02[ ]小林(責).indd

Similar documents
ohp_06nov_tohoku.dvi

ver.1 / c /(13)

(a) (b) (c) 4. (a) (b) (c) p.2/27

R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á

リカレンスプロット : 時系列の視覚化を越えて (マクロ経済動学の非線形数理)

$/\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{y}\mathrm{a}$ MIYANO E mail: hirosaki-u.ac.jp 1 ( ) ( ) 1980

橡kenkyuhoukoku8.PDF

(time series) ( 225 ) / / p.2/66

fiš„v8.dvi

Takens / / 1989/1/1 2009/9/ /1/1 2009/9/ /1/1 2009/9/30,,, i

鉄鋼協会プレゼン

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA)


IPSJ SIG Technical Report Vol.2014-EIP-63 No /2/21 1,a) Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on tra

September 9, 2002 ( ) [1] K. Hukushima and Y. Iba, cond-mat/ [2] H. Takayama and K. Hukushima, cond-mat/020

ẋ = ax + y ẏ = x x by 2 Griffith a b Saddle Node Saddle-Node (phase plane) Griffith mrna(y) Protein(x) (nullcline) 0 (nullcline) (

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2

316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and

Nosé Hoover 1.2 ( 1) (a) (b) 1:

⑥宮脇論 123~229○/宮脇先生

dsample.dvi

資料5:聖ウルスラ学院英智小・中学校 提出資料(1)

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i


Taro13-第6章(まとめ).PDF

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

sakigake1.dvi

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

58 10

陽電子科学 第4号 (2015) 3-8

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

kiyo5_1-masuzawa.indd


特集_03-07.Q3C

RX501NC_LTE Mobile Router取説.indb

JAPAN MARKETING JOURNAL 116 Vol.29 No.42010

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

TCSE16



THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE k

2 33,**. + : +/* /++** +/* /++** +/* /++** /** /** F+ +*** F+ +*** / 1*42.,43 /14+,*42 /, , 134,.,43 / 0-41,*42.4, -/41,*43,34,,+4. +

Report2009_Softsensor.dvi

Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Departmen

Mhij =zhij... (2) Đhij {1, 2,...,lMhij}... (3)

人文学部研究年報12号.indb

2017

光学

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

量子情報科学−情報科学の物理限界への挑戦- 2018

ZEMAX Nagata DLL Volume-CAD c Copyright by RIKEN All Rights Reserved : : ( )

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

D _SR_DENSEI_QX


IntroductionToQuantumComputer

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi


UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

2 3


000ŒÚ”Ł

28Łª”q-11…|…X…^†[

「個人をどう捉えるか」で変わる教育シーン

untitled

untitled

‚䔃OK

HP・図書リスト( ).xlsx

.....I.v.{..


好きですまえばし



揃 Lag [hour] Lag [day] 35

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

MRI X......

.g.i.~.^.A

ヴィエトナム高原におけるマッシュルーム栽培の基本

2.

Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student M

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

Microsoft Word - ‚²‰ÆŸ_Ł¶−®’¬.doc

1


2013 M

<95DB8C9288E397C389C88A E696E6462>

53

EndoPaper.pdf

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.


x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

untitled

200708_LesHouches_02.ppt


163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

Transcription:

43 Delayed Feedbac Control Delayed Feedbac Control Prediction-based Feedbac Control 1, 2 GDP

44 66 3 3 2 Ott, Grebogi Yore OGY 4 OGY OGY OGY OGY OGY 3, 5, 6 OGY Pyragas Delayed Feedbac Control DFC 7 DFC 2 DFC OGY 3, 8, 9, 1 DFC DFC 11, 12

45 2 Delayed Feedbac Control Delayed Feedbac Control 3 Delayed Feedbac Control Prediction-based Feedbac 4 5 Delayed Feedbac Control DFC 7 f R n R n n x 1 f x K x τ x, 1 K R n n Z τ Z x R n 1 K x τ x Delayed Feedbac Control K τ K τ DFC x τ x x τ x τ DFC DFC

46 66 3 x 1 ax 1 x, 2 a a 3.5699 a 3.7 x 1 ax 1 x K x τ x. 3 K 2 2 x f 1, x f 2 x f 1 a 1 a, x f 2. 2 2 δx i 1 a 2ax fi δx i, 4 δx x i x fi, i 1, 2 2 x fi, i 1, 2 1 τ 1 K x 1 x x 1 ax 1 x K x 1 x, 5 w x 1 x 1 ax 1 x K w x, 6 w 1 x. 7 1 2

47 6 7 x fi, i 1, 2 δx i 1 a 2ax fi K K δx i δw i 1 1 δw i 8 δx x i x fi, δw w i x fi, i 1, 2 x f 1 DFC x f 1 2 4 a 2ax f 1 2 a a 3.7 2 a 1 x f 1 x f 1 DFC 5 x f 1 8 1 1 K 3 a 2 K x f 1 Jury 13 x f 2 DFC x f 2 x f 2 DFC 11, 12 1 DFC x f 2 x f 2 4 a a 3.7 x f 2 1

48 66 3 x f 2 DFC 6 7 x f 2 a K K 1 a 3.7 2 1 1 Jury K x f 2 DFC 1 Prediction-based Feedbac Control PFC 14, 15, 16 DFC τ PFC τ u K x τ x, x R n K x τ τ PFC x 1 f x K x 1 x 9 DFC PFC DFC PFC

49 PFC 17 PFC 1 x f 1, x f 2 PFC x 1 ax 1 x K x 1 x, 1 a 2 x fi, i 1, 2 δx i 1 2a 1 K x fi a ak K δx i, 11 δx i x x fi. DFC 1 K 2 2a 1 K x fi a ak K 1. 12 DFC x f 2 PFC x f 2 12 a 1 1 a K 1 K PFC DFC PFC x τ 1

5 66 3 u K x p τ x, x p τ τ PFC x τ x p τ PFC 18, 19 2 PFC 1 16 u x 1 f x, u. 13 τ u K x p τ x, K x p τ 13 x 1 f x, τ PFC PFC u K x τ x

51 DFC 7 u K x τ x PFC 14, 15 PFC 2 x system x system f x system, x data x data x data f x data, x system τ x p τ x data f x data, t p x data t p x data x system 1 x data, t p x system f x system, x system τ x system 13 x x data τ x system τ x * τ x p τ x * τ u K x p τ x K x * τ x x 1 3.7x 1 x x data, x system τ x system 1 τ data t p 1 x data x system x p x system t p τ * data τ 1 1 data

52 66 3 x p x τ system t p x data x system t p τ t p data x system x τ 1 1.31.21.1 1.31.21.6 5.31.21.45 1.31.21.241 τ 5 1.41.11.6 1.41.11.81 5.41.11.142 1.41.11.957 τ 1 1.41.11.7 1.41.11.187 1.41.11.663 radial basis function 19 PFC a 3.7 x 1 3.7x 1 x. 14 x 1 PFC 14 x 1 3.7x 1 x K x p τ x,

53 x 1.8.6.4.2 2 4 6 8 1 2 15 1 5.1.2.3.4.5.6.7.8.9 1 x x distribution function of x, P(x) x p τ 14 τ K u K x p τ x, if x τ x.1,, otherwise. 15 x fp a 1 a.7297 12 K.5 12 K x τ x K x p τ x 12 K x p τ 12 K 2 x p t p 1 2 x x fp.7297

54 66 3 x 1.8.6.4.2 2 4 6 8 1 distribution function of x, P(x) 5 4 3 2 1.2.4.6.8 1 x K.5 t p 1 x x 1.8.6.4.2 1 2 3 4 5 distribution function of x, P(x) 5 4 3 2 1.2.4.6.8 1 x K.5 t p 5 x 3 t p 5 3 x x fp.7297 1 t p 5 4 t p 1

55 x 1.8.6.4.2 2 4 6 8 1 K.5 t p 1 x distribution function of x, P(x) 2 15 1 5.2.4.6.8 1 x t p.1 t p 1 1 5 1 1 1 5 6 2 3 1 4 x fp 2 t p.1 1 1 2 t p 1

56 66 3 8 Delayed Feedbac Control DFC Prediction-based Feedbac Control PFC DFC PFC 21, 22 DFC 23 Delayed Feedbac Control DFC PFC PFC DFC x 1 f x, x τ1, x τ2 x τ2

57 1 Khalil K. H.: Nonlinear Systems, Prentice Hall 22. 2 1994. 3 edited by Schuster, H. F.: Handboo of Chaos Control. Wiley-VCH, Weinheim 1999. 4 Ott, E., Grebogi C., and Yore J. A.: Controlling chaos, Phys. Rev. Lett., 64, 1196 1199 199. 5 Romeiras, F. J., Grebogi, C., Ott, E. and Dayawansa, W. P.: Controlling chaotic dynamical systems, Physica D, 58, 165 192 1992. 6 Shinbrot, T., Grebogi, C., Ott, E., and Yore, J. A.: Using small perturbation to control chaos, Nature, 363, 411 417 1993. 7 Pyragas, K.: Continuous control of chaos by self-controlling feedbac, Phys. Lett. A, 17, 421 428 1992. 8 Just, W.: Delayed feedbac control of periodic orbits in autonomous systems, Phys. Rev. Lett., 81, 562 565 1998. 9 Bielawsi, S., Derozier, D., and Glorieux, P.: Controlling unstable periodic orbits by a delayed continuous feedbac, Phys. Rev. E, 49, R971 1994. 1 Kobayashi, U. M. and Aihara K.: Delayed feedbac control method for dynamical systems with chaotic saddles, AIP Conf. Proc., 1468, 27 215 212. 11 Just, W., Bernard, T., Ostheimer, M., Reibold, E., and Benner H.: Mechanism of time delayed feedbac control, Phys. Rev. Lett., 78, 23 26 1997. 12 Naajima, H.: On analytical properties of delayed feedbac control of chaos, Phys. Lett. A, 232, 27 21 1997. 13 Phillips, L. C., and Nagle, T. H., Digital Control System Analysis and Design, PrenticeHall 1984. 14 Vieira, M. de S. and Lichtenberg, A. J.: Controlling chaos using nonlinear feedbac with delay, Phys. Rev. E, 54, 12 127 1996. 15 Ushio, T. and Yamamoto, S.: Prediction-based control of chaos, Phys. Lett. A, 264, 3 35 1999. 16 Kobayashi, U. M., Ueta, T., and Aihara, K.: Feedbac Control Method

58 66 3 based on Predicted Future States for Controlling Chaos, Springer, Analysis and Control of Complex Dynamical Systems, 19 12 215. 17 Bouabou, A., Chebbah A. and Mansouri N.: Predictive control of continuous chaotic systems, Int. J. Bifurcation and Chaos, 18, 587 592 28. 18 Sugihara, G. and May, R. M., Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, Nature, 344, 734 741 199. 19 Casdagli, M., Nonlinear Prediction of Chaotic Time Series, Physica D, 35, 335 356 1989. 2 Lorenz, E. N.: Atmospheric Predictability as Revealed by Naturally Occurring Analogues, Jour. Atmos. Scie., 26, 636 646 1969. 21 Naajima, H. and Ushio, Y., Half-period delayed feedbac control for dynamical systems with symmetries, Phys. Rev. E, 58, 1757 1763 1998. 22 Morita, Y., Fujiwara, N., Kobayashi, U. M., and Mizuguchi, T., Scytale decodes chaos: A method for estimating unstable sysmmetric solutions, CHAOS 2, 13126-1 13126-6 21. 23 Fiedler, B., Flunert, V., Georgi, M., Hövel, P., and Schöll, E., Refuting the odd-number limitation of time-delayed feedbac control, Phys. Rev. Lett. 98, 11411-1 11411-4 27.