.....Z...^.[ \..
|
|
|
- しおり いせき
- 9 years ago
- Views:
Transcription
1
2 15
3
4
5 a s d f
6 g h j
7
8
9 6
10 Y 7
11 8
12 9
13
14
15 12
16 Z 13
17 14
18 15
19
20
21 18
22 Z 19
23 20
24 21
25 22
26 23
27 24
28 25
29 26
30 27
31 28
32 Z 29
33 30
34 Y 31
35 Y YY Y Y 32
36 33
37 Y Y 34
38 35
39 36
40 YZ 37
41 38
42 Y 39
43 40
44 41
45
46 43
47 44
48 Z 45
49 46
50 Y Z 47
51 48
52 49
53 Y 50
54 51
55 52
56 53
57 54
58 55
59
60 15 57
61
62 59
63
64 60
65 61
66 62
67 63
68 64
69 65
70 66
71 67
72
73
yy yy ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ; ; ; ;; ;; ;; ;;; ;;; ;;; ;; ;; ;; ;; ;; ; ; ; ; ; ; ;
untitled
2420356585600 YY 3470336523101425240338047071 1481103367002314 8 40336700237 Y 1340091311 03587831510358783152 103001322513 0356435751 0356435759 1320022212103655644836560959 1320033 3 1 1 0336566111
2005
20 30 8 3 190 60 A,B 67,2000 98 20 23,600 100 60 10 20 1 3 2 1 2 1 12 1 1 ( ) 340 20 20 30 50 50 ( ) 6 80 5 65 17 21 5 5 12 35 1 5 20 3 3,456,871 2,539,950 916,921 18 10 29 5 3 JC-V 2 ( ) 1 17 3 1 6
応力とひずみ.ppt
in [email protected] 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S
untitled
23 59 13 23 24 0101 0001 0101 0002 0101 0001 0101 0002 0101 0007 0101 0009 0101 0012 0101 0026 0101 0031 0101 0033 0101 0056 0101 0059 0101 0075 0101 0076 0101 5001 0101 0002 0101 0003 0101 0008 0101 0010
untitled
Ÿ Ÿ ( œ ) 120,000 60,000 120,000 120,000 80,000 72,000 100,000 180,000 60,000 100,000 60,000 120,000 100,000 240,000 120,000 240,000 1,150,000 100,000 120,000 72,000 300,000 72,000 100,000 100,000 60,000
New Energy and Industrial Technology Development Organization 2 4 5 6 7 15 17 27 35 41 49 53 55 56 57 57 57 59 63 63 68 68 76 77 78 79 81 81 81 82 82 88 90 91 94 97 98 98 100 103 105 114 114 118
untitled
š ( ) 300,000 180,000 100,000 120,000 60,000 120,000 240,000 120,000 170,000 240,000 100,000 99,000 120,000 72,000 100,000 450,000 72,000 60,000 100,000 100,000 60,000 60,000 100,000 200,000 60,000 124,000
SEG SEG
SEG http://www.seg.co.jp/ http://www.seg.co.jp/i/ SEG (4cm3cm) Web http://www.seg.co.jp/ Web Web http://www.seg.co.jp/ Web Web http://www.seg.co.jp/ Web http://www.seg.co.jp/ Web Web Extreme http://www.seg.co.jp/i/
( ) œ ,475, ,037 4,230,000 4,224,310 4,230,000 4,230,000 3,362,580 2,300, , , , , , ,730 64,250 74
Ÿ ( ) œ 1,000,000 120,000 1,000,000 1,000,000 120,000 108,000 60,000 120,000 120,000 60,000 240,000 120,000 390,000 1,000,000 56,380,000 15. 2.13 36,350,605 3,350,431 33,000,174 20,847,460 6,910,000 2,910,000
Microsoft Word - 計算力学2007有限要素法.doc
95 2 x y yz = zx = yz = zx = { } T = { x y z xy } () {} T { } T = { x y z xy } = u u x y u z u x x y z y + u y (2) x u x u y x y x y z xy E( ) = ( + )( 2) 2 2( ) x y z xy (3) E x y z z = z = (3) z x y
untitled
š ( ) 200,000 100,000 180,000 60,000 100,000 60,000 120,000 100,000 240,000 120,000 120,000 240,000 100,000 120,000 72,000 300,000 72,000 100,000 100,000 60,000 120,000 60,000 100,000 100,000 60,000 200,000
変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,
変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +
untitled
š ( œ ) 4,000,000 52. 9.30 j 19,373,160 13. 4. 1 j 1,400,000 15. 9.24 i 2,000,000 20. 4. 1 22. 5.31 18,914,932 6,667,668 12,247,264 13,835,519 565,000 565,000 11,677,790 11,449,790 228,000 4,474 4,474
y y y y yy y yy yy y yy yy y y y y y y yy y y y yy yyy yy y y yyyyyy yyy yy yyyy yyyy yyyy yyyy yyyy yyyy yy Q Q Q yy QQ QQ QQ QQ QQQ QQ QQQ QQQ Q QQ QQQQ QQQ QQQ QQ Q QQ
Ÿ Ÿ ( ) Ÿ , , , , , , ,000 39,120 31,050 30,000 1,050 52,649, ,932,131 16,182,115 94,75
Ÿ ( ) Ÿ 100,000 200,000 60,000 60,000 600,000 100,000 120,000 60,000 120,000 60,000 120,000 120,000 120,000 120,000 120,000 1,200,000 240,000 60,000 60,000 240,000 60,000 120,000 60,000 300,000 120,000
II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y
17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1)
3 3 1 α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) 2000 2) 5 2 3 4 2 3 5 3) 2 2 4) (α β) 2 3 4 5 20 A 12 20 5 5 5) 6) 5 20 12 5 A (5) 1) Évariste Galois(1811-1832) 2) Joseph-Louis Lagrange(1736-1813) 18 3),Niels
.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,
[ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b
<82CD82B582B28C4E20666F E646F7773>
CA20Ⅱ/23Ⅱ 電気回路図 «««««««š«««« M コード機能一覧表 1 ž ž ž ž «ªªª h ««««««««««ªªªªªªªªª «««««ªªªªªªªªª «««««ªªªªª ªª «««««z«e u «««««~ z«e u ««««««e u «««««««««ªªªªªz «««««ªªªªª «««««««««ªªª ªª ««««««e u «««««~
U( xq(x)) Q(a) 1 P ( 1 ) R( 1 ) 1 Q( 1, 2 ) 2 1 ( x(p (x) ( y(q(x, y) ( z( R(z))))))) 2 ( z(( y( xq(x, y))) R(z))) 3 ( x(p (x) ( ( yq(a, y) ( zr(z))))
4 15 00 ; 321 5 16 45 321 http://abelardfletkeioacjp/person/takemura/class2html 1 1 11 1 1 1 vocabulary (propositional connectives):,,, (quantifires): (individual variables): x, y, z, (individual constatns):
40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,
9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,
96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A
7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N
17CR n n n n n n n n n n n n n n n n n m PGM PGM o x å 1 9 0^. - ƒ E % M d w i k g «æ n u n u - p ç e l n n n E C 00-00-00 09-08-20 00-00 09-30 n n n n n n n m l n n n n 09-23#0008.5,780.360.360.360
III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y
III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2. (x,y) (1,0) x 2 + y 2 5x 2 y x 2 + y 2. xy x2 + y 2. 2x + y 3 x 2 + y 2 + 5. sin(x 2 + y 2 ). x 2 + y 2 sin(x 2 y + xy 2 ). xy (i) (ii) (iii) 2xy x 2 +
.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,
.1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,
TELEMORE-IP(824) 取扱説明書
4 5 a 6 7 8 9 a a a a a 0 7 8 9 0 4 5 6 DEF ABC 6 MNO 5 JKL 4 GHI 9 WXYZ 8 TUV 7 PQRS 0 POWER ON STD BY a 7 8 9 0 4 5 6 DEF ABC 6 MNO 5 JKL 4 GHI 9 WXYZ 8 TUV 7 PQRS 0 a a a a a a a a a a a a a 4 a a a
ID POS F
01D8101011L 2005 3 ID POS 2 2 1 F 1... 1 2 ID POS... 2 3... 4 3.1...4 3.2...4 3.3...5 3.4 F...5 3.5...6 3.6 2...6 4... 8 4.1...8 4.2...8 4.3...8 4.4...9 4.5...10 5... 12 5.1...12 5.2...13 5.3...15 5.4...17
P VQ7.indd
-6-8 -8-6 -6/7-8 Series ISOSizeSize2 68 SJ SV J SZ V V4 S0700 VQ VQ4 VQ VQC VQC4 VQZ SQ VS VR -6-G-S-02-6-G-S-0 ø ø ø ø ø ø ø ø ø ø -6-G-S-R02 ø ø ø ø ø ø ø ø ø ø -6-G-S-R0 686 -8-G-S-0-8-G-S-R0-8-G-S-04-8-G-S-R04
L KL B DK 0101S DK 1152S DK 1S DK 25S DK 32S DK 32S DK S DK S DK HM DK 75HM DK 75HM DK 75HM DK HM DK HM DK H3M DK 0HM DK 0H3M DK H3M DK 0H3M H U-1 U-
L KL B DK 0101S DK 1152S DK 1S DK 25S DK 32S DK 32S DK S DK S DK HM DK 75HM DK 75HM DK 75HM DK HM DK HM DK H3M DK 0HM DK 0H3M DK H3M DK 0H3M H U-1 U- U-2 U-3 U-2 U-3 U-430 U-3 U-430 U-0 U-0 U-600 U-430
lecture
149 6 6.1 y(x) x = x =1 1+y (x) 2 dx. y(x) 6.1 ( ). xy y (, ) (b, B) y (b, B) y(x) O B y mg (x, y(x)) y(x) 6.1: g m y(x) v =mv 2 /2 mgy(x) v = 2gy(x) 1+y (x) 2 dx 2gy(x) y() =, y(b) =B b x 15 y 6 6.2 (
2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30
2.4 ( ) 2.4.1 ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) I(2011), Sec. 2. 4 p. 1/30 (2) Γ f dr lim f i r i. r i 0 i f i i f r i i i+1 (1) n i r i (3) F dr = lim F i n i r i. Γ r i 0 i n i
= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k
7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.
7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6
26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7
31 33
17 3 31 33 36 38 42 45 47 50 52 54 57 60 74 80 82 88 89 92 98 101 104 106 94 1 252 37 1 2 2 1 252 38 1 15 3 16 6 24 17 2 10 252 29 15 21 20 15 4 15 467,555 14 11 25 15 1 6 15 5 ( ) 41 2 634 640 1 5 252
6
000 (N =000) 50 ( N(N ) / = 499500) μm.5 g cm -3.5g cm 3 ( 0 6 µm) 3 / ( g mo ) ( 6.0 0 3 mo ) =.3 0 0 0 5 (0 6 ) 0 6 0 6 ~ 0 000 000 ( 0 6 ) ~ 0 9 q R q, R q q E = 4πε 0 R R (6.) -6 (a) (b) (c) (a) (b)
I: 2 : 3 +
I: 1 I: 2008 I: 2 : 3 + I: 3, 3700. (ISBN4-00-010352-0) H.P.Barendregt, The lambda calculus: its syntax and semantics, Studies in logic and the foundations of mathematics, v.103, North-Holland, 1984. (ISBN
03_P055-084_坂井吉良.indd
r m m r m p y i y r r r yy m m m yy p p p y r r m m p p iey r y m y p r m p m m yy m C Cy i i y i y i i y i i y i C i y y i i i y i i C i yirmp i i y i C i y i irmp y i C i y i irmp i i i C i i irmp i
P CS2.indd
Series ø, ø, ø 27.2kg 11.3kg ø kg 35 30 25 20 15 10 5 0 27.2 11.3 58% 30.1 13.1 57% 1 1.6 1.6 1,500 1,200 1,000 500 0 0 15 30 45 60 75 90 400 300 200 100 & 0 0 400 800 1200 0 565 Series 0.005MPa 5mm/s
A
A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................
k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x
k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e
a x x x x 1 x 2 Ý; x. x = x 1 + x 2 + Ý + x = 10 1; 1; 3; 3; 4; 5; 8; 8; 8; 9 1 + 1 + 3 + 3 + 4 + 5 + 8 + 8 + 8 + 9 10 = 50 10 = 5 . 1 1 Ý Ý # 2 2 Ý Ý & 7 7; 9; 15; 21; 33; 44; 56 21 8 7; 9; 15; 20; 22;
ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y
01 4 17 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy + r (, y) z = p + qy + r 1 y = + + 1 y = y = + 1 6 + + 1 ( = + 1 ) + 7 4 16 y y y + = O O O y = y
( ) x y f(x, y) = ax
013 4 16 5 54 (03-5465-7040) [email protected] hp://lecure.ecc.u-okyo.ac.jp/~nkiyono/inde.hml 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy
04年度LS民法Ⅰ教材改訂版.PDF
?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B
II 2 II
II 2 II 2005 [email protected] 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................
grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )
2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))
座標変換におけるテンソル成分の変換行列
座標変換におけるテンソル成分の変換行列 座標変換におけるテンソル成分の変換関係は 次元数によらず階数によって定義される変換行列で整理することができる 位置ベクトルの変換行列を D としてそれを示そう D の行列式を ( = D ) とするとき 鏡映や回映といった pseudo rotation に対しては = -1 である が問題になる基底は 対称操作に含まれる pseudo rotation に依存する
カーメックス社(CARMEX/超硬ねじ切り工具)
threading system C A T A L O G 1012 1314 1516 4.1 1720 2125 2729 3032 33 3436 3738 3941 4243 4445 4647 4849 5051 5253 5456 5759 60 6165 6668 2 SIMPLY SOPHISTICATED SIMPLY SOPHISTICATED 3 4 SIMPLY SOPHISTICATED
news23
13 4 2 1,432 1210 3 20 4 811 4 2 4 4 2013 5 6 8 9 10 13 11 12 1310 12 13 14 15 14 15 15 16 17 21 22 23 1 2 37 12 10 3 12 8,887860 152 8,028 11 9 13 13 104 124 !!!!!!!!!!!!!!!!!!!! 1210 12 10 1,5881,432
.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(
06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,
by SANYO W63SA W63SA
W63SA by SANYO W63SA W63SA 1 XWZc c c55c c 39 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 a b a c b 17 18 19 a b c d e r s t u v w x e y f g h i l m n o p z G J j k q A B C D H E F I 20 a b c d e f a j l r u
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2
No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j
DCR-HC30/HC40
3-088-339-02(1) DCR-HC30/HC40 DCR-HC30/ HC40 8~12 13 24 46 58 86 106 121 134 2004 Sony Corporation 2 3 4 5 6 k 7 1 k 2 1 Z 2 3 Z 8 9 3 k 4 1 k 2 B 10 11 3 k 4 12 13 1 b 2 v v 3 4 5 14 CHG 1 2 3 0% 50%
BALL SPLINES GUIDE %OFF! 45% ,000 19, SUJ2 SUS440C SUJ2 SUS440C
SPIS UI 1 1 1 17 9 19 %O! % 9 11, 19,7 1 19 SUJ SUSC SUJ SUSC SSS P.1 SSS SS SS S P.1 SS SS S P.1 7 1 SS S P.19 SYS SY P. SKS SK P.1 1 1 SS SS S P.17 SS SS S P. 1 SJS SJ P.1 SUJ 1 SUSC 1 1 Coe C m m P
Chap9.dvi
.,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim
Microsoft Word - 99
ÿj~ ui ~ 伊万里道路 ~{Êu ÊËu ÎÍÊ Êy y Ê~ Ê~Êu}Ì ÐÑÒdÌÊh ÿj~ ui ~ ~{Êu ÿj~ 497 ui ~ Êu ui ~Êud~{ÊÿÉÉvÍÉ~{ÉÆÍÂu ÊÆÇÍÊÂ~ÊÊÇÇÍÌÊÉÆÍÂ {dêîzééââââîé ÊiÍ MO Êÿj~i ~{ÉÆÍÂ Ë ÊÇÍÎ~ÌÉÇÉÆÍÂÌÉÊ,%6 +% ~{Êÿ Â,%6 ÌÊÉ +% ~{É~{Ê
P0001-P0002-›ºflÅŠpB5.qxd
Series ø, ø, ø, ø, ø, ø, ø, ø, ø, ø, ø5, ø1, ø0, ø1, ø0 W 5 1 0 1 0 øø øø øø øø øø øø øø øø øø ø W K KW øø øø øø øø øø øø øø QP2 øø øø øø øø QP2 øø ø S øø øø Q2 øø øø R V øø øø øø Y e e 599 Series K S
1 28 6 12 7 1 7.1...................................... 2 7.1.1............................... 2 7.1.2........................... 2 7.2...................................... 3 7.3...................................
II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (
II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )
2 ( ) ( ) { 5 0 ( ) ( ) ( ) ( ) 02 2 ( ) ( ) 29 (RisingNiigata ) ( ) ( ) (EPOCHAL )
2 ( ) 20 9 ( ) 0 0 ( ) 202 4 4 (T S ) 40 7 (GROUND ZERO ) 0 20 22 ( ) 02 24 ( ) 6 8 2 204 ( ) 2 205 5 (Y ) 0 8 ( ) 206 42 (Y.Y LINK ) { 44 (J O K E R ) 207 47 ( TTS ) 04 50 ( ) 0 208 56 ( ) 402 40 05 06
DJ-X11.indb
WIDE BAND COMMUNICATION RECEIVER DJ-X11 WILD GAIN 1 MODE TONE 4GHI NAME 7 PQ RS F TUNE SCAN 2 ABC 5 JKL PRIO 8 TUV ATT 3 DEF LINK 6 MNO AUDIO 9 WX YZ DJ-X11 SET CLR SHIFT 0 STEP ENT MW MAIN SUB SCOPE V/P/M
1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1
1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +
untitled
Mail de ECO Professional ...1 EXCEL...2...3...4 EXCEL...6...7...8 EXCEL...9...10...11 EXCEL...12...13...14 EXCEL...16...21...23...25...33...34...37...38...40...44 EXCEL OK 1 EXCEL EXCEL MailDeEco No 1
(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0
(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP
国土技術政策総合研究所 研究資料
ISSN 46-78 TECHNICAL NOTE of National Institut for Land and Infrastructur Managmnt No. Marc 006 Rsarc on Groundwatr Modl Rport Rivr Dpartmnt National Institut for Land and Infrastructur Managmnt Ministry
