無電解めっきとレーザー照射による有機樹脂板上へのCuマイクロパターン形成

Similar documents

-99-







~::: :,/ ~7;



-17-
















~:::




















































~ 料 ii





















Transcription:

Title 無電解めっきとレーザー照射による有機樹脂板上への Cu マイクロパターン形成 Author(s) 菊地, 竜也 ; 和智, 悠太 ; 坂入, 正敏 ; 高橋, 英明 ; 飯野, 潔 ; 片山, 直樹 Citation 表面技術, 59(8): 555-561 Issue Date 2008-08 Doc URL http://hdl.handle.net/2115/36647 Type article (author version) File Information kikuchi2.pdf Instructions for use Hokkaido University Collection of Scholarly and Aca

Cu F a b r i c a t i o n o f C u M i c r o - p a t t e r n o n O r g a n i c R e s i n B o a r d by Electroless Plating and Laser Irradiation Ta t s u y a K I K U C H I, Yu t a WA C H I, M a s a t o s h i S A K A I R I, H i d e a k i TA K A H A S H I, K i y o s h i I I N O, a n d N a o k i K ATAYA M A 060-8628 13 8 G r a d u a t e S c h o o l o f E n g., H o k k a i d o U n i v., N 1 3 W 8, K i t a - ku, Sapporo, Hokkaido, 060-8628 071-8142 2 2 A s a h i k a w a N a t i o n a l C o l l e g e o f Te c h n o l o g y, S h u n k o h d a i 2-2, A s a h i k a w a, Hokkaido, 071-8142 060-0819 1

19 11 H o k k a i d o I n d u s t r i a l R e s e a r c h I n s t., N 1 9 W 11, K i t a - ku, Sapporo, Hokkaido, 060-0819 2

A b s t r a c t P r i n t e d c i r c u i t b o a r d w i t h a C u f i n e p a t t e r n w a s f a b r i c a t e d b y e l e c t r o l e s s p l a t i n g a n d l a s e r i r r a d i a t i o n. A g l a s s f i b e r - r e i n f o r c e d e p o x y r e s i n p l a t e w a s i m m e r s e d i n a P d 2+ c o n t a i n i n g s o l u t i o n, a n d t h e n C u m e t a l l a y e r w a s d e p o s i t e d o n t h e e p o x y r e s i n b y C u e l e c t r o l e s s p l a t i n g. A f t e r C u p l a t i n g, t h e C u d e p o s i t e d s p e c i m e n w a s i r r a d i a t e d w i t h a p u l s e d N d - YA G l a s e r i n a i r o r d o u b l y d i s t i l l e d w a t e r t h r o u g h a n i r i s d i a p h r a g m a n d a c o n v e x l e n s t o r e m o v e t h e C u l a y e r l o c a l l y. T h e w i d t h o f t h e C u r e m o v e d a r e a i n c r e a s e d w i t h i n c r e a s i n g l a s e r p o w e r a n d w i t h d e c r e a s i n g s c a n n i n g r a t e o f t h e l a s e r b e a m. I n t h e c a s e o f l a s e r i r r a d i a t i o n i n d o u b l y d i s t i l l e d w a t e r, t h e C u l a y e r a r o u n d t h e l a s e r i r r a d i a t e d - a r e a w a s r o l l e d u p t o f o r m l e s s p r e c i s e p a t t e r n s. F i n e C u - p a t t e r n c o i l s w i t h 6 0 µ m w i d t h a n d 2 0 µ m i n t e r v a l s w e r e f a b r i c a t e d o n t h e e p o x y r e s i n b y l a s e r i r r a d i a t i o n i n a i r. 3

E l e c t r o l e s s P l a t i n g, L a s e r I r r a d i a t i o n, M i c r o m a c h i n i n g, Printed Circuit Board 4

. 10 µ m 10 µm 1 2 3 Cu 4 5 Cu Cu Cu Cu 5

Cu Cu Cu Cu 6 7 Cu Cu Cu Cu Cu 6

Cu FR- 4 Cu 200 µ m 18 µ m Cu R a = 0. 9 4 µ m 30 20 m m 2 99.5 C 2 H 5 OH 10 m i n 20 20 m m 2 P d ( C H 3 COO) 2 / CH 3 COOH Pd 2+ 20 c m 3 10 m i n Pd 2+ Cu 20 c m 3 Cu LIBROR A E M - 5200 SHIMADZU SEM TM-1000 M i n i s c o p e H I TA C H I Cu 7

Cu a b Nd-YAG GCR-130-10 Spectra-Physics 532 n m 10 H z 8 n s 9 m m 0.5 m r a d. X Y Z PS-20 CPC-2DN 1.5 m m f = 6 0 m m SLQ-30-60P L L = 60.0 m m L = 67.0 m m P = 1.0-9.0 m W v = 1 0 5 0 µ m s - 1 10-20 µ m 8

SEM Cu w P v Cu Cu 9

Cu a SEM µm 5 µ m b Pd 2+ T pd = 3 2 8 K t pd = 1 0 m i n Cu T Cu = 3 6 3 K t pd = 1 80 m i n Cu µm Cu Cu Cu 7 10 µ m Cu Cu 10

Cu Pd 2+ T pd = 3 2 8 343 K 10min Cu T Cu = 3 4 3 3 6 3 K t Cu = 1 8 0 m i n ΔW Δ W Cu d t Cu d d = Δ W / ρ ρ Cu 8960 k g / m 3 293 K a T pd = 3 28 K / T Cu = 3 4 3 K Δ W t Cu 180 m i n Δ W 1.21 g m - 2 SEM 1 µ m Cu T Cu ΔW c T Cu = 3 6 3 K t Cu = 1 2 0 m i n Δ W d Pd 2+ T pd = 3 43 K Δ W Δ W 11

b d t Cu = 1 8 0 m i n Cu Pd 2+ P d ( C H 3 COO) 2 8 Cu Pd 2+ H 2 PO 2 - Pd 9 10 Pd 2+ + 2H 2 PO 2 - + 2OH - = Pd + 2H 2 PO 3 - + H 2 Pd Pd Cu 11 Cu 2+ + 2H 2 PO 2 - + 2OH - = Cu + 2H 2 PO 3 - + H 2 c d T pd Δ W P d ( C H 3 COO) 2 T pd t Cu = 1 2 0 m i n Δ W = 5 0 g m - 2 Cu Cu 2+ 47.7 g m - 2 t Cu = 1 2 0 m i n 20 c m 3 Cu 2+ C u 2+ 12

P Ni H 2 PO 2 - + ( 1 / 2 ) H 2 = P + O H - + H 2 O ( 4 ) Ni 2+ + 2H 2 PO 2 - + 2OH - = Ni + 2H 2 PO 3 - + H 2 ( 5 ) 1 1 ) Cu P Ni 0.3 3. 5 a t m 4 9. 3 g m - 2 3 Cu Cu t Cu = 1 2 0 m i n 5.5 µ m SEM 2b µ m 13

Cu d t Cu = 1 2 0 m i n Cu SEM 20 µm a P = 1. 0 m W 23 µ m Cu Cu Cu Cu 10 µ m Cu Cu 12 Cu b P = 5. 0 m W a Cu Cu Cu 14

a Cu v Cu w P w v P = 1. 0 m W v = 5 0 µ m s - 1 w 15 µ m Cu b v P w v P w P P = 7 m W w D f 13 D f = 2 / sin{tan - 1 (D 0 / 2 f ) } D 0 f = 5 3 2 n m D 0 = 1.5 m m f = 6 0. 0 m m D f = 2 7. 1 µ m a w w P = 1. 0 m W D f 15

P P Cu P P = 7. 0 m W b Cu Cu P Cu P = 1. 0 m W v P Cu SEM a P = 1. 0 m W Cu Cu Cu b P = 5. 0 m W Cu Cu Cu 16

Cu 150 µ m b Cu P = 3 mw Cu b Cu SEM Cu 50 µ m Cu Cu Cu Cu Cu Cu Cu a Cu Cu b 17

Cu c Cu 7) 10 µ m 6, 7 2 4 0 W m - 1 K - 1 0. 2 W m - 1 K - 1 Pd 2+ Cu SEM P = 1. 0 m W v = 5 0 µ m s - 1 10 µ m Cu Cu 18

60 µ m 20 µ m Cu Cu Cu Cu a SEM b Cu Cu Cu Cu a b c 19

Cu Cu Cu 20

Cu Cu Cu Cu Cu Cu 7 m W Cu Cu Cu Cu Cu 60 µ m 20 µ m Cu 21

COE 22

A. H i nata ; J. S u r f a c e F i n i s h. S o c. J p n., 55, 919( 2004) S. Yo s h i h a r a ; J. S u r f a c e F i n i s h. S o c. J p n., 56, 565( 2005) H. A k a b o s h i ; P r o c. O f t h e 1 0 6 th A n n u a l C o n f e r e n c e o f S F S J, 284( 2002) X. C. Wa n g, H. Y. Z h e n g, a n d G. C. L i m ; A p p l. S u r f. S c i., 200, 165( 2002) L. M. We e a n d L. L i ; A p p l. S u r f. S c i., 247, 285( 2005) I. Miyamoto ; J. JSPE, 65, 1560( 1999) T. K i k u c h i, M. S a k a i r i, H. Ta k a h a s h i, Y. A b e, a n d N. Katayama ; J. Electrochem. Soc., 148, C740( 2001) 8 H. J h a, T. K i k u c h i, M. S a k a i r i, a n d H. Ta k a h a s h i ; Electrochem. Commun., 9, 1596( 2007) 9 M. C h a r b o n n i e r, M. A l a m i, a n d M. R o m a n d ; J. A p p l. P h y s., 28, 449( 1998) 10 T. K h o p e r i a, T. J. Ta b a t a d z e, a n d T. I. Z e d g e n i d z e ; E l e c t r o c h i m. A c t a, 42, 3049( 1997) S. Z. C h u, M. S a k a i r i, a n d H. Ta k a h a s h i ; J. Electrochem. Soc., 147, 1423( 2000) E. Ohmura ; J. JSPE, 65, 1543( 1999) 23

, p. 77 ( 1 9 9 5 ) 24

Ta b l e 1 C h e m i c a l c o m p o s i t i o n o f P d 2+ c o n t a i n i n g s o l u t i o n and operating conditions. Ta b l e 2 C h e m i c a l c o m p o s i t i o n o f C u e l e c t r o l e s s p l a t i n g solution and operating conditions. F i g. 1 S c h e m a t i c m o d e l s o f l a s e r i r r a d i a t i o n s e t u p : a ) i n a i r a n d b ) d o u b l y d i s t i l l e d w a t e r. F i g. 2 S E M i m a g e s o f t h e s u r f a c e a n d v e r t i c a l s e c t i o n o f t h e s p e c i m e n a ) b e f o r e a n d b ) a f t e r C u e l e c t r o l e s s p l a t i n g. T h e s p e c i m e n s w e r e i m m e r s e d i n a P d 2+ c o n t a i n i n g s o l u t i o n a t 3 2 8 K f o r 1 0 m i n, a n d t h e n t h e C u l a y e r w a s d e p o s i t e d o n t h e s p e c i m e n b y e l e c t r o l e s s p l a t i n g a t 3 6 3 K f o r 1 8 0 m i n. F i g. 3 C h a n g e s i n t h e m a s s o f t h e s p e c i m e n, Δ W, a n d c a l c u l a t e d C u - l a y e r t h i c k n e s s, d, w i t h t i m e, t Cu, d u r i n g e l e c t r o l e s s p l a t i n g i n a C u e l e c t r o l e s s p l a t i n g s o l u t i o n a t d i f f e r e n t t e m p e r a t u r e s T Cu. B e f o r e e l e c t r o l e s s p l a t i n g, s p e c i m e n s w e r e i m m e r s e d i n a P d 2+ c o n t a i n i n g s o l u t i o n a t 3 2 8 and 343 K. F i g. 4 S E M i m a g e s o f t h e s u r f a c e o f t h e s p e c i m e n a f t e r l a s e r i r r a d i a t i o n i n a i r a t a ) P = 1. 0 m W a n d b ) 5. 0 m W. T h e s c a n n i n g s p e e d o f l a s e r b e a m w a s f i x e d a t v = 1 0. 0 µ m s - 1. 25

F i g. 5 E f f e c t o f a ) s c a n n i n g s p e e d, v, a n d b ) l a s e r p o w e r, P, o n t h e w i d t h o f C u - r e m o v e d a r e a b y l a s e r i r r a d i a t i o n i n a i r. F i g. 6 S E M i m a g e s o f t h e s u r f a c e o f t h e s p e c i m e n a f t e r l a s e r i r r a d i a t i o n i n d o u b l y d i s t i l l e d w a t e r a t a ) P = 1. 0 m W a n d b ) 5. 0 m W. T h e s c a n n i n g s p e e d o f l a s e r b e a m w a s f i x e d a t v = 10.0 µm s - 1. F i g. 7 S E M i m a g e o f t h e v e r t i c a l s e c t i o n o f t h e l a s e r irradiated- s p e c i m e n i n d o u b l y d i s t i l l e d w a t e r. F i g. 8 S c h e m a t i c m o d e l o f r o l l i n g - u p o f t h e C u l a y e r a l o n g the Cu- r e m o v e d l i n e a r a r e a f o r m e d b y l a s e r i r r a d i a t i o n. F i g. 9 S E M i m a g e o f a C u f i n e p a t t e r n c o i l f a b r i c a t e d b y s u c c e s s i v e s t e p s o f P d 2+ c o n t a i n i n g s o l u t i o n i m m e r s i o n, C u e l e c t r o l e s s p l a t i n g, a n d l a s e r i r r a d i a t i o n. G r a y p a r t s r e p r e s e n t C u d e p o s i t s a n d b l a c k p a r t s a r e g l a s s f i b e r - r e i n f o r c e d epoxy resin. F i g. 1 0 S E M i m a g e s o f t h e v e r t i c a l s e c t i o n o f t h e C u f i n e p a t t e r n c o i l a t a ) l o w a n d b ) h i g h m a g n i f i c a t i o n s. 26

Ta b l e 1 C h e m i c a l c o m p o s i t i o n o f P d 2+ c o n t a i n i n g s o l u t i o n a n d operating conditions. P d ( C H 3 COO) 2 8. 9 10-4 kmol m - 3 C H 3 C O O H 1. 7 k m o l m - 3 Te m p e r a t u r e, T Pd I m m e r s i o n t i m e, t P d 3 2 8, 3 4 3 K 1 0 m i n p H 2. 1 27

Ta b l e 2 C h e m i c a l c o m p o s i t i o n o f C u e l e c t r o l e s s p l a t i n g solution and operating conditions. C u S O 4 0. 0 3 k m o l m - 3 H 3 BO 3 0. 2 5 k m o l m - 3 N a H 2 PO 2 0. 2 7 k m o l m - 3 N i S O 4 0. 0 0 2 k m o l m - 3 S o d i u m c i t r a t e 0. 0 6 k m o l m - 3 Te m p e r a t u r e, T Cu P l a t i n g t i m e, t Cu 3 4 3, 3 5 3, 3 6 3 K 6 0, 1 2 0, 1 8 0 m i n p H 9. 2 ( A d j u s t e d w i t h N a O H ) 28

Iris diaphragm Lens Shutter Nd-YAG laser doubly distilled water XYZ-stage Specimen Quartz window a) Laser irradiation in air b) in water Fig. 1 Schematic models of laser irradiation setup: a) in air and b) doubly distilled water.

a) tcu = 0 min 20 µm 10 µ m b) tcu = 180 min Cu 20 µ m Substrate 10 µ m Fig. 2 SEM images of the surface and vertical section of the specimen a) before and b) after Cu electroless plating. The specimens were immersed in a Pd2+ containing solution at 328 K for 10 min, and then the Cu layer was deposited on the specimen by electroless plating at 363 K for 180 min. 菊地竜也 和智悠太 坂入正敏 高橋英明 飯野潔 片山直樹

Mass change, W / g m -2 d) T pd = 343 K / T Cu = 363 K c) 328 K / 363 K b) 328 K / 353 K a) 328 K / 343 K Calculated thickness, d / µm Electroless plating time, t Cu / min Fig. 3 Changes in the mass of the specimen, W, and calculated Cu-layer thickness, d, with time, t Cu, during electroless plating in a Cu electroless plating solution at different temperatures T Cu. Before electroless plating, specimens were immersed in a Pd 2+ containing solution at 328 and 343 K.

a) P = 1.0 mw 200 µm 60 µm b) P = 5.0 mw 200 µm 60 µ m Fig. 4 SEM images of the surface of the specimen after laser irradiation in air at a) P = 1.0 mw and b) 5.0 mw. The scanning speed of laser beam was fixed at v = 10.0 µm s-1. 菊地竜也 和智悠太 坂入正敏 高橋英明 飯野潔 片山直樹

a) Cu removed width, w / µm 7.0 mw 5.0 mw 3.0 mw P = 1.0 mw 9.0 mw b) Cu removed width, w / µm v = 10 µm s -1 20 µm s -1 30 µm s -1 40 µm s -1 50 µm s -1 Laser power, P / mw Fig. 5 Effect of a) scanning speed, v, and b) laser power, P, on the width of Curemoved area by laser irradiation in air.

a) P = 1.0 mw 200 µm b) P = 5.0 mw 200 µm Fig. 6 SEM images of the surface of the specimen after laser irradiation in doubly distilled water at a) P = 1.0 mw and b) 5.0 mw. The scanning speed of laser beam was fixed at v = 10.0 µm s -1.

Resin Cu Substrate 20 µm Fig. 7 SEM image of the vertical section of the laser irradiated-specimen in doubly distilled water.

a) Laser Cu Epoxy resin b) c) Fig. 8 Schematic model of rolling-up of the Cu layer along the Cu-removed linear area formed by laser irradiation.

500 µm Fig. 9 SEM image of a Cu fine pattern coil fabricated by successive steps of Pd 2+ containing solution immersion, Cu electroless plating, and laser irradiation. Gray parts represent Cu deposits and black parts are glass fiber-reinforced epoxy resin.

a) Resin Cu Substrate 100 µm b) 20 µm Fig. 10 SEM images of the vertical section of the Cu fine pattern coil at a) low and b) high magnifications.