( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 "

Transcription

1 (

2 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a = (( 1 6 : a 1 a a = (( 1 ( a 6 = (( = (( 1 ( 7 2 a b = ((a (b (b = 2 3 = = 2 3

3 0 a b = a c b c (c = = 50 7 ˆ 0 ˆ ( ˆ 1 1 ( a b a b a b 1 a a b 1 b a b ˆ ˆ = = (x y = z y

4 = = = = = = = = = x + 12y 4 10x + 12y 4 = 10x y 4 = 10 4 x y = x y = 5 2 x + 3y 10x + 12y 4 = ((10x + 12y 4 = (10x y 4 = ( 10x y 4 15x + 24y 6a 3b 6a 3b 3 ( 6 3 ( ( (2x + y(x + 2y = ( 1 (2x + y(x + 2y 15x + 24y 6a 3b = 15x + 24y 3(2a b

5 3(2a b 15x + 24y 3(2a b = 15x 3(2a b + 24y 3(2a b = 15 3(2a b x (2a b y 15 3(2a b x y (2a b 15 3(2a b x (2a b y = (2a b x (2a b y = 5 2a b x + 8 2a b y 3 (x y a α : 9 3(1 + 2 ( (1 + 2 = 9 (3 (1 + 2 = 9 (3 3 = 9 9 = 1 : 3 2 ( 2 3 ( ( 2 3 = (3 3 (( 2 ( 2 ( 2 = 9 ( 8 = (

6 ( = = 11 ( ( = 1 + (2 + 3 = = = a b = a c b c (c = = = : a b a b ( : = = = = 10 = = 5 + = 11

7 11 5 = + 6 = = = = = ( 3 = 3 + ( = = 7 + ( = ( 5 = 10 + ( 5 = = = = ( = ( ( 2 3 = 3 2 = 6 ( = (3 + 3 = : 2 3 = 3 2

8 ( (2 3 4 = 2 (3 4 = = = = = 5 6 ( = 2 5 = : (2 3 4 = 2 ( = = 23 ( = 23 ( 5 3 ( ( ( ( ( (9 3 ( ( ( (1 + 2 = 3 (1 + 2 = 3 3 = 9 9 3(1 + 2 = 9 (3 3 = 9 9 = (1 + 2 (9 3(1 + 2

9 = 3 = = 4 = 12 4 = 12 4 = = 8 2 = = = (2 2 2 = (( = (( (2 + 2 = = 2 8 = = 4 3 = 64 (: = = 2 7 = = (2 2 2 ( = = 2 7

10 (: (2 2 3 = (2 3 2 = = 2 6 = 64 (2 2 3 = (2 2 3 = ((2 2 (2 2 (2 2 = ( = ((2 2 2 (2 2 2 } {{ } } {{ } 2 6 ( = 3 = 9 2 = 9 log 3 9 = ± 2 9 = 2 ± 9 = 2 = (= 2 10 = = 22 = 2 4 = = ( = = 2 1 = = = = ( = = 12 5 = 12 5

11 = = = (1 + 2 ((1 + 2 = (1 + 2

12 ( 1 + ( = ( = ( = 1 + ( ( 4 = ( 4 = ( = 1 + ( ( ( ( ( = 1 + (( 1 ( (( 1 ( = 1 + (( = 1 + ( ( = ( (1 + 2 = ( ( = ( = ( ( ( 3 ( = (

13 3 ( ( ( ( (5 + 4 = ( ( ( ( (5 + 4 = = = ( ( ( ( ( (5 + 4 ( = ( ( 3 = ( ( = ( ( 3 ( = 3 ( = ( (x a 6 a x a + b + 7 x (x a x a + b + 7 x (x + 1

14 ( 6 a x a + b + 7 x (x a x 6ax 4.1 7x 2x 7xy 2x 2 y (7xy x 2x 2 y x 4ab ba ( 2a + 5a = 7a 2a + 5a = (2 a + (5 a = (a 2 + (a 5 = (a + a + (a + a + a + a + a = a + a + a + a + a + a + a = a 7 = 7a a 2 + ab + b 2 a b 1 7ab 8bc = 56ab 2 c a 2 bc abc = a

15 a 2 bc abc = ab 2 c 2 a 2 bc abc = (a a b c (a b c = 1 (a a b c a b c = a 1 a 1 b 1 c a 1 b 1 c 1 = a 4.2 : 1 2a(b + 3(2a 5 1 2a(b + 3(2a 5 = 1 ((2a b + (2a 3(2a 5 = 1 (2ab + 2a 3(2a 5 = 1 + (( 1 (2ab + 2a 3(2a 5 = 1 + ( 2ab 2a 3(2a 5 = 1 2ab 2a 3(2a 5 = 1 2ab 2a (6a 15 = 1 2ab (12a 2 30a = 1 2ab + ( 12a a = 1 2ab 12a a x + 1 (x + 1 (x + 1(y + z = (((x + 1 y + ((x + 1 z : (x + y(z + a(b + c (x + y(z + a(b + c = (x + y(z + ab + ac = (((x + y z + ((x + y ab + ((x + y ac = ((xz + yz + (xab + yab + (xac + yac = xz + yz + xab + yab + xac + yac

16 (x + a(x + b (x + a(x + b = (((x + a x + ((x + a b = ((x 2 + ax + (bx + ab = x 2 + ax + bx + ab x 2 + ax + bx + ab = x 2 + (a + bx + ab (x + a(x + b a b (x + a(x + b (x + a(x + b = x 2 + (a + bx + ab (x + a 2 (x + a 2 = (x + a(x + a a = b (x + a 2 = x 2 + 2ax + a : x x x x + 24 ( 0 x x = 1 x = 1 x = 1 0 x x x x + 24 = ( (10 ( (35 ( (50 ( = = 0 x = 1 0 (x + 1( x x 4 1

17 x 3 1 x 4 1 x x x x + 24 = (x + 1(x 3 + (x + 1(x 3 + (x + 1(x 3 + = x 4 + x 3 + x x 3 9x 2 ((x + 1 x x x x x + 24 = (x + 1(x 3 + 9x 2 + (x + 1(x 3 + 9x 2 + (x + 1(x 3 + 9x 2 + = x x 3 + 9x 2 + x x 2 26x x x x x + 24 = (x + 1(x 3 + 9x x + (x + 1(x 3 + 9x x + (x + 1(x 3 + 9x x + = x x x x + x 50 24x 24 x x x x + 24 = (x + 1(x 3 + 9x x (x + 1(x 3 + 9x x (x + 1(x 3 + 9x x = x x x x x x x x + 24 = (x + 1(x 3 + 9x x + 24 (x 3 + 9x x + 24 x = 2 x 3 + 9x + 26x + 24 = ( (9 ( (26 ( = = 0 (x + 2( (x + 1(x 3 + 9x x + 24 = (x + 1(x + 2(x 2 + 7x + 12 x x x x + 24 = (x + 1(x + 2(x + 3(x + 4

18 5 ( = ( 5.1 ( = ( = 3 2(a + b = 2a + 2b y = 4x (x + 2 = x + 6 = 9 3(x + 2 = 3x = 9 A = A B = B A = B A = B 3(x + 2 = 3x = 9 3(x + 2 = x + 6 = 9 x 1 = 5 (x = (5 + 1 x = 6 A = B A + C = B + C A B A = B (A + C = (B + C

19 ( 0 0 2x + 2 = 6 (2x = (6 1 2 x + 1 = 3 A = B (A C = (B C x + 1 = 8 (x = (8 4 A = B (A C = (B C 5.3 : 2a(b + 5(3a + b = 2a(b + 5(3a + b = 2a(b + (15a + 5b = 2a(b + 15a + 5b = 2a(15a + 6b = 30a ab ( = ( 2 = = 1

20 2 = 2 1 = 1 1 = 2 1 = 2 2 = 2 = 2 1 = 2 1 = 1 = 1 2 = 2 1 = 1 ( = 2 = = = 1 : 2 = = = 1 3(x + 2 = 15 3(x + 2 = 15 3x + 6 = 15 (3x = (15 6 3x = 9 (3x 1 3 = (9 1 3 x = x 1 = 5 (x = (5 + 1 x = 6 x = (5 + 1 x 1 = 5 x = ( x 1 = 5 (x 1+1 = (5+1 x = (5+1 x = 6

21 x 1 = 5 x = ( DBC ABC BAC + CBA + ABC = 180 AD CBA + CBD = 180 BAC + CBA + ABC = 180 = CBA + CBD BAC + CBA + ABC = CBA + CBD a C c b a + c A B D 3: CBA BAC + ABC = CBD ( ( 1 2 1

22 ( 1. ( 4 2. ( 5 3. ( 6 5. ( 7 6. ( ( 3. C F C F C F A B D E A B D E A B D E 4: 5: 6:

23 C F C F A B D E 7: A B D E 8: (( + ( ( 1 2 ( ( ˆ ˆ

24 ( ( 2 1 ( 1 ( ( ( 90 ( ( ˆ ˆ ( ( ( ˆ ˆ 3.

25 6.3 π 3.14 ( π 2 ( 2 π ( 2 π ( 360 ( 360 ( 2 π ( C F E A O D B 9: C F O E A D B 10:

26 11 12 F O C E A D B 11: C F E O A D B 12: 13 O B C O A A B O C 13:

27 6.5 ( ( ( ( 1 3 ( ˆ 3l 6l 2 ˆ 4m 2 1m ˆ %( ( 1 = 100% = 1000 ˆ 1 ˆ 100 ˆ 1000

28 7.2 ˆ 3l 6l 2 ˆ 4m 2 1m ˆ ˆ 3l 6l 2 3 : 6 ˆ 4m 2 1m : 1 ˆ : 5 3 : : 6 3 : = : 2 3 : 6 = 1 : 2 2 : 5 2 : 5 = 4 : 10 = 6 : 15 = 8 : 20 =... 2 : 5 1 : 5 2 = 3 2 : 15 4 = 2 : 5 = 5 2 : 25 4 = 3 : 15 2 =...

29 2 : 5 = 4 :2 : 5 = : 10 y = 5 2 x 5 2 : 5 x y : 5 = 4 : x = 4 ( 5 y = 2 4 y = 10 2 : 5 = : 10 y = = 5 2 x x = 4 5 a 2 y y = 2x O x (0, 0 y = 2x x = 1 y y = 2 (1, 2 (0, 0 (1, 2 y = 2x 2 y = f(x (

1

1 005 11 http://www.hyuki.com/girl/ http://www.hyuki.com/story/tetora.html http://www.hyuki.com/ Hiroshi Yuki c 005, All rights reserved. 1 1 3 (a + b)(a b) = a b (x + y)(x y) = x y a b x y a b x y 4 5 6

More information

) 9 81

) 9 81 4 4.0 2000 ) 9 81 10 4.1 natural numbers 1, 2, 3, 4, 4.2, 3, 2, 1, 0, 1, 2, 3, integral numbers integers 1, 2, 3,, 3, 2, 1 1 4.3 4.3.1 ( ) m, n m 0 n m 82 rational numbers m 1 ( ) 3 = 3 1 4.3.2 3 5 = 2

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

04年度LS民法Ⅰ教材改訂版.PDF

04年度LS民法Ⅰ教材改訂版.PDF ?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B

More information

2002.N.x.h.L.......g9/20

2002.N.x.h.L.......g9/20 1 2 3 4 5 6 1 2 3 4 5 8 9 1 11 11 12 13 k 14 l 16 m 17 n 18 o 19 k 2 l 2 m 21 n 21 o 22 p 23 q 23 r 24 24 25 26 27 28 k 28 l 29 m 29 3 31 34 42 44 1, 8, 6, 4, 2, 1,2 1, 8 6 4 2 1, 8, 6, 4, 2, 1,2 1, 8

More information

新たな基礎年金制度の構築に向けて

新たな基礎年金制度の構築に向けて [ ] 1 1 4 60 1 ( 1 ) 1 1 1 4 1 1 1 1 1 4 1 2 1 1 1 ( ) 2 1 1 1 1 1 1 1996 1 3 4.3(2) 1997 1 65 1 1 2 1/3 ( )2/3 1 1/3 ( ) 1 1 2 3 2 4 6 2.1 1 2 1 ( ) 13 1 1 1 1 2 2 ( ) ( ) 1 ( ) 60 1 1 2.2 (1) (3) ( 9

More information

48 * *2

48 * *2 374-1- 17 2 1 1 B A C A C 48 *2 49-2- 2 176 176 *2 -3- B A A B B C A B A C 1 B C B C 2 B C 94 2 B C 3 1 6 2 8 1 177 C B C C C A D A A B A 7 B C C A 3 C A 187 187 C B 10 AC 187-4- 10 C C B B B B A B 2 BC

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

x : = : x x

x : = : x x x : = : x x x :1 = 1: x 1 x : = : x x : = : x x : = : x x ( x ) = x = x x = + x x = + + x x = + + + + x = + + + + +L x x :1 = 1: x 1 x ( x 1) = 1 x 2 x =1 x 2 x 1= 0 1± 1+ 4 x = 2 = 1 ± 5 2 x > 1

More information

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a [] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y 01 4 17 1.. y f(, y) = a + by + cy + p + qy + r a, b, c 0 y b b 1 z = f(, y) z = a + by + cy z = p + qy + r (, y) z = p + qy + r 1 y = + + 1 y = y = + 1 6 + + 1 ( = + 1 ) + 7 4 16 y y y + = O O O y = y

More information

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

0   (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4 0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

PSCHG000.PS

PSCHG000.PS a b c a ac bc ab bc a b c a c a b bc a b c a ac bc ab bc a b c a ac bc ab bc a b c a ac bc ab bc de df d d d d df d d d d d d d a a b c a b b a b c a b c b a a a a b a b a

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (, [ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P p P 1 n n n 1 φ(n) φ φ(1) = 1 1 n φ(n), n φ(n) = φ()φ(n) [ ] n 1 n 1 1 n 1 φ(n) φ() φ(n) 1 3 4 5 6 7 8 9 1 3 4 5 6 7 8 9 1 4 5 7 8 1 4 5 7 8 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 19 0 1 3 4 5 6 7

More information

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p a a a a y y ax q y ax q q y ax y ax a a a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p y a xp q y a x p q p p x p p q p q y a x xy xy a a a y a x

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 n =3, 200 2 10 1 1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 a, b (a, b) =1a b 1 x 2 + y 2 = z 2, (x, y) =1, x 0 (mod 2) (1.1) x =2ab, y = a 2 b 2, z =

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

Taro10-名張1審無罪判決.PDF

Taro10-名張1審無罪判決.PDF -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- -1- 39 12 23 36 4 11 36 47 15 5 13 14318-2-

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7 30キ36ヲ0 7 7 ュ6 70キ3 ョ6ァ8056 50キ300 縺6 5 ッ05 7 07 ッ 7 ュ ッ04 ュ03 ー 0キ36ヲ06 7 繖 70キ306 6 5 0 タ0503070060 08 ョ0303 縺0 ァ090609 0403 閨0303 003 ァ 0060503 陦ァ 06 タ09 ァ タ04 縺06 閨06-0006003 ァ ァ 04 罍ァ006 縺03 0403

More information

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel =5+ 5 + 7 =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E+05 13 10 5 13000 13E-05 13 10 5 0000 1 ( S/E) 006 7 30 0 (1 ) 01 Excel 0 7 3 1 (-4 ) 5 11 5 1 6 13 7 (5-7 ) 9 1 1 9 11 3 Simplex 1 4 (shadow price) 14 5 (reduced cost) 14 3 (8-10 ) 17 31 17 3 18 33 19 34 35 36 Excel 3 4 (11-13 ) 5 41 5 4

More information

MultiWriter 5600C 活用マニュアル

MultiWriter 5600C 活用マニュアル 1 *1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 9 1 2 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 a b c 26 27 28 C *1 *2 *2 29 2 2 2 2 2 2 2 2 2 30 *1 *2 ± *1 C C 31 32 33 34 35 36 M C Y K 1 2 3 4 5 6

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information

表紙

表紙 A B,BW C Rc No. h Rc C 2 3 4 M2 M3 M4 M5 M6 25 3.2 6.8 3.5 6.4 2.8 2.7 2.4 9.1 15.5 21.6 28.0 34.4 35 41 40 50 60 80 100 120 140 160 180 200 240 4.8 10.2 5.2 10.1 4.3 4.1 3.8 14.23 24.36 34.1 44.2 54.3

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

卓球の試合への興味度に関する確率論的分析

卓球の試合への興味度に関する確率論的分析 17 i 1 1 1.1..................................... 1 1.2....................................... 1 1.3..................................... 2 2 5 2.1................................ 5 2.2 (1).........................

More information

1 (1) vs. (2) (2) (a)(c) (a) (b) (c) 31 2 (a) (b) (c) LENCHAR

1 (1) vs. (2) (2) (a)(c) (a) (b) (c) 31 2 (a) (b) (c) LENCHAR () 601 1 () 265 OK 36.11.16 20 604 266 601 30.4.5 (1) 91621 3037 (2) 20-12.2 20-13 (3) ex. 2540-64 - LENCHAR 1 (1) vs. (2) (2) 605 50.2.13 41.4.27 10 10 40.3.17 (a)(c) 2 1 10 (a) (b) (c) 31 2 (a) (b) (c)

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

A_chapter3.dvi

A_chapter3.dvi : a b c d 2: x x y y 3: x y w 3.. 3.2 2. 3.3 3. 3.4 (x, y,, w) = (,,, )xy w (,,, )xȳ w (,,, ) xy w (,,, )xy w (,,, )xȳ w (,,, ) xy w (,,, )xy w (,,, ) xȳw (,,, )xȳw (,,, ) xyw, F F = xy w x w xy w xy w

More information

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 : 9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)

More information

EPSON VP-1200 取扱説明書

EPSON VP-1200 取扱説明書 4020178-01 w p s 2 p 3 4 5 6 7 8 p s s s p 9 p A B p C 10 D p E 11 F G H H 12 p G I s 13 p s A D p B 14 C D E 15 F s p G 16 A B p 17 18 s p s 19 p 20 21 22 A B 23 A B C 24 A B 25 26 p s p s 27 28 p s p

More information

ii-03.dvi

ii-03.dvi 2005 II 3 I 18, 19 1. A, B AB BA 0 1 0 0 0 0 (1) A = 0 0 1,B= 1 0 0 0 0 0 0 1 0 (2) A = 3 1 1 2 6 4 1 2 5,B= 12 11 12 22 46 46 12 23 34 5 25 2. 3 A AB = BA 3 B 2 0 1 A = 0 3 0 1 0 2 3. 2 A (1) A 2 = O,

More information

行列代数2010A

行列代数2010A (,) A (,) B C = AB a 11 a 1 a 1 b 11 b 1 b 1 c 11 c 1 c a A = 1 a a, B = b 1 b b, C = AB = c 1 c c a 1 a a b 1 b b c 1 c c i j ij a i1 a i a i b 1j b j b j c ij = a ik b kj b 1j b j AB = a i1 a i a ik

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

xyr x y r x y r u u

xyr x y r x y r u u xyr x y r x y r u u y a b u a b a b c d e f g u a b c d e g u u e e f yx a b a b a b c a b c a b a b c a b a b c a b c a b c a u xy a b u a b c d a b c d u ar ar a xy u a b c a b c a b p a b a b c a

More information

学習の手順

学習の手順 NAVI 2 MAP 3 m 17 13 19 12 17 24 1 20 18 23 18 12 1 12 17 11 14 16 19 22 m 12 16 A 16 20 B 20 24 24 28 C 20 AC 40 cm AD A 0.20 12 0.300 B 0.200 0.12 12 C D 40 1.000 20 2 2 0 20 30 cm 14 1 1 160 160 16

More information

1 1 2 1 3 1 4 2 4.1 AKB............................................... 2 4.2......................................... 6 4.3...........................

1 1 2 1 3 1 4 2 4.1 AKB............................................... 2 4.2......................................... 6 4.3........................... 24 3 28 : 1 1 2 1 3 1 4 2 4.1 AKB............................................... 2 4.2......................................... 6 4.3............................................. 9 5 9 5.1.........................................

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

1 2 3 4 5 6 X Y ABC A ABC B 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 13 18 30 P331 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ( ) 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

More information

26 2 3 4 5 8 9 6 7 2 3 4 5 2 6 7 3 8 9 3 0 4 2 4 3 4 4 5 6 5 7 6 2 2 A B C ABC 8 9 6 3 3 4 4 20 2 6 2 2 3 3 4 4 5 5 22 6 6 7 7 23 6 2 2 3 3 4 4 24 2 2 3 3 4 4 25 6 2 2 3 3 4 4 26 2 2 3 3 27 6 4 4 5 5

More information

mogiJugyo_slide_full.dvi

mogiJugyo_slide_full.dvi a 2 + b 2 = c 2 (a, b, c) a 2 a 2 = a a a 1/ 78 2/ 78 3/ 78 4/ 78 180 5/ 78 http://www.kaijo.ed.jp/ 6/ 78 a, b, c ABC C a b B c A C 90 a 2 + b 2 = c 2 7/ 78 C a b a 2 +b 2 = c 2 B c A a 2 a a 2 = a a 8/

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 1 ... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 3 4 5 6 7 8 9 Excel2007 10 Excel2007 11 12 13 - 14 15 16 17 18 19 20 21 22 Excel2007

More information

) Binary Cubic Forms / 25

) Binary Cubic Forms / 25 2016 5 2 ) Binary Cubic Forms 2016 5 2 1 / 25 1 2 2 2 3 2 3 ) Binary Cubic Forms 2016 5 2 2 / 25 1.1 ( ) 4 2 12 = 5+7, 16 = 5+11, 36 = 7+29, 1.2 ( ) p p+2 3 5 5 7 11 13 17 19, 29 31 41 43 ) Binary Cubic

More information