 Z 0 Z Z 100%

170 8.4 c (1) I 2 (2) I 1 (3) 8.4 (1) (2) I 2 = E 1 R 1 + R 2R 3 R 2 + R 3 R 3 R 2 + R 3 = R 3 E 1 R 1 R 2 + R 2 R 3 + R 3 R 1 (8.15) I 1 = E 2 R 2 + R 1R 3 R 1 + R 3 R 3 R 1 + R 3 = R 3 E 2 R 1 R 2 + R 2 R 3 + R 3 R 1 (8.16)

171 166 c (3) E 1 = E ( 2 = R 1 + R 2 + R ) 1R 2 I 2 I 1 R 3 (8.17) Z a (2.0 + j1.0) V E 1 Z b (1.0 j3.0) A I b1 Z b E 2 Z a (1.0 + j2.0) A I a2 E

172 c I1 M I2 M I1 M I2 V1 L1 L2 V2 V1 L1 L2 V2 L1 L2 (a) (b) (c) (1) 9.1 (a) V 1, V 2, I 1, I 2 (2) 9.1 (b) V 1 V 2 (3) 9.1 (c) I 1 I (1) V 1 = jωl 1 I 1 + jωmi 2 (9.1) V 2 = jωmi 1 + jωl 2 I 2 (9.2)

173 168 c (2) I 2 = 0 (9.1) (9.2) V 1 = jωl 1 I 1 (9.3) V 2 = jωmi 1 (9.4) (9.4) (9.3) V 1 : V 2 = jωl 1 I 1 : jωmi 1 = L 1 : M (9.5) (3) V 2 = 0 (9.2) 0 = jωmi 1 + jωl 2 I 2 (9.6) MI 1 = L 2 I 2 (9.7) I 1 : I 2 = L 2 : M (9.8) M = M I1 M I2 I1 M' I2 V1 V2 V1 V (1) (a) (2) (b) (3) (a) (b) (c) (1) (2) I 1, I 2, I 4 (4) (c) (d) L 1, L 4, M L 1 L 4 M m Z (= V/I) ω

174 9.1 c I1 M I2 I3 m I4 V1 L1 L2 V2 V3 L3 L4 V4 (a) (b) I1 M I2 m I4 I1 M' I4 V1 L1 L2 L3 L4 V4 V2 V1 L1' L4' V4 (c) (d) I2 M L2 I I1 L1 V (1) I, I 1, I 2 (2) V, I 1, I 2 (3) (2) I 1 : I 2 (4) (1) (3) I 1, I 2 I, L 1, L 2, M (5) (2) (4) Z (a) (a) (b) (c) L 3 L 4 L 5 L L 1 L 2 M (1) L 3, L 4, L 5 L 1, L 2, M (2) ω (1) V 1, V 2, I 1, I 2

175 170 c M L3 L4 L1 L2 L5 L' (a) (b) (c) (2) I, I 1, I 2 (3) V R I (4) V, V 1, V 2, V R (5) Z (a) 1 V 1, V 2 I 1, I (b) A B L 1 A A L 2 L 1 L 2

176 9.2 c M I2 A' I2 A' I2 ' A' A I1 V2 A I1 L2 M V2 A V2 ' L2 M V1 V1 L1 V1 ' I1' L1 B (a) B' B (b) B' B (c) B' (1) 9.8 (c) V 1, V 2, I 1, I 2 (2) 9.8 (b) (c) I 1, I 2 I 1, I 2 (3) 9.8 (b) (c) V 1, V 2 V 1, V 2 (4) 9.8 (b) V 1, V 2, I 1, I (1) (2) I 1 I 2 (3) Z 9.2

177 172 c (1) (2) V 2 = RI 2 (9.10) V 1 = jωl 1 I 1 + jωmi 2 (9.9) V 2 = jωmi 1 + jωl 2 I 2 (9.10) I 2 = jωm I 1 (9.11) R + jωl 2 (3) (9.9) (9.11) ( ) jωm V 1 = jωl 1 I 1 + jωmi 2 = jωl 1 I 1 + jωm I 1 R + jωl 2 = ω2 ( M 2 L 1 L 2 ) + jωl1 R R + jωl 2 I 1 (9.12) Z = V ( ) 1 = ω2 M 2 L 1 L 2 + jωl1 R (9.13) I 1 R + jωl M E I1 I2 L1 L (1) I 1, I 2 (2) I 1, I I 1, I 2, I 3 jω s s (1) (2)

178 9.2 c (3) E 2, E 3 (4) (1) (2) (3) I 1, I 2, I Z ω 0 M L2 L1 C L 1 L 2 M 2 I1 M I2 V1 C1 L1 L2 V (1) V 1 V 2 I 1 I 2 (2) V 1 /I 1 (3) V 1 /I 1 = ω

179 174 c Campbell M I1 L1 L2 I2 E A C (1) I 1 I 2 (2) ω ( 0) (1) (2) Z (= E/I 1 ) (3) Z = ω (4) Z = 0 ω 0 (5) ω 0 ω k

180 9.2 c M E I1 L1 L2 I2 C L 1L 2 M 2 I1 M I2 V1 L1 L2 V2 C (1) V 1 V 2 I 1 I 2 (2) V 2 V 1 1 (3) ω 1 = V 2 L2 C 2 V 1 (4) V 2 V 1 = ω 0 ω 1 k ω ( 0) (1) (2) I 1 I 2

181 176 c (3) E I 1 E I E = ai (a ) V 0 E ω (1) V I (2) Z (3) V I ω (1) Z (2) ω 0 (3) Q

182 9.3 c jω = s

183 178 c (1) M L 1 = n L 2 = n 2 L 1 (2) V 2 V 1 = n (3) 9.23 (b) Z 2 L 1 Z 2 n 2 (4) 9.23 (b) Z 2 Z 2 n 2 (5) 9.23 (b) Z 2 I 2 = 1 n I (1) k ±1 k 2 = M 2 L 1 L 2 = 1 (9.14) L 2 M = M L 1 = n (9.15) L 2 = nm = n(nl 1 ) = n 2 L 1 (9.16) (2) (9.15) (3) V 2 V 1 = jωmi 1 + jωl 2 I 2 jωl 1 I 1 + jωmi 2 = jωnl 1I 1 + jωnmi 2 jωl 1 I 1 + jωmi 2 = n (9.17) V 2 = Z 2 I 2 (9.18) (9.20) V 2 = jωmi 1 + jωl 2 I 2 = Z 2 I 2 (9.19) I 2 = jωm jωl 2 + Z 2 I 1 (9.20) V 1 = jωl 1 I 1 + jωmi 2 (9.21)

184 9.4 c L 1 L 2 = M 2 (1) L 2 = n 2 L 1 V 1 = jωl 1Z 2 jωl 2 + Z 2 I 1 (9.22) V 1 I 1 = jωl 1Z 2 jωn 2 L 1 + Z 2 = jωl 1 Z 2 n 2 jωl 1 + Z 2 n 2 (9.23) L 1 Z 2 n 2 (4) Z 2 (5) (9.20) jωl 1 + Z 2 n 2 jωl 1 (9.24) Z 2 V jωl 1 1 n 2 = Z 2 I 1 jωl 1 n 2 (9.25) jωl 2 + Z 2 jωl 2 (9.26) I 2 = jωm jωm I 1 jωl 2 + Z 2 jωl 2 = M L 2 = 1 n (9.27) (1) n 1 : n 2 V 1, V 2, I 1, I 2 (2) Z 2, I 2, V 2 (3) E 1, Z 1, I 1, V 1

185 180 c (4) V 1, V 2 I 1, I (1) V 1 : V 2 = n 1 : n 2 (9.28) n 1 I 1 + n 2 I 2 = 0 (9.29) (2) V 2 = Z 2 I 2 (9.30) (3) E 1 = Z 1 I 1 + V 1 (9.31) (4) (9.28) (9.30) (9.29) (9.32) (9.33) V 1 = n 1 n 2 V 2 = n 1 n 2 Z 2 I 2 (9.32) I 2 = n 1 n 2 I 1 (9.33) V 1 = (9.31) ( n1 n 2 ) 2 Z 2 I 1 (9.34) E 1 = Z 1 I 1 + ( n1 n 2 ) 2 Z 2 I 1 (9.35)

186 9.4 c (9.33) I 1 = Z 1 + E 1 ( n1 n 2 ) 2 Z 2 = n 2 2 E 1 n 22 Z 1 + n 12 Z 2 (9.36) I 2 = n 1 n 1 n 2 E 1 I 1 = (9.37) n 2 n 22 Z 1 + n 12 Z Z = E/I 1 n 1 : n 2 : n 3 n 2 n (1) V 1, V 2, V 3 (2) I 1, I 2, I 3 (3) I 2 I 3 (2) I 3 (4) (5) (4) (1) (3) I 2, V 2, V 3 Z L 1, L 2, M ω (1) V 1 V 2 I 2 I 3 (2) I 1, I 3, I 4 (3) V 1 I 4 L (4) (1) (3) I 1, I 2, V 1 (5) (1) (3) I 1, I 2, V 2 (6) I 1, I 2, V 1, V 2 (7) L 1, L 2, M (8) k

35

35 D: 0.BUN 7 8 4 B5 6 36 6....................................... 36 6.................................... 37 6.3................................... 38 6.3....................................... 38 6.4..........................................

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o = RC LC RC 5 2 RC 2 2. /sc sl ( ) s = jω j j ω [rad/s] : C L R sc sl R 2.2 T (s) ( T (s) = = /CR ) + scr s + /CR () 0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db(

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 信号処理の基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/081051 このサンプルページの内容は, 初版 1 刷発行時のものです. i AI ii z / 2 3 4 5 6 7 7 z 8 8 iii 2013 3 iv 1 1 1.1... 1 1.2... 2 2 4 2.1...

More information

Chap10.dvi

Chap10.dvi =0. f = 2 +3 { 2 +3 0 2 f = 1 =0 { sin 0 3 f = 1 =0 2 sin 1 0 4 f = 0 =0 { 1 0 5 f = 0 =0 f 3 2 lim = lim 0 0 0 =0 =0. f 0 = 0. 2 =0. 3 4 f 1 lim 0 0 = lim 0 sin 2 cos 1 = lim 0 2 sin = lim =0 0 2 =0.

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

AD8515: 1.8 V 低電力 CMOS レール to レール入力/出力オペアンプ

AD8515: 1.8 V 低電力 CMOS レール to レール入力/出力オペアンプ REV. REVISION 15-6891 1-16-1 3 542 82 532-3 3-5-36 MT 2 6 635 6868 AD8515 1.8V CMOS to 1.8 5V 6mV SOT23 2.7V/µs 5MH to 2pA 1.8V 45µA PCMCIA PDA AD8515 1.8Vto SOT23-5L AD8515 5MHz 1.8V1mV to 2.7V/µs ASIC

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

sikepuri.dvi

sikepuri.dvi 2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

Microsoft Word - 学士論文(表紙).doc

Microsoft Word - 学士論文(表紙).doc GHz 18 2 1 1 3 1.1....................................... 3 1.2....................................... 3 1.3................................... 3 2 (LDV) 5 2.1................................ 5 2.2.......................

More information

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ 1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c

More information

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 : 2016 4 1 1 2 1.1......................................... 2 1.2................................... 2 2 2 2.1........................................ 2 2.2......................................... 3 2.3.........................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

main.dvi

main.dvi 6 FIR FIR FIR FIR 6.1 FIR 6.1.1 H(e jω ) H(e jω )= H(e jω ) e jθ(ω) = H(e jω ) (cos θ(ω)+jsin θ(ω)) (6.1) H(e jω ) θ(ω) θ(ω) = KωT, K > 0 (6.2) 6.1.2 6.1 6.1 FIR 123 6.1 H(e jω 1, ω

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

5. 5.1,, V, ,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 3-1, 2-2, 1-3,,, L1, L3, L2, ,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1

5. 5.1,, V, ,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 3-1, 2-2, 1-3,,, L1, L3, L2, ,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1 5. 5.1,,, 5.2 5.2.1,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 31, 22, 13,,, L1, L3, L2, 0 5.2.4,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1 D C 1 0 0 A C 2 2 0 j X E 0 5.3: 5.5: f,, (),,,,, 1, 5.2.6

More information

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re I ( ). ( ) () a ρ. f() d ( a) n d n p π (ρe iθ ) n ρie iθ dθ n p { πia n n () f() n.. n f()d πi es f( k ) k n n. f()d n k k f()d. n f()d πi esf( k ). k I ( ). ( ) () f() p g() f() g()( ) p. f(). f() A

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive AC Moeling an Control of AC Motors Seiji Kono, Member 1. (1) PM 33 54 64. 1 11 1(a) N 94 188 163 1 Dept. of E&E, Nagaoka University of Technology 163 1, Kamitomioka-cho, Nagaoka, Niigata 94 188 (a) 巻数

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O : 2014 4 10 1 2 2 3 2.1...................................... 3 2.2....................................... 4 2.3....................................... 4 2.4................................ 5 2.5 Free-Body

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100 7 7., ) Q, 7. Q ) 7. Z = R +jx Z / Z 7. 7. Abs. admittance x -3 S) 5 4 3 R Series ircuit Y R = Ω = mh = uf Q = 5 5 5 V) Z = R + jx 7. Z 7. ) R = Ω = mh = µf ) 7 V) R Z s = R + j ) 7.3 R =. 7.4) ) f = π.

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI 65 8. K 8 8 7 8 K 6 7 8 K 6 M Q σ (6.4) M O ρ dθ D N d N 1 P Q B C (1 + ε)d M N N h 2 h 1 ( ) B (+) M 8.1: σ = E ρ (E, 1/ρ ) (8.1) 66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3)

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

29 1 6 1 1 1.1 1.1 1.1( ) 1.1( ) 1.1: 2 1.2 1.2( ) 4 4 1 2,3,4 1 2 1 2 1.2: 1,2,3,4 a 1 2a 6 2 2,3,4 1,2,3,4 1.2( ) 4 1.2( ) 3 1.2( ) 1.3 1.3 1.3: 4 1.4 1.4 1.4: 1.5 1.5 1 2 1 a a R = l a l 5 R = l a +

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6

More information

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13: B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

振動工学に基礎

振動工学に基礎 Ky Words. ω. ω.3 osω snω.4 ω snω ω osω.5 .6 ω osω snω.7 ω ω ( sn( ω φ.7 ( ω os( ω φ.8 ω ( ω sn( ω φ.9 ω anφ / ω ω φ ω T ω T s π T π. ω Hz ω. T π π rad/s π ω π T. T ω φ 6. 6. 4. 4... -... -. -4. -4. -6.

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

untitled

untitled 1 17 () BAC9ABC6ACB3 1 tan 6 = 3, cos 6 = AB=1 BC=2, AC= 3 2 A BC D 2 BDBD=BA 1 2 ABD BADBDA ABC6 BAD = (18 6 ) / 2 = 6 θ = 18 BAD = 12 () AD AD=BADCAD9 ABD ACD A 1 1 1 1 dsinαsinα = d 3 sin β 3 sin β

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

function2.pdf

function2.pdf 2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

吸収分光.PDF

吸収分光.PDF 3 Rb 1 1 4 1.1 4 1. 4 5.1 5. 5 3 8 3.1 8 4 1 4.1 External Cavity Laser Diode: ECLD 1 4. 1 4.3 Polarization Beam Splitter: PBS 13 4.4 Photo Diode: PD 13 4.5 13 4.6 13 5 Rb 14 6 15 6.1 ECLD 15 6. 15 6.3

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information