Microsoft Word - IEEE PPT 日本語訳 docx

Similar documents
CISPR 32の概要 (ed. 2)

IEC :2014 (ed. 4) の概要 (ed. 2)

WARNING To reduce the risk of fire or electric shock,do not expose this apparatus to rain or moisture. To avoid electrical shock, do not open the cabi

Tab 5, 11 Tab 4, 10, Tab 3, 9, 15Tab 2, 8, 14 Tab 1, 7, 13 2

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,


Huawei G6-L22 QSG-V100R001_02

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

untitled

技術研究報告第26号

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

Corrections of the Results of Airborne Monitoring Surveys by MEXT and Ibaraki Prefecture

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

24 Depth scaling of binocular stereopsis by observer s own movements

7,, i

Description

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

MIDI_IO.book

Vol. 51 No (2000) Thermo-Physiological Responses of the Foot under C Thermal Conditions Fusako IWASAKI, Yuri NANAMEKI,* Tomoko KOSHIB

Jan THE JAPANESE JOURNAL OF ANTIBIOTICS XL-1 Table 1. Outline of administering doses, routes and sampling times *: 4 ml/hr/kg Bacillus subtilis


perature was about 2.5 Ž higher than that of the control irrespective of wind speed. With increasing wind speeds of more than 1m/s, the leaf temperatu

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

™…

2015 ( 27 ) RFID RF RFID, 2., 3., 4. i

Therapy for Asthenopia in Cases of Convergence Insufficiency Hiroko TAKASAKI, C.O.J., Nobuko INAGAMI, C.O.J., and Kayoko TAKENAWA, C.O.J.. Orthoptic c

チョークコイル・リアクタ

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori


A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member


<95DB8C9288E397C389C88A E696E6462>


NotePC 8 10cd=m 2 965cd=m Note-PC Weber L,M,S { i {

Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t

高周波同軸コネクタ

音響部品アクセサリ本文(AC06)PDF (Page 16)

25 Removal of the fricative sounds that occur in the electronic stethoscope

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

16_.....E...._.I.v2006


The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

I N S T R U M E N T A T I O N & E L E C T R I C A L E Q U I P M E N T Pressure-resistant gasket type retreat method effective bulk compressibility Fro

ISO & ISO の概要

untitled

(1 ) (2 ) Table 1. Details of each bar group sheared simultaneously (major shearing unit). 208

1

,,.,,.,..,.,,,.,, Aldous,.,,.,,.,,, NPO,,.,,,,,,.,,,,.,,,,..,,,,.,

003村江.indd

塗装深み感の要因解析

論 文 Earnings Management in Pension Accounting and Revised Jones Model Kazuo Yoshida, Nagoya City University 要約本稿では退職給付会計における全ての会計選択を取り上げて 経営者の報告利益管理行動

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

GRANT OF EQUIPMENT AUTHORIZATION Certification Issued Under the Authority of the Federal Communications Commission By: lantronix 7535 Irvine Center Dr

10-渡部芳栄.indd

1 1 tf-idf tf-idf i

Fig, 1. Waveform of the short-circuit current peculiar to a metal. Fig. 2. Waveform of arc short-circuit current. 398 T. IEE Japan, Vol. 113-B, No. 4,

- 1 -

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch


三菱電線工業時報 第 105 号 2008 年 10 月 1 High-speed disaster prevention radio information system R-LCX50-4SL-75 LANIEEE b/g R-LCX50-4SL D 2 1

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

Keysight MIMO MIMO Cluster n Path n σ n, AoA σ n, AoD Θ n, AoA MS/UE Array Boresight Rx0 Tx0 Θ n, AoD LOS BS Array Boresight Θ n+1, AoA Rx1 Tx1 Path n


1..FEM FEM 3. 4.

0801391,繊維学会ファイバ12月号/報文-01-西川

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

m m Satoshi SATO 48

untitled

untitled

„h‹¤.05.07

How to read the marks and remarks used in this parts book. Section 1 : Explanation of Code Use In MRK Column OO : Interchangeable between the new part

How to read the marks and remarks used in this parts book. Section 1 : Explanation of Code Use In MRK Column OO : Interchangeable between the new part

INDEX PAGE 1. Evaluation Method 1 1. 測定回路 Measurement Circuits 3 (1) 静特性 待機電力特性 通電ドリフト特性 その他特性 Steady state, Standby power, Warm up voltage drift and


(43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND

06_学術_関節単純X線画像における_1c_梅木様.indd


013858,繊維学会誌ファイバー1月/報文-02-古金谷

百人一首かるた選手の競技時の脳の情報処理に関する研究

How to read the marks and remarks used in this parts book. Section 1 : Explanation of Code Use In MRK Column OO : Interchangeable between the new part

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization


スライド 1

国土技術政策総合研究所 研究資料


T05_Nd-Fe-B磁石.indd

INDEX PAGE. 静電気放電イミュニティ試験 3 Electrostatic Discharge Immunity Test (IEC ) 2. 放射性無線周波数電磁界イミュニティ試験 4 Radiated Radio Frequency Electromagnetic Fiel

How to read the marks and remarks used in this parts book. Section 1 : Explanation of Code Use In MRK Column OO : Interchangeable between the new part

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

NINJAL Research Papers No.8

浜松医科大学紀要

untitled

Transcription:

A Substitution Method for Antenna Calibration by the Use of Broadband Antenna (30 to 1000 MHz) Mitsunobu Samoto 1, Nobuhito Samoto 1, Hiroyuki Shimanoe 1, Ikuo Makino 1 and Kazuo Shimada 2, (1)Liberty Labs Asia, Inc., Yokohama, Japan, (2)ETS Lindgren Japan, Tokyo, Japan 1/ 37 ABSTRACT Calibration of Broadband antennas ANSI C63.5 2006 [1] provides calibration method with the Standard Site Method (SSM) at a Standard Antenna Calibration Site (SACS) and two annexes, Annex G and Annex H, for the use of antenna factors for NSA measurements. (47CFR FCC Part 15 Sec. 31) This paper proposes an alternative calibration method to the Annex G and H, that is, a Broadband Antenna Substitution Method (SUB) in 10 m semianechoic chambers (SAC). 2/ 37 要約 - ANSI C63.5-2006[1] は標準アンテナ校正サイト SACS /OATS での標準サイト法 (SSM) による校正 法および NSA 測定 に Annex Annex G と H でアンテナファクタを提供しています この論 は ANSI C63.5-2006 の Annex G と H に代わるブロードバンドアンテナの校正を 10 m 半無響暗室 (SAC) 内で う ブロードバンドアンテナ置換 ( 校正 ) 法 (SUB) を提案するものである

I. INTRODUCTION 1 Antenna calibration method in ANSI C63.5 2006: Antenna calibration with SSM shall be performed at SACS SACS: The site shall be void of buildings, electric lines, fences, trees, underground cable, pipelines, etc. as specified in ANSI C63.7 2005 Characteristics of SACS: Ideal site for the Antenna calibration as specified in CISPR 16 1 5 2012 06 Ed.1.1 CALTS SSM: Most common Calibration Method for antenna calibration specified in ANSI C63.5 2006 Paragraph 5, Detail procedures are provided in Annex G and Annex H. GSCF: Correction factors (in db) that are calculated or measured for each frequency at a specific geometry. 3/ 37 I. 前書き-1 ANSI C63.5-2006 におけるアンテナ校正 法 SSM によるアンテナ校正は SACS で われなければならない SACS: サイトは ANSI C63.7-2005 に規定されているように 建物 電 線 樹 フェンス 地下ケーブル パイプライン等を避けなければならない サイト特性 : アンテナ校正の理想サイトは CISPR C16-1-5 2015-06 ED 1.1 CALTS として規定されている SSM: アンテナ校正の最も 般的な校正 法は ANSI C63.5-2006 5 節及び詳細 順は Annex G と H で提供されている GSCF: 指定された特定の配置に対し各周波数について算出または測定された補正係数 (db)

I. INTRODUCTION 2 Substitution method (SUB) for the broadband antenna calibration in this paper. Use Reference antennas that are calibrated at the Reference OATS Reference OATS shall be SACS to calibrate Reference antenna Substitute the DUT with Reference antenna to obtain Antenna Factors. SUB can be performed in the 10 meter Semi Anechoic Chamber or OATS for EMI measurements. Measurement Uncertainty degrades at the worst value of only 0.2 db 4/ 37 I. 前書き-2 この論 におけるブロードバンドアンテナによる置換法 (SUB) リファレンス OATS で校正されたリファレンスアンテナを使 する リファレンスアンテナを校正するためのリファレンス OATS は SACS でなければならない アンテナファクタを求めるためには DUT とリファレンスアンテナを置き換える 置換法 (SUB) は 10m 半無響暗室か EMI 測定のための OATS で実施可能である 測定の不確かさ (MU) は最悪でもたった 0.2 db 低下するだけである

II. MEASUREMENT CONDITIONs A. Using Broadband antennas Each antenna used in this study is calibrated by the SSM at the reference OATS meeting the requirements of [3] and [4] Biconical Antenna (Bicon): 30 to 300 MHz BBA9106 Bicon 1, Bicon 2 and Bicon 3 Logperiodic Antenna (LPD): 200 to 1000 MHz VULP9118A LPD 1, LPD 2 and LPD 3 Hybrid Antenna (Hybrid): 30 to 1000 MHz VULB9160 Hybrid 1, Hybrid 2 and Hybrid 3 Transmitting Antenna: 30 to 1000 MHz VULB9160 Hybrid Tx (The antenna is validated in house) Network Analyzer: Advantest R3770 5/ 37 II. 測定条件この研究に使 された各アンテナは参照 [3] と [4] の要求を満たすリファレンス OATS で SSM によって校正されています II. MEASUREMENT CONDITIONs A. Using Broadband antennas Each antenna used in this study was calibrated by the SSM at the reference OATS (Ref OATS) meeting the requirements of [3], [4] Ant1 Bicon 1, LPD 1, Hybrid 1 Ant2 Bicon 2, LPD 2, Hybrid 2 NSA Ant3 Bicon 3, LPD 3, Hybrid 3 SSM SUB Reference Antenna DUT Antenna 6/ 37 II. 測定条件この研究に使 された各アンテナは参照 [3] と [4] の要求を満たすリファレンス OATS で SSM によって校正されています

II. MEASUREMENT CONDITIONs B. Test sites Reference OATS (Ref OATS): OATS: Meet CALTS requirements of CISPR 16 1 5 (2003) [4]. Ground Plane (GP): 50 m 80 m without weather protection enclosure OATS1: OATS GP: 20 m 40 m without weather protection enclosure SAC1: 10 msacsize:24m 15 m height =10 m SAC2: 10 msacsize:23m 14 m height = 9.2 m SAC3: 10 m SAC Size: 18.4 m 9.9 m height = 7.7 m SAC4: 10 m SAC Size: 24.16 m 14.6 m height = 9.5 m Correction factors to free space (ΔAF) and correction factors for NSA (GSCF) in ANSI C63.5 2006 Annex G are not applied in this paper. 7/37 II. 測定条件 III. MEASUREMENT PROCEDUREs A. Broadband Antenna Substitution Method (SUB) Fig. 1. Antenna arrangement of SUB The antenna factor, AF x,ofthedut antenna is calculated as follows; Set a Hybrid at the transmitting (Tx) side and the reference broadband antenna at the receiving (Rx) side as showninfig.1.recordtherxlevel as L ref. Replace the reference broadband antenna at the Rx side to a DUT and record the Rx level as L x. AF x =AF ref +L ref L x (db) (1) where, AF ref areantennafactorsof reference broadband antenna calibrated by the SSM at the Ref OATS. 8/ 37 II. 測定条件 1)DUT のアンテナファクタ AFx は以下のように計算されます 2)Fig.1 のように 送信側にハイブリッドアンテナ 受信側にリファレンスブロードバンドアンテナをセットし 受信レベル Lx を記録します 3) 受信側のリファレンスアンテナを DUT に置き換え 受信レベル Lx を記録します 4)AFx = AFref + Lref Lx (db) (1) 5) ここで AFref はリファレンス OATS で SSM 法によって校正されたリファレンスブロードバンドアンテナのアンテナファクタです

III. MEASUREMENT PROCEDUREs B. Standard Site Method (SSM) Fig. 2. Antenna arrangement of SSM Fig. 3. Three site attenuation measurements using three different antennas in pairs According to ANSI C63.5 2006 Section 5.2, the SSM requires three site attenuation measurements under identical geometries (h1, h2, R) using three different antennas taken in pairs, as shown in Figure 2. The three equations associated with the three site attenuation measurements are (2), (3), and (4). AF 1 +AF 2 =A 1 +20logf M 48.92 + E D max (2) AF 1 +AF 3 =A 2 +20logf M 48.92 + E D max (3) AF 2 +AF 3 =A 3 +20logf M 48.92 + E D max (4) (All equations in db) AF 1,AF 2 and AF 3 are the antenna factors of antennas 1, 2, and 3 in db (1/m). A 1,A 2 and A 3 are the measured site attenuation in db. (See Figure 3 and Section 5.3 of [1]) 9/ 37 II. 測定条件 ANSI C63.5 セクション 5.2 によれば SSM 法は 3 つの異なるアンテナをペアにして使 し 全く同じジオメトリで 3 回のサイトアッテネーション測定が必要となる 3 つのサイトアッテネーション測定にかかわる 3 程式は (1) (2) と (3) である AF1 AF2 AF3 はアンテナ1,2,3のアンテナファクタである A1 A2 A3 は測定されたサイトアッテネーションである

IV. COMPARISON BETWEEN ANTENNA FACTORs OF BROADBAND ANTENNAs MEASURED AT OATS AND SACs BY SSM SSM measurement studies in OATS and SAC AF x at the Ref OATS for 10 m distance, horizontal polarization and 2 m Tx height. AF differences at each site is calculated as follows and shown in Figs. 4, 6 and 8. ΔdB1 = (AF x measured by SSM at each test site) (AF ref by SSM at Ref OATS) (8) The NSA at each site for 10 m distance, 2 m Tx height and horizontal polarization using antennas of Bicon 1 and Bicon 2,LPD 1 and LPD 2, and Hybrid 1 and Hybrid 2. ΔdB2 are calculated as follows and shown Figs. 5, 7 and 9. ΔdB2 = (NSA measured at each test site) (Theoretical NSA) (9) 10 / 37 IV. SSM 法による OATS と SAC におけるブロードバンドアンテナのアンテナファクタの 較 (Bicon) OATS と SAC による SSM 法の検証リファレンス OATS による 10m 距離 Tx さ 2m 平の AF x 各サイトにおける AF 差は以下のように計算され Fig.4,6,8 に されています ΔdB1 = (AF x measured by SSM at each test site) (AF ref by SSM at Ref OATS)(8) 各サイトにおける 10m 距離 Tx さ 2m 平 バイコン LPD ハイブリッドの NSA ΔdB2 は以下のように計算され Fig.5,7,9 に されています ΔdB2 = (NSA measured at each test site) (Theoretical NSA) (9)

IV. COMPARISON BETWEEN ANTENNA FACTORs OF BROADBAND ANTENNAs MEASURED AT OATS AND SACs BY SSM (Bicon) Fig. 4. AF Deviation: D10H2 ΔdB1 of Bicon 2 measured at each site Fig. 5. NSA Deviation: D10H2 ΔdB2: Pair of Bicon 1 and Bicon 2 Fig. 4 shows AF differences of ΔdB1 for Bicon 2. Fig. 5 shows the differences of ΔdB2 each test site. Vertical 11 /37 IV. SSM 法による OATS と SAC におけるブロードバンドアンテナのアンテナファクタの 較 (Bicon) Fig.4 は Bicon 2 のΔdB1 のアンテナファクタ偏差を しています Fig.5 は各サイトのΔdB2の偏差を しています IV. COMPARISON BETWEEN ANTENNA FACTORs OF BROADBAND ANTENNAs MEASURED AT OATS AND SACs BY SSM (LPD) Fig. 6. AF Deviation: D10H2 ΔdB1 of LPD 2 measured at each site Fig. 7. NSA Deviation: D10H2 ΔdB2: Pair of LPD 1 and LPD 2 Fig. 6 shows AF differences of ΔdB1 for LPD 2. Fig. 7 shows the differences of ΔdB2 at each test site. Vertical 12 / 37 IV. SSM 法による OATS と SAC におけるブロードバンドアンテナのアンテナファクタの 較 (LPD) Fig.6 は LPD 2 のΔdB1 のアンテナファクタ偏差を しています Fig.7 は各サイトのΔdB2の偏差を しています

IV. COMPARISON BETWEEN ANTENNA FACTORs OF BROADBAND ANTENNAs MEASURED AT OATS AND SACs BY SSM (Hybrid) Fig. 8. AF Deviation: D10H2 ΔdB1 of Hybrid 2 measured at each site Fig. 9. NSA Deviation: D10H2 ΔdB2: Pair of Hybrid 1 and Hybrid 2 Fig. 8 shows AF differences of ΔdB1 for Hybrid 2. Fig. 9 shows the differences of ΔdB2 at each test site. Vertical 13 /37 IV. SSM 法による OATS と SAC におけるブロードバンドアンテナのアンテナファクタの 較 (Hybrid) Fig.8 は Hybrid 2 のΔdB1 のアンテナファクタ偏差を しています Fig.9 は各サイトのΔdB2の偏差を しています IV. COMPARISON BETWEEN ANTENNA FACTORs OF BROADBAND ANTENNAs MEASURED AT OATS AND SACs BY SSM AscanbeseenfromcomparisonsofFigs.4and5,Figs.6and7, and Figs. 8 and 9, ΔdB1 characteristics are similar to ΔdB2 characteristics, and deviations of ΔdB1 are one half of ΔdB2, approximately. From these measurement results, it can be seen that the antenna calibration with SSM in SAC is significantly affected by NSA characteristics of the SAC used. 14 / 37 IV. SSM 法による OATS と SAC におけるブロードバンドアンテナのアンテナファクタの 較 Fig. 4 と 5 Fig. 6 と 7 Fig. 8 と 9 の 較から られるように ΔdB1 特性はΔdB2 に似ており そして偏差はおおよそ ΔdB2 の半分が ΔdB1 となっている これらの測定結果から SAC での SSM 法によるアンテナ校正は 使 された SAC の NSA 特性が著しく影響する

V. COMPARISON BETWEEN AFs MEASURED AT BOTH OATS AND SACs BY SUB The SUB using a broadband antenna calibrated by the SSM at the Ref OATS as the reference antenna was studied and the specific results are reported (Supplemental data of D10V1 referred) Conditions; Distance of antennas: 10 meters Polarization: Horizontal Height of antennas: 2 m. Reference antennas: Bicon 1,LPD 1 and Hybrid 1 DUT antennas: Bicon 2,LPD 2 and Hybrid 2 15 /37 V. SUB 法による OATS と SAC での測定における AFs の 較リファレンス OATS において SSM 法で校正されたブロードバンドアンテナをリファレンスアンテナとして使 する SUB 法を検証し 具体的な結果を報告します (D10V1 の補 データを参照のこと )

V. COMPARISON BETWEEN AFs MEASURED AT BOTH OATS AND SACs BY SUB The differences between AFs measured by the SUB at each test site and AF ref are shown in Figs. 10 to 12 for each antenna of Bicon, LPD and Hybrid as ΔdB3. ΔdB3 = (AFx measured by SUB at each test site) (AFref by SSM at Ref OATS) (10) As can be seen from Figs. 10 to 12, AFs by this SUB coincide within 0.4 db to the AF ref. AFs by the SUB at the OATS are worse than at SAC showing consistent accuracy within + 0.2 / 0.3 db. Those AFs measured by the SUB at SACs would not be affected by NSA characteristics of test sites. The large deviations at the OATS are caused by changes of the measurement condition such as wind breezing and temperature changes. 16 / 37 V. SUB 法による OATS と SAC での測定における AFs の 較 バイコン LPD ハイブリッドを各サイトで SUB 法によって校正された AF s とAF ref の差分 ΔdB3 として Fig.10 から 12 で す ΔdB3 = (AF x measured by SUB at each test site) (AF ref by SSM at Ref OATS) (10) Fig.10 から 12 で分かるように SUB 法による AFs は 0.4dB 以内で AF ref と 致する OATS での SUB 法による AF s は SAC での +0.2/-0.3dB という 貫した精度よりは悪い SAC で SUB 法にて測定されるそれらの AF s はテストサイトの NSA 特性の影響を受けない OATS における きな偏差の原因は気温変化や による揺れといった測定条件の変化によるものである

V. COMPARISON BETWEEN AFs MEASURED AT BOTH OATS AND SACs BY SUB (Bicon) Fig. 10. Differences of AFs (ΔdB3) for Bicon 2 at each site and AF ref Fig. 5. NSA Deviation: D10H2 ΔdB2: Pair of Bicon 1 and Bicon 2 Fluctuations of AFs from the OATS may be caused by wind breezing. Vertical 17 / 37 V. SUB 法による OATS と SAC での測定における AF s の 較 (Bicon) V. COMPARISON BETWEEN AFs MEASURED AT BOTH OATS AND SACs BY SUB (LPD) Fig. 11. Differences of AFs (ΔdB3) for LPD 2 at each site and AF ref Fig. 7. NSA Deviation: D10H2 ΔdB2: Pair of LPD 1 and LPD 2 Fluctuations of AFs from the OATS may be caused by wind breezing. Vertical 18 / 37 V. SUB 法による OATS と SAC での測定における AF s の 較 (LPD)

V. COMPARISON BETWEEN AFs MEASURED AT BOTH OATS AND SACs BY SUB (Hybrid) Fig. 12. Differences of AFs (ΔdB3) for Hybrid 2 at each site and AF ref Fig. 9. NSA Deviation: D10H2 ΔdB2: Pair of Hybrid 1 and Hybrid 2 Fluctuations of AFs from the OATS may be caused by wind breezing. Vertical 19 / 37 V. SUB 法による OATS と SAC での測定における AF s の 較 (Hybrid) VI. CAUTIONs OF SETUP AND MEASUREMENT UNCERTAINTY FOR SUB AT SACs A. Precautions The following cautions must be carefully kept by procedures instructions; B. Uncertainty Estimation for Broadband Antenna Calibration by SUB Heat up time Consistent reference antenna calibration Distance and height of antennas Cable treatment 20 / 37 VI. SAC における SUB 法のための測定不確かさの為の注意事項 A. 事前注意以下の注意事項は 順指 に注意深く従うこと ヒートアップ時間 貫したリファレンスアンテナ校正 アンテナ距離と さ ケーブルの取り扱い

VI. CAUTIONs OF SETUP AND MEASUREMENT UNCERTAINTY FOR SUB AT SACs C. Considerations to Measurement Uncertainty(MU) on Antenna Calibration No. 1 & 2: Measurement Uncertainty of Calibration factor of Reference antennas for SUB. MU for AF ref for SUB; Bicon: 0.96 db, LPD: 0.6 db, Hybrid: 0.68 db No. 3 & 4: Amplitude resolution and Dynamic Accuracy of Network Analyzer s Specification No. 5: Cables characteristics No. 6 & 7: Influence by Electrical Uniformity No. 8: Distance setting errors. No. 9: The height setting errors to DUT antenna. No. 10: Vertical face alignment errors of both antennas of Bicon and LPA. No. 11: Error of setting distance between antenna end and antenna mast. No. 12 & 13: This error is estimated from 5 times measurements No. 14 & 15: Mismatch loss Tx side has no influence by SUB. 21 / 37 VI. SAC における SUB 法のための測定不確かさの為の注意事項 No.1&2: No.3&4: No.5: No.6&7: No.8: No.9: No.10: No.11: No.12&13: No.14&15: SUB 法の為のリファレンスアンテナの校正ファクタの測定不確かさネットワークアナライザの振幅分解能とダイナミック精度ケーブル特性電界均 性の影響距離のセッティングエラー DUT アンテナの さのセッティングエラーバイコンと LPD の垂直 のアレンジエラーアンテナマストとアンテナ端の距離のセッティングエラー 5 回測定によって計算されるエラー SUB 法による Tx 側のミスマッチは影響ありません

VII. CONCLUSION Antenna calibration with SSM shall use a Standard Antenna Calibration Site (SACS)/ ANSI C63.5 2006_5.2 and should not be applied in the 10 m semi anechoic chambers (SAC) especially for Bicon and Bilog antennas. Advantage on antenna calibration with SUB: Consistent Calibration: less affects from ambient conditions of wind, rain, radio noises and NSA characteristics. Time saving: AF measurements by the SUB take about two third less than that of SSM. Disadvantage on antenna calibration with SUB: Measurement Uncertainty will be degraded around 0.2dB to that of Ref OATS at the worst case. SUB will be acceptable for the broadband antenna calibration method. 22 / 37 VII. まとめ SSM 法によるアンテナ校正は SACS( 基準アンテナ校正サイト ) を使 し 特にバイコン及びハイブリッドアンテナにおいては 10m SAC は適 されるべきではない SUB 法によるアンテナ校正の利点 貫性のある校正 : 電波ノイズといった環境条件や NSA 特性の影響が少ない 時間短縮 :SUB 法による AF 測定は SSM 法の 2/3 で済む SUB 法によるアンテナ校正の 点 測定不確かさが悪くてリファレンス OATS のより 0.2 程度悪くなる SUB 法はブロードバンドアンテナの校正 法として適している

REFERENCES [1] ANSI C63.5 2006: American National Standard Electromagnetic Compatibility Radiated Emission Measurements in Electromagnetic Interference (EMI) Control Calibration of Antennas (9 khz to 40 GHz)(Revision of ANSI C63.5 2004) [2] ANSI C63.4 2009: American National Standard for Methods of Measurement of Radio Noise Emissions from Low Voltage Electrical and Electronic Equipment in the Range of 9 khz to 40 GHz (Revision of ANSI C63.4 2003) [3] ANSI C63.7 2005: American National Standard Guide for Construction of Open Area Test Sites for Performing Radiated Emission Measurements (Revision of ANSI C63.7 1992) [4] CISPR 16 1 5(2003 11): Specification for radio disturbance and immunity measuring apparatus and methods Part 1 5: Radio disturbance and immunity measuring apparatus Antenna calibration test sites for 30 MHz to 1 000 MHz 23 / 37 Thank you 24 / 37

Supplemental data 1 Reference OATS (Ref OATS) Meet CALTS requirements of CISPR 16 1 5 (2003) [4]. Ground Plane (GP): 50 m 80 m without weather protection enclosure 25 / 37 Supplemental data 2 Test sites: OATS1 OATS GP: 20 m 40 m without weather protection enclosure 26 / 37 Supplemental data 3 Test sites: SAC1 10 m SAC Size: 24 m 15 m height =10 m 27 / 37

Supplemental data 4 Test sites: SAC2 10 m SAC Size: 23 m 14 m height = 9.2 m 28 / 37 Supplemental data 5 Test sites: SAC3 10 m SAC Size: 18.4 m 9.9 m height = 7.7 m 29 / 37 Supplemental data 6 Test sites: SAC4 10 m SAC Size: 24.16 m 14.6 m height = 9.5 m 30 / 37

Supplemental data 7 Uncertainty Estimation for Broadband Antenna Calibration by SUB No Source of error Value (db) Probability Distribution k Ui (y) 1 Uncertainty of ref antenna: 30 300MHz 0.96 Normal 2.00 0.48 2 Uncertainty of ref antenna: 200 1000MHz 0.68 Normal 2.00 0.34 3 NA Linearity 0.05 3 1.73 0.03 4 NA Stability / Reading fluctuation 0.05 3 1.73 0.03 5 Cable loss fluctuation 0.05 3 1.73 0.03 6 Uniformity in calibration area: 30 300MHz 0.25 3 1.73 0.14 7 Uniformity in calibration area: 200 1000MHz 0.15 3 1.73 0.09 8 Antenna distance: ±2cm / Δ=20log(9.98/10) 0.02 3 1.73 0.01 9 Antenna height: ±1cm 0.15 3 1.73 0.09 10 Radiation pattern levelness / facing setting: ±1 0.12 3 1.73 0.07 11 ANT mast influence 0.15 3 1.73 0.09 12 Measurement repeatability / ANT swing: 30 300MHz 0.15 Normal 1.00 0.15 13 Measurement repeatability / ANT swing: 200 1000MHz 0.20 Normal 1.00 0.20 14 Rx mismatch:30 300MHz 0.15 2 1.41 0.11 15 Rx mismatch:200 1000MHz 0.10 2 1.41 0.07 Extended uncertainty (Bicon/Hybrid : 30 300MHz) k=2 1.13 Extended uncertainty (LPD/Hybrid : 200 1000MHz) k=2 0.88 31 / 37 Supplemental data 8 SSM Distance 10m Vertical 1m Fig. 13. SSM AF Deviation: D10V1 ΔdB1 of Bicon 2 measured at each site Fig. 14. NSA Deviation ΔdB2: Pair of Bicon 1 and Bicon 2 32 / 37 Supplemental data 9 SSM Distance 10m Vertical 1m Fig. 15. SSM AF Deviation: D10V1 ΔdB1 of LPD 2 measured at each site Fig. 16. NSA Deviation: D10V1 ΔdB2: Pair of LPD 1 and LPD 2 33 / 37

Supplemental data 10 SSM Distance 10m Vertical 1m Fig. 17. SSM AF Deviation: D10V1 ΔdB1 of Hybrid 2 measured at each site Fig. 18. NSA Deviation: D10V1 ΔdB2: Pair of Hybrid 1 and Hybrid 2 34 / 37 Supplemental data 11 SUB Distance 10m Vertical 1m Fig. 19. SUB Differences AFs (ΔdB3) for Bicon2 at each site and AFref Fig. 14. NSA Deviation ΔdB2: Pair of Bicon 1 and Bicon 2 35 / 37 Supplemental data 12 SUB Distance 10m Vertical 1m Fig. 20. SUB Differences AFs (ΔdB3) for LPD 2 at each site and AF ref Fig. 16. NSA Deviation: D10V1 ΔdB2: Pair of LPD 1 and LPD 2 36 / 37

Supplemental data 13 SUB Distance 10m Vertical 1m Fig. 21. SUB Differences AFs (ΔdB3) for Hybrid 2 at each site and AF ref Fig. 18. NSA Deviation: D10V1 ΔdB2: Pair of Hybrid 1 and Hybrid 2 37 / 37