Title 直交基底気泡関数要素安定化法による流体解析 ( 計算科学の基盤技術としての高速アルゴリズムとその周辺 ) Author(s) 松本, 純一 Citation 数理解析研究所講究録 (2008), 1614: Issue Date URL

Similar documents
133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

~ ご 再 ~














Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL











































Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL






FA - : (FA) FA [3] [4] [5] 1.1 () 25 1:







c,-~.=ー


~











FA $*1$ $*$ 1, $*$2 : $*2$ : Takehiro Takano $*$ 1, Katsunori Ano*2 $*1$ : Graduate School of Engineering and Science, Shibaura Ins
















Transcription:

Title 直交基底気泡関数要素安定化法による流体解析 ( 計算科学の基盤技術としての高速アルゴリズムとその周辺 ) Author(s) 松本 純一 Citation 数理解析研究所講究録 (2008) 1614: 187-198 Issue Date 2008-10 URL http://hdlhandlenet/2433/140100 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University

10 12 $[$ 13 $[$ 1 1614 2008 187-198 187 Orthogonal Basis Bubble Function Element Stabilization Method for Fluid Analysis ) (Junichi Matsumoto) Advanced Manufacturing Research Institute National Institute of Advanced Industrial Science and Technology (AIST) Summary A two-level three-level formulation of finite element method with bubble function is proposed for the incompressible Navicr-Stokes equations Numerically spatial discretization is applied to the mixed interpolation for the velocity and pressure fields by bubble element and linear element respectively Numerical solutions for shape optimization with shape smoothing based on selective lumping method of flow past a circular cylinder are treated in this paper The purpose of the study is to formulate and solve an analysis of shape optimization for Navier-Stokes equations with unsteady flow To improve efficiency stability and accuracy of the calculation the mixed interpolation that uses an orthogonal basis bubble function element stabilization method for the state equations of incompressible viscous fluid is applied To validate the present method shape optimizatim for drag force of flow past a circular cylinder with periodic flow is analyzed Keywords: Navier-Stokes equations shape optimization shape smoothing bubble function element stabilization method orthogonal basis bubble function element 1 Navier-Stokes 3 $]$ $]$ $]$ $]$ Stokes $[$2 $[$3 $[$4 $[5][6 $ Navier-Stokes $]$ $[$8$]$ $[$9$]$ $[$ $]$ $]$ $[$ $]$ $[$7 $[$11 Navier-Stokes $]$ ( ) [13][14][15] Navier-Stokes [16] $[17 $

$\Gamma_{2}$ 188 2 $\dot{u}_{i}+u_{j}u_{ij}+p_{i}-\nu(u_{ij}+u_{ji})_{j}=0$ $in$ (1) $u_{ii}=0$ $in$ (2) $\Gamma$ $u_{i}$ $p$ $\nu=1/re$ $Re$ $\Gamma_{1}$ $u_{i}=\hat{u}_{i}$ $on$ $\Gamma_{1}$ (3) $\{-p\delta_{ij}+\nu(u_{ij}+u_{ji})\}\cdot n_{j}=t_{i}$ $on$ $\Gamma_{2}$ (4) $\delta_{ij}$ $\Gamma_{2}$ $n_{j}$ 3 31 MINI MINI [14] $]$ SUPG$/PSPG$ [18] BTD $[$19 MINI ( ) ( ) [15] 1: MINI MINI 1 ( 1 )

$\langle\dot{u}_{i}^{h}$ 189 32 $]$ 2 3 2 3 $[$15 $\overline{v}_{i}^{h}q^{h}$ 1 $V_{i}^{h }\hat{v}_{i}^{h }$ $\overline{v}_{i}^{h}=\{\overline{v}_{i}^{h}\in(h_{0}^{1}(\omega))^{2}\overline{v}_{i}^{h} _{\Omega_{\epsilon}}\in(P1(\Omega_{e}))^{2}\}$ (5) $V_{i}^{h^{l}}=\{v_{i}^{h }\in(h_{0}^{1}(\omega))^{2} v_{i}^{h } _{\zeta l_{e}}\in\phi_{b}v_{bi} v_{bi}^{j}\in R^{2}\}$ (6) $\hat{v}_{i}^{h }=\{\hat{v}_{i}^{h }\in(h_{0}^{1}(\omega))^{2}\hat{v}_{i}^{h } _{\Omega_{e}}\in\varphi Bv_{Bi}^{l} v_{\acute{b}i}\in R^{2}\}$ (7) $Q^{h}=\{q^{h}\in H_{0}^{1}(\Omega)$ $q^{h} _{\Omega_{e}}\in P1(\Omega_{e})$ $/r\iota^{q^{h}d\omega=0\}}$ (8) $\phi_{b}$ $\varphi B$ $\Omega_{e}$ 2 ( ) 3 ( ) (9)(10) $\langle\phi_{b}$ $1 \rangle_{\omega_{e}}=\vert\phi_{b}\vert_{\zeta)_{e}}^{2}=\frac{n+1}{n+2}\mathcal{a}_{e}$ (9) $\langle$ 1 (10) $\varphi B\rangle_{\Omega_{e}}=\langle\phi_{B\varphi B})_{\Omega_{e}}=0$ $V_{h} \hat{v}_{h} $ $\Omega_{e}NA_{e}$ $V_{i}^{h}=\overline{V}_{i}^{h}\oplus V_{i}^{h }$ $Q^{h}$ $(u_{i}^{h}p^{h})\in V_{i}^{h}xQ^{h}$ $\langle\dot{u}_{i}^{h}\hat{v}_{i}^{h})+\langle u_{j}^{h}u_{ij}^{h}\hat{v}_{i}^{h}\rangle+\langle p_{i}^{h}\hat{v}_{i}^{h}\rangle-\langle\nu(u_{ij}^{h}+u_{ji}^{h})_{j}\hat{v}_{i}^{h}\rangle=0$ $\forall\hat{v}_{i}^{h}\in\hat{v}_{i}^{h}$ (11) $\langle u_{ii}^{h}$ $q^{h})=0$ $\forall q^{h}\in Q^{h}$ (12) $\langle u$ $v N \rangle=\sum_{e=1}^{n_{e}}\langle u$ $v \rangle_{\zeta\}_{e}}=\sum_{e=1}^{n_{e}}l_{r\iota_{e}^{uv}}d\zeta)$ $u_{i}^{h}$ $V_{i}^{h}$ $\hat{v}_{i}^{h}=\overline{v}_{i}^{h}\oplus\{v_{i}^{h }+\hat{v}_{i}^{h };v_{i}^{h } _{\Omega}$ $+\hat{v}_{i}^{h^{l}} r\iota$ $=(\phi_{b}+\varphi B)v_{Bi} \}$ $\hat{v}_{i}^{h}$ $\overline{u}_{i}^{h}\overline{v}_{i}^{h}\in\overline{v}_{i}^{h}$ 1 $u_{i}^{h }$ $v_{i}^{h^{f}}\in V_{i}^{h }\hat{v}_{i}^{h }\in\hat{v}_{i}^{h }$ $u_{i}^{h}=\overline{u}_{i}^{h}+u_{i}^{h }\hat{v}_{i}^{h}=\overline{v}_{i}^{h}+v_{i}^{h }+\hat{v}_{i}^{h }=v_{i}^{h}+\hat{v}_{i}^{h }$ (13) $\langle\dot{u}_{i}^{h}$ $v_{i}^{h}\rangle+\langle u_{j}^{h}u_{ij}^{h}$ $v_{i}^{h})+\langle p_{i}^{h}$ $v_{i}^{h}\rangle-\langle\nu(u_{ij}^{h}+u_{ji}^{h})_{j}$ $v_{i}^{h}\rangle$ $+ \sum_{e=1}^{n_{e}}\langle\nu_{i}^{l}(u_{ij}^{h }+u_{ji}^{h })$ $v_{ij}^{h })_{\Omega_{e}}=0$ $\forall v_{i}^{h}\in V_{i}^{h}$ (14) $\langle u_{ii}^{h}$ $q^{h}\rangle=0$ $\forall q^{h}\in Q^{h}$ (15) $\nu_{\acute{i}};=\langle\dot{u}_{i}^{h}+u_{j}^{h}u_{ij}^{h}+p_{i}^{h}-\nu(u_{ij}^{h}+u_{ji}^{h})_{j}$ $\varphi B\rangle_{\Omega_{e}}/\langle(u_{ij}^{h }+u_{ji}^{h })$ $\phi_{bj}\rangle_{\omega_{e}}$ $\sum_{e=1}^{n_{e}}\langle\nu_{i} (u_{i}^{h_{j} }+u_{j_{i}}^{h })$ $v_{i}^{h_{j} }\rangle_{\omega_{e}}$ (14) 3 (14)(15) (16)(17) $v_{i}^{h}\rangle+\langle u_{j}^{h}u_{ij}^{h}$ $v_{i}^{h}\rangle-\langle p^{h}$ $v_{ii}^{h}\rangle+\langle\nu(\overline{u}_{ij}^{h}+\overline{u}_{ji}^{h})\overline{v}_{ij}^{h}\rangle$

$\overline{u}j$ 190 $+ \sum_{e=1}^{n_{e}}\langle(\nu+\nu_{i}^{l})(u_{ij}^{h }+u_{ji}^{h })$ $v_{ij}^{h })_{\Omega_{e}}=\langle t_{i}$ $v_{i}^{h}\rangle_{\gamma}$ $\forall v_{i}^{h}\in V_{i}^{h}$ (16) $\langle u_{ii}^{h}$ $q^{h}\rangle=0$ $\forall q^{h}\in Q^{h}$ (17) $\langle(\nu+\nu_{i}^{l})(u_{ij}^{h }+u_{ji}^{h })$ $v_{ij}^{h } \rangle r\iota_{e}=\frac{\langle\phi_{b}1\rangle_{\omega_{c}}^{2}}{a_{e}}\tau_{er}^{-1}\delta_{ij}u_{\acute{b}i}v_{bi} $ (18) $\tau_{er}=[(\frac{2 u_{i} }{h_{e}})^{2}+(\frac{4\nu}{h_{e}^{2}})^{2}]^{-1}2$ $h_{e}$ $A_{e}$ [14] Navicr-Stokes (16)(17) (16) 5 SUPG$/PSPG$ [18] BTD [19] 3 (18) [20][21][22] 4 41 (16)(17) $v_{i}^{t}(m\dot{u}_{i}+s(\overline{u}_{j})u_{i}-bp-m_{\gamma}t_{i})=0$ $in$ (19) $q^{t}(b^{t}u_{i})=0$ $in$ (20) $u_{i(t_{0})}=\hat{u}_{i0}$ $on$ (21) $M$ ( ) $S(\overline{u}j)$ 3 ) $B$ Mrti $J= \frac{1}{2}/t_{0}t_{f(e_{\gamma_{b}}^{t}m_{\gamma}t_{i}-d_{i})^{t}q_{i}(e_{\gamma_{b}}^{t}m_{\gamma}t_{i}-d_{i})dt}+\frac{1}{2}l_{t_{0}}^{t_{f}}(a_{c}-a_{0})q_{a}(a_{c}-a_{0})dt$ (22) $e_{\gamma_{b}}^{t}m_{\gamma}t_{i}=-/r_{b}t_{i}d\gamma$ $e_{\gamma_{b}}^{t}=[000-1 -1-1 \ldots 000]$ (23) $e_{\gamma}^{t}m_{\gamma}t_{i}$ $D_{i}$ $A_{C}$ $A_{0}$ $e_{\gamma_{b}}^{t}$ $B$ $-1$ $0$ $Q_{i}=1$ $Q_{a}$ (24) $Q_{a}=/t_{0}t_{f}(e_{\Gamma_{B}}^{T}M_{\Gamma}t_{i}-D_{i})^{T(0)}Q_{i}(e_{\Gamma_{B}}^{T}M_{\Gamma}t_{i}-D_{i})^{(0)}dt//t_{0}t_{f_{A_{C}^{2(0)}}}dt$ (24) (24) (0)

$ $ 191 42 $J$ $J^{*}=J+ \int_{t_{0}}^{t_{f}}\lambda_{u_{i}}^{t}(-s(\overline{u}_{j})u_{i}+bp+mrt_{i}-m\dot{u}_{i})dt+\int_{t_{0}}^{t_{f}}\lambda_{p}^{t}(b^{t}u_{i})dt$ (25) $\lambda_{ui}$ $\lambda_{p}$ $*$ $J$ $*$ * $\delta J^{*}=0$ (26) ( ) $M\dot{\lambda}_{u_{t}}-\tilde{S}(u_{j})^{T}\lambda_{u_{i}}+B\lambda_{p}=0$ $in$ (27) $B^{T}\lambda_{u_{i}}=0$ $in$ (28) $\lambda_{u_{i(t_{j})}}=0$ in (29) $\lambda_{ui}=-e_{\gamma_{b}}q_{i}(e_{\gamma_{b}}^{t}m_{\gamma}t_{i}-d_{i})$ $on$ $\Gamma$ (30) (27) $\overline{s}(u_{j})^{t}$ $S(\overline{u}_{j})u_{i}$ 43 431 (20) [10] Poisson $\tilde{u}_{i}^{n+1}$ $M \frac{\tilde{u}_{i}^{n+1}-u_{i}^{n}}{\delta t}+s(\overline{u}_{j}^{*})\tilde{u}_{i}^{n+1/2}-bp^{n}=mr_{2}t_{i}$ (31) $B^{T}M^{-1}B\Delta t(p^{n+1}-p^{n})=-b^{t}\tilde{u}_{i}^{n+1}$ (32) $M \frac{u_{i}^{n+1}-\tilde{u}_{i}^{n+1}}{\delta t}+\frac{1}{2}s(\overline{u}_{j}^{*})(u_{i}^{n+1}-\tilde{u}_{i}^{n+1})-b(p^{n+1}-p^{n})=0$ (33) $\overline{u}_{i}^{*}=\frac{1}{2}(3\overline{u}_{i}^{n}-\overline{u}_{i}^{n-1})\tilde{u}_{i}^{n+1/2}=\frac{1}{2}(\tilde{u}_{i}^{n+1}+u_{i}^{n})$ $n$ $\Delta t$ 432 (28)

$\tilde{d}_{j}^{(l)}$ $\text{ ^{}(l)}$ 192 Poisson $\tilde{\lambda}_{u_{i}}^{n-1}$ $M \frac{\tilde{\lambda}_{u_{i}}^{n-1}-\lambda u_{i^{n}}}{\delta t}+\tilde{s}(uj)^{t}\tilde{\lambda}_{u_{i}}^{n-1/2}-b\lambda p^{n}=0$ (34) $B^{T}M^{-1}B\Delta t(\lambda_{p}^{n-1}-\lambda_{p}^{n})=-b^{t}\tilde{\lambda}_{u_{i}}^{n-1}$ (35) $M \frac{\lambda_{u}^{n_{i}-1}-\tilde{\lambda}_{u_{i}}^{n-1}}{\delta t}+\frac{1}{2}\overline{s}(u_{j})^{t}(\lambda u_{i^{n-1}}-\tilde{\lambda}_{u_{i}}^{n-1})-b(\lambda_{p}^{n-1}-\lambda_{p}^{n})=0$ (36) $\tilde{\lambda}_{u_{i}}^{n-1/2}=\frac{1}{2}(\tilde{\lambda}_{u_{i}}^{n-1}+\lambda_{u_{t}}^{n})$ (32)(35) $M$ 44 $x_{j}^{(l+1)}=x_{j}^{(l)}+\alpha^{(l)}\tilde{d}_{j}^{(l)}$ (37) (38) d$)$ [17] $[- \{\frac{\partial 6^{\gamma}(\overline{u}_{j})}{(jx_{j}^{(l)}}1^{u_{i}}+\{\frac{\partial B}{\partial x_{j}^{(l)}}\}p]$ $d_{j}^{(l)}=-/_{t_{0}}t_{f}\{\lambda_{u}^{t}$ $+ \lambda_{p}^{t}\{\frac{\partial B^{T}}{\partial x_{j}^{(l)}}\}u_{i}+\{\frac{\partial A_{C}}{\partial x_{j}^{(l)}}\}q_{a}(a_{c}-a_{0})\}^{t(l)}dt$ (38) $\alpha^{(l)}$ $(l)$ Sakawa-Shindo [23] $\alpha^{(0)}$ $\alpha^{(0)}=\delta\hat{x}_{j\max}^{(1)}/\vert\tilde{d}_{j}^{(0)}\vert_{\infty}$ (39) $\Delta\hat{x}_{j_{\max}}^{(1)}$ $\Vert\cdot\Vert_{\infty}$ Ci $l=1$ $x_{j}^{(0)}$ 1 $l=0$ $u_{i}^{(l)}$ $p^{(l)}$ 2 (19)(20) 3 (22) $\lambda_{u_{i}}^{(l)}$ $\lambda_{p}^{(l)}$ 4 (27)(28) $x_{j}^{(l+1)}$ 5 (37) $e= x_{j}^{(l+1)}-x_{j}^{(l)} _{\infty}$ 6 $e<\epsilon$ $u_{i}^{(l+1)}$ 7 (19)(20) $p^{(l+1)}$ 8 (22) (l 1) $+$ $\alpha^{(l)}$ 9 $J^{(l+1)}\leq J^{(l)}$ $\alpha^{(l+1)}=\frac{10}{9}\alpha^{(l)}$ $l+1arrow l$ $\alpha^{(l)}=\frac{1}{2}\alpha^{(l)}$ 4 5

193 45 $d_{j}^{(l)}$ 1 Iterare: For $m=12\ldotsm_{s}$ do: $\overline{m}_{s}\tilde{d}_{j}^{(l)}=\tilde{m}_{s}d_{j}^{(l)}$ (40) $\tilde{d}_{j}^{(l)}arrow d_{j}^{(l)}$ (41) $\overline{m}_{s}\tilde{m}_{s}$ $m_{s}$ (2 3 ) $\tilde{m}_{s}=e_{8}\overline{m}_{\theta}+(1-e_{s})m_{s}$ $0\leq e_{\theta}\leq 1$ (42) $e_{s}$ ( ) $e_{s}=1$ $e_{s}=0$ $M_{s}$ (42) $\overline{m}_{s}\tilde{d}_{j}^{(l)}=\overline{m}_{s}d_{j}^{(l)}-(1-e_{s})(\overline{m}_{s}-m_{s})d_{j}^{(l)}$ (43) (43) $-(1-e_{s})(\overline{M}_{s}-M_{s})$ $l$ $l$ $M_{s}^{(e)}$ $\overline{m}_{s}^{(e)}$ $K_{s}^{(e)}$ $M_{s}^{(e)}= \frac{l}{6}\{\begin{array}{ll}2 11 2\end{array}\} \overline{m}_{s}^{(e)}=\frac{l}{6}\{3 3\} K_{s}^{(e)}= \frac{1}{l}[-11$ $-11$ (44) $M_{s}^{(e)}= \frac{\sqrt{3}}{48}l^{2}\{\begin{array}{lll}2 1 11 2 11 1 2\end{array}\}$ $j\overline{\nu f}_{s}^{(e)}=\frac{\sqrt{3}}{48}l^{2}\{\begin{array}{lll}4 4 4\end{array}\}$ $K_{s}^{(e)}= \frac{\sqrt{3}}{6}[-1-12$ $-1-12$ $-1-12$ (45) $(1-e_{s})(\overline{M}_{S}^{(e)}-M_{S}^{(e)})$ $(1-e_{s})( \overline{m}_{s}^{(e)}-m_{s}^{(e)})=(1-e_{s})\frac{l}{6}\{\begin{array}{ll}1-1-1 1\end{array}\}$ (46) $(1-e_{s})( \overline{m}_{s}^{(e)}-m_{s}^{(e)})=(1-e_{s})\frac{\sqrt{3}}{48}l^{2}[-1-12$ $-1-12$ $-1-12$ (47) (46) $(47)$ $(1-e_{s})(\overline{M}_{s}^{(e)}-$ (44) (45) $M(e))$ $e_{s}$ 1 $e_{\epsilon}$ (48) (49)(50) $0$ $\nu_{s}$ $e_{s}$ $(1-e_{e})(\overline{M}_{s}^{(e)}-M_{\delta}^{(e)})=\nu_{S}^{(e)}K_{s}^{(e)}$ (48)

194 $\nu_{s}^{(e)}=(1-e_{s})\frac{l^{2}}{6}=(1-e_{s})\frac{h_{e}^{2}}{6}$ $h_{e}=a_{\epsilon}$ $\mathcal{a}_{e}=l$ (49) $\nu_{\theta}^{(e)}=(1-e_{s})\frac{l^{2}}{8}=(1-e_{s})\frac{h_{e}^{2}}{6}\frac{\sqrt{3}}{2}$ $h_{e}=\sqrt{2a_{e}}$ $A_{e}= \frac{\sqrt{3}}{4}l^{2}$ (50) $h_{e}$ $e$ $A_{e}$ $A_{e}$ (49)(50) $e_{s}$ $e_{s}=1-\not\subset_{2}3$ $e_{\epsilon}=0$ (51) $e$ $\nu_{s}^{(\text{ })}=\frac{\sqrt{3}}{12}h_{e}^{2}$ (51) 52 ( ) 2(a)(b) 2(b) 1834 3500 56 $D$ 10 $A\backslash$ $Re=250$ ( ) 02 $t_{0}=200$ $t_{f}=300$ $t_{0}=200$ $\Delta\hat{x}_{jm}^{(1)}$ $10^{-2}10^{-5}$ $v=0$ $\epsilon$ $u=1$ $v=0$ $v=0$ (a) 51 (52)(53) $= \frac{1}{2}l_{t_{0}}^{t_{f}}(e_{\gamma_{b}}^{t}m_{\gamma}ti)^{t}qi(e_{\gamma_{b}}^{t}m_{\gamma}t_{1})dt+\frac{1}{2}/t_{0}t_{f}(a_{c}-a_{0})q_{a}(a_{c}-a_{0})dt$ (52)

Mrti) 195 (b) 2: $J= \frac{1}{2}/t_{0}t_{f}(e_{\gamma_{b}}^{t}m_{\gamma}t_{1}-d_{1})^{t}q_{1}(e_{\gamma_{b}}^{t}m_{\gamma}t_{1}-d_{1})dt+\frac{1}{2}/t_{0}t_{f_{a_{c}q_{a}a_{c}}}dt$ (53) $e_{\gamma_{b}}^{t}$ ( $A_{C}$ ( 2(b) ) (52) $D_{1}=0$ $A_{0}$ (53) $D_{1}$ (52) $A_{0}=0$ $A_{C}$ ( ) ( ) 52 45 $em_{s}$ 3 (52) $e=1m_{s}=1$ ( ) $e=1-c_{2}3$ $m_{s}$ 15101520 3 $D=10$ 3 (a) 3(b)(c) 3(d)(e)(f) 53 4 3(d) (52) (53) ( ) 4 (a) (b) ( ) 5 4(a)(b) ( ) ( ( ) (a)(b) $)$ -20% 300

196 (a) $e_{s}=1m_{s}=1$ 3: 4: $(e_{s}=1-\not\subset_{2}3 m_{s}=10)$ (b) ( ) (a) (b) ( ) 5: ( )

197 6 (52) $A_{C}$ $A_{0}$ 6(a) 4(a)(b) (a) (b) ( ) 6: $(e_{s}=1-l_{2^{3}} m_{s}=10)$ 6(b) ( ) -1% ( ) 6 Navier- Stokes $[17 $ [1] OPironneau:On optimum profiles in Stokes flow J Fluid Mech 59 Part 1 pp117 1973 [2] 0Pironneau:On optimum design in fluid mechanics J Fluid Mech 64 Part 1 pp97 1974 [3] JMBourot :On the numerical computation of the optimum profile in Stokcs flow J Fluid Mech 65 Part 3 pp513 1975 $]$ $[$4 :2 Stokes 193 pp115 1985 [5] : $A$ $60574$ pp 165 1994 [6] HOgawa and MKawahara:Shape optimization of Body Located in Incompressible Viscous Flow Based on Optimal Control Theory Int J Comput Fluid Dynamics 17 pp243-251 2003

$[$ 9] 198 [7] RKGanesh:The minimun drag profile in laminar flow: a numerical 7hansaction of the A $SME$ J Fluids Engng 116 pp456-462 1994 [8] : 14 2002 JMatsumoto:Shape identification for incompressible viscous flow analysis using finite element method The Second China-Japan-Korea $oint$ Symposium on optimization of Structural and Mechanical Systems pp725-730 2002 $[$ $]$ 10 : (JSCE) 6 pp267-274 2003 [11] HYagi and MKawahara :Shape optimization of a body located in low Reynolds Int $J$ Numer Meth Fluids 48 pp:819-833 2005 [12] : 19 D4-1 2005 [13] J Matsumoto and M Kawahara: Shape identification for fluid-structure intcraction problem using improved bubble element Int J Comput Fluid Dynamics 15 pp33-45 2001 [14] JMatsumoto :A fractional step method for incompressible viscous flow bascd on bubble function element stabilization method Int J Comput Fluid Dynamics $20(3-4)$ pp145-155 2006 [15] JMatsumoto:A relationship between stabilized FEM and bubble function element stabilization method with orthogonal basis for incompressible flows Joumal of $\mathcal{a}$pplied Mechanics JSCE 8 pp233-242 2005 [16] : $16(3)$ pp277-290 2006 [17] MKawahara and HHirano :Two step explicit finite elemcnt method for high Reynolds number viscous fluid flow Proc of JSCE 329 1983 [18] TETezduyar et al :Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure element Comput Methods Appl Mech Engng 95 pp221-242 1992 [19] : $43A$ pp383-394 1997 [20] JCSimo FArmero and CATaylor:Stable and time-dissipative finite element methods for the incompressible Navier-Stokes equations in advection dominated flows Int J $Num$ Meth Engng 38 pp1475-1506 1995 [21] TYamada:A bubble clement for inviscid flow Finite Elements in Fluids 9 pp1567-1576 1995 [22] : Navier-Stokes Petrov-Galerkin 4 pp121-126 2001 [23] Y Sakawa and YShindo :On global convergence of an algorithm for optimal control Transactions on Automatic Control IEEE AC-25(6) pp1149-1153 1980