untitled

Similar documents
Journal of the Combustion Society of Japan Vol.51 No.155 (2009) FEATURE Clarification of Engine Combustion and the Evolution デ

研究成果報告書

長崎通信 No.85

長崎の証言ニュース No.32

ヒロシマ・ナガサキ通信 No.136

ヒロシマ・ナガサキ通信 No.171

ナガサキ・ヒロシマ通信 No.205

後進国における近代化・工業化への途と社会主義

パサージュをめぐって

ヘミングウェイと狂気

後三年記の研究 上

大学生における発達障害とその周辺~社会人になるまでにできること~

明治十四年の政変の真相 (1)

場屋営業の責任について

ビスマルクの社会観と社会主義

「北進」論と「根據地」論

王鐸の書

カントの「理性批判」の現代的意義

「いぶせし」語義考

インドの家族関係 ― 序説 ―

耐久財独占企業の行動戦略

戦前における外国史教育の歴史 (1)

二重被爆 ―原子雲の下に生命を伏せて―

「神戸小学生惨殺事件」の文理融合(学際)的考察

雑々集「第二・三・四話」の成立 ―松井本和泉式部集との関係―

常世国の存在位置と不老不死性の関係についての一考察

Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ

フリードリッヒ・デュレンマットの 初期散文作品集「町」について

2ヒンジ円弧アーチの面内座屈特性に関する研究

使用者の懲戒権に関する一考察 -若干の整理-

ネパール人女性の体格調査

審査委員会081214_4章まで.ppt

長崎と米庵及び寛齋

教室説明会1113.ppt

長崎医学の百年, 第四章 長崎医学の復興, 第五節 西南の役と長崎病院

長崎市におけるテレビ視聴状況調査について

劇場と観客

アメリカ人と日本人の断わり表現の比較

長崎医学の百年, 第二章 長崎医学の基礎, 第五節 ポンペの衛生行政

有馬氏の領国支配

教育の方法・技術 ―幼稚園・小学校教材開発例―

『冬物語』における悲喜劇の論理


大名領国の経済に関する二・三の問題 : 大友氏を中心として

近世長崎の自治について : 町役人の選任法を中心に

Chaucer と『リディア物語』 II

みどり荘事件-私の雪冤のたたかいとその後-

天津甕星の解釈について

分記法と三分法についての一試論 : 利益概念の立場から

長崎医学の百年, 第一章 西洋医学伝来, 第二節 出島のオランダ商館医

授業の展開過程に位置づく教材開発のための基礎的研究

精神疾患のさまざま~学生時代および大学卒後のメンタルヘルス~

Evelyn Waugh の「笑い」について -Decline and Fall の場合-

090117公聴会_提出版.ppt

大本営発表の成り立ちについての一考察 -北九州初空襲の場合-

1975年大分県中部地震による小田の池レストハウスの被害に関する一考察

GEOFFREY CHAUCER の英語 (Ⅷ)

KJ pdf

ポリウレタンの粘弾性

内管が軸方向に動く偏心環状流路内の十分に発達した層流の厳密解

インドの第3次5ヵ年計画期における外資政策の展開過程

明治38年の長崎県水産業経済調査について

「日本的民主主義」批判序説

あんこう網漁業の発達:有明海での生成と朝鮮海出漁

「金瓶梅」の発想

朝鮮人強制連行における企業のイニシアチブ

35TS.indd

タイオワン(台湾)をめぐる17世紀の海外貿易

特高による教育界弾圧の諸情況 ―その一―

「表現」ということについて(冒頭要旨) ―散文から韻文にわたって―

社会変動と生活環境の変容―応用民俗学の試み

日本語文例理解の困難点 : ベトナム在住ベトナム人学習者の場合

KJ pdf

ホーフマンスタールの悲劇「塔」に関する一試論

戦後の日本における品質向上とQC

新居浜市における工事中断中のゴルフ場開発計画の経緯から生ずる法的諸問題 : 災害発生の防止と責任の観点から

ドイツにおける廃棄物政策と循環型経済構想

曹魏屯田の系譜試論

蘭・唐貿制限政策と蘭・唐貿易船からの抜荷

個人差に対応するためのオープンスペース活用 ―小学校家庭科の場合―

ラサールの「閲兵演説」とゾーリンゲン電報

KJ pdf

JosephConradのTheShadow-Lineにみる「キニーネ」が存在しない意味

農民厚生と副業の展開-2 : 「広島県における農家副業調査」による一接近

ヴァレット―ディシック「教師の行動の評価」

女子バスケットボールチームにおけるトレーニングとコンディショニング

I-2章 地域福祉システムと地域生活協同組織(I 地域福祉システムの創造)

昭和初年,文部省学生部設置前後の学生(生徒)をめぐる閉塞的諸状況

自律学習用CAI教材;Birthday Party;-Macromedia社;Authorwareによる改訂;-

大正デモクラシーと盲聾教育 ―「盲学校及聾唖学校令」の成立過程の分析を通して―

7. 臨床キャンパスの惨劇 - 2

ハエ類の生態学的研究 : 1.畜舎からのイエバエとサシバエの発生量について

長崎県民の健康・スポーツに関する調査研究-とくに主婦のスポーツ活動について

<研究論文>表記形式と普遍性 : 「文字圏の文明史」から見た現代日本

異文化間に生じるイメージ・ギャップに関する一考察 : ステレオタイプのスペイン像を中心として

廣瀨淡窓の思想についての諸説批判

子どもの攻撃性と他者認識

長崎居留地貿易時代の内地通商と居留地自治行政

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405

遠藤周作『沈黙』の研究―日本的精神風土の象徴:井上筑後守について―

Transcription:

NAOSITE: Nagasaki University's Ac Title Author(s) 予混合圧縮着火機関における天然ガスおよびメタノールの着火 燃焼特性に関する研究 鄭, 奭鎬 Citation (2008-03-19) Issue Date 2008-03-19 URL http://hdl.handle.net/10069/16303 Right This document is downloaded http://naosite.lb.nagasaki-u.ac.jp

C θ θθ

R γ ε θ φ

ATDC BHP BTDC CA CLD CNG COV DME DPF EGR HCCI H-FID HTR LPG LTR MeOH NDIR NG PCCI PM ROHR SCR TDC After Top Dead Center Brake Horse Power Before Top Dead Center Crank Angle ChemiLuminescence Detector Compressed Natural Gas Coefficient of Variation DiMethyl Ether Diesel Particulate Filter Exhaust Gas Recirculation Homogeneous Charge Compression Ignition Hydrogen-Flame Ionization Detector High Temperature Reaction Liquid Petroleum Gas Low Temperature Reaction Methanol Non-dispersive infrared absorption Natural Gas Pre-mixed Charge Compression Ignition Particulate Matter Rate of Heat Release Selective Catalytic Reduction Top Dead Center

SCR(Selective Catalytic Reduction) DPF(Diesel Particulate Filter)

Table 1-1 Trend of emission regulations in diesel engine (a) Emission regulations for diesel passenger car (b) Emission regulationsfor diesel truck

Figure 1-1 Trend of crude oil price Figure 1-2 Prospect of fuel demand in Europe (source: EUCAR)

(Premixed-Charge Compression Ignition Engine) (Homogeneous Charge Compression Ignition Engine) PREDIC(PREmixed lean Diesel Combustion) process

2 θκ κ κ,,,

θ θ Figure 2-1 Definitions of LTR and HTR, ignition timings of LTR and HTR, and maximum dq/dθ of LTR and HTR Figure 2-2 Heat Release Rate with small LTR

Figure 2-3 Definition of CA10, CA50 and CA100 on cumulative ROHR

21 21

γ 100 100 100

100 η 100 Figure 2-4 Schematic diagram of heat balance analysis

3 Figure 3-1 LTR scheme for CH 3 OCH 3 oxidation

Figure 3-2 Overall reaction scheme for CH 4 oxidation [50]

Figure 3-3 LTR scheme for CH 3 OH oxidation [53]

Figure 3-4 Change in mole fraction of major species during the HCCI combustion process [57]

Figure 3-5 ROHR profiles with 5% addition of different ignition improvers [61]

Figure 3-6 Mass fraction of H 2 O 2, CH 2 O and radicals H, OH and HO 2 as a function of crank angle for three additives [61] Figure 3-7 Experimental and calculated species fractions at exhaust as a function of added methanol/dme ratio [53]

4 Table 4-1 Engine specifications Specifications Single cylinder 4 cylinders Engine type Cycle Cooling system Bore and Stroke [mm] Displacement volume [cc] Compression ratio Maximum power [kw/rpm] YANMAR NFD170-(E) 4 Water 102 and 105 857 17.8 12.5/2400 ISUZU 4JB1-2 4 Water 93 and 102 2771 18.2 64.7/3600

Table 4-2 Properties of test fuels Gas oil DME Natural gas Methanol Chemical structure 0.8378 CH 3 OCH 3 CH 4 (88%)+Others CH 3 OH Lower heating value 42.9 28.9 49.1 19.9 [MJ/kg] Cetane number 55 60 0 3 Ignition point [K] 520 620 920 740 Stoichiometric A/F ratio 14.50 8.98 17.10 6.45 %wt.carbon 86.5 52.2 79.4 37.5 %wt.hydrogen 13.5 13.0 20.6 12.6 %wt.oxygen 0 34.8 0.0 49.9

Figure 4-1 Fuels supply and EGR system in single cylinder engine

Figure 4-2 Premixed charge and port injectionsystems of methanol in four cylinder engine

Figure 4-3 Schematic diagram of methanol port injection system Figure 4-4 Schematic diagram of control circuit for port injection

TESTO 350M/XL()

± ± ± ± ± ±

5 θ θ

(a) Change in combustion history (b) Change in exhaust emissions and fuel consumption Figure 5-1 Effect of amount of gas oil as ignition source in NG PCCI engine (Pme=0.33[MPa], T IN =120[ C], θ inj =5 BTDC, d N =0.20[mm], ε=18.2)

Figure 5-2 Effect of injection amount of gas oil as ignition source on misfire limit in NG PCCI engine (θ inj =5 BTDC, d N =0.20[mm], ε=18.2) Figure 5-3 Change in combustion history due to engine load in NG PCCI engine (T IN =80[ C], G GO =1.47[mg/cycle], θ inj =5 BTDC, d N =0.20[mm], ε=18.2)

Pme=0.33[MPa] (b)pme=0.49[mpa] Figure 5-4 Change in combustion history due to intake temperature in NG PCCI engine (G GO =1.47[mg/cycle], θ inj =5 BTDC, d N =0.20 [mm], ε=18.2)

Figure 5-5 Change in combustion history due to EGR ratio in NG PCCI engine (Pme=0.33[MPa], T IN =80[ C], G GO =1.47[mg/cycle], θ inj =5 BTDC, d N =0.20 [mm], ε=18.2)

Figure 5-6 Effects of EGR and intake temperature on exhaust emissions and fuel consumption in NG PCCI engine (Pme=0.33[MPa], G GO =1.47[mg/cycle], θ inj =5 BTDC, d N =0.20 [mm], ε=18.2) θ

Figure 5-7 Relationship between maximum burning rate and oxygen concentration in NG PCCI engine (G GO =1.47[mg/cycle], d N =0.20 [mm], ε=18.2)

Figure 5-8 Relationship between ignition delay and mean gas temperature at ignition point in NG PCCI engine (d N =0.20[mm]) θ ±

Figure 5-9 Relationship between maximum ROHR and mean gas temperature at maximum ROHR point in NG PCCI engine

(a) Port injection (b) Premixed charge Figure 5-10 Change in combustion history due to engine load in MeOH PCCI engine; Comparison between port injection and premixed charge of methanol (T IN-m 100[ C], G GO =7.35[mg/cycle], θ inj =5 BTDC, d N =0.28[mm], ε=16.2)

φ Figure 5-11 Effect of methanol charge method on exhaust emissions and fuel consumption in MeOH PCCI engine (T IN-m 100[ C], G GO =7.35[mg/cycle], θ inj =5 BTDC, d N =0.28[mm], ε=16.2)

θ ε Figure 5-12 Effect of injection amount of gas oil on misfire limit in MeOH PCCI engine (Premixed charge, θ inj =5 BTDC, ε=16.2)

θ ε (a) Change in combustion history (b) Change in exhaust emissions and fuel consumption Figure 5-13 Effect of EGR ratio in MeOH PCCI engine (Pme0.33[MPa], T IN-m 140[ C], G GO =4.90[mg/cycle], θ inj =5 BTDC, d N =0.20 [mm], ε=16.2) θ ε

ε ε ε

± ± ± ± ± Figure 5-14 Relationship between ignition delay and in-cylinder mean gas temperature at ignition timing in MeOH PCCI engine

Figure 5-15 Relationship between maximum ROHR (dq/dθ) max or 2p and in-cylinder mean gas temperature at maximum ROHR in MeOH PCCI engine

(a) Pme=0.33[MPa], θ inj =10[ BTDC] (b) Pme=0.66[MPa], θ inj =TDC Figure 5-16 Improvement in trade-off between NOx and smoke by natural gas charge with EGR (T IN =120[C], d N =0.20[mm], ε=18.2)

(a) Pme=0.33[MPa], T IN-m =140[C] (b) Pme=0.66[MPa], T IN-m =100[C] Figure 5-17 Improvement in trade-off between NOx and smoke by premixed charge of methanol with EGR (θ inj =5[ BTDC], d N =0.28[mm], ε=16.2)

± ± ±

6

(a) Natural gas (b) Methanol Figure 6-1 Change in DME combustion due to natural gas fraction or methanol fraction in single cylinder HCCI engine (Pme=0.13[MPa], T IN =60[ C])

Figure 6-2 Effect of natural gasfraction or methanol fraction on exhaust emissions and fuel consumption in single cylinder HCCI engine (Pme=0.13[MPa], T IN =60[ C]) φ φ φ

(a) Natural gas (b) Methanol Figure 6-3 Change in combustion history due to engine load in single cylinder HCCI engine (T IN =60 [ C])

Figure 6-4 Comparison of exhaust emissions and fuel consumption between single cylinder HCCI engine and diesel engine (T IN =60[ C])

Figure 6-5 Change in maximum ROHR of LTR due to cetane number in single cylinder HCCI engine

Figure 6-6 Relationship between ignition temperatures of LTR and HTR, and cetane number in single cylinder HCCI engine

± ± Figure 6-7 Relationship between maximum ROHR of HTR and in-cylinder mean gastemperature at maximum ROHR of HTR in single cylinder HCCI engine

φ φ (a) Stable running condition (b) Unstable running condition (Pme=0.33[MPa], φ DME =0.062, (Pme=0.38[MPa], φdme=0.058, COV imep =1.55) COV imep =9.34) Figure 6-8 Variations of engine speed and maximum in-cylinder pressure during 350 cycles in multi-cylinder DME/NG HCCI engine (T IN =40 [ C])

φ ± ± Figure 6-9 Change in COV imep due to φ DME and intake temperature in multi-cylinder DME/NG HCCI engine

φ φ φ φ φ Figure 6-10 Cylinder-to-cylinder variations of liner temperature at top ring position under stable and unstable running conditions in multi-cylinder DME/NG HCCI engine (T IN =40[ C])

φ φ Figure 6-11 Comparison of cylinder-to-cylinder variations of exhaust gas temperature between stable condition with φ DME =0.062 and unstable condition with φ DME =0.058 in multi-cylinder DME/NG HCCI engine (T IN =40[ C])

Figure 6-12 Cylinder-to-cylinder variations of exhaust gas temperature due to amount of DME in multi-cylinder DME/NG HCCI engine (Pme=0.25 [MPa])

φ φ Figure 6-13 Change in combustion history due to engine load in single cylinder HCCI engine (X EGR =0.5, T IN =60[ C])

Figure 6-14 Effect of EGR ratio on exhaust emissions and fuel consumption in single cylinder HCCI engine (T IN =60[ C])

(a) X EGR =0.0 (b) X EGR =0.2 (c) X EGR =0.4 Figure 6-15 Change in combustion history due to engine load in multi-cylinder HCCI engine (T IN =60[ C])

Figure 6-16 Effect of EGR ratio on exhaust emissions and fuel consumption in multi cylinder HCCI engine (T IN =60[ C])

η loss-cool η loss-exh η loss-cool η loss-exh (a) Single cylinder (b) Multi cylinder Figure 6-17 Effect of EGR ratio on heat balance in DME/NG HCCI engine (T IN =60[ C])

Figure 6-18 Correlation between thermal efficiency increment and EGR ratio in DME/NG HCCI engines (T IN =60[ C])

Figure 6-19 Correlation between THC decrement and EGR ratio in DME/NG HCCI engine (T IN =60[ C])

(a) Single cylinder (Pme=0.26[MPa]) (b) Multi cylinder (Pme=0.33[MPa]) Figure 6-20 Change in cumulative heat release due to EGR in DME/NG HCCI engines (T IN =60[ C])

Figure 6-21 Correlation between thermal efficiency and combustion efficiency increments due to EGR in DME/NG HCCI engines (T IN =60[ C])

Figure 6-22 Running load range in relation between CA50 and Pme (Single cylinder DME/NG HCCI engine, T IN =60 [ C])

Figure 6-23 Running load range in relation between CA50 and Pme (Multi cylinder DME/NG HCCI engine, T IN =60 [ C])

± ±

7

± ± ± ± ±