main.dvi

Size: px
Start display at page:

Download "main.dvi"

Transcription

1 Nim Nim,.,,,,. Nim Nim,.,.,.,,.,.,. [1, 3],,, Nim,,., Nim. Date:.

2 August 10-11, Nim.. Pile., Pile.,. normal case.,. reverse case.,.. Pile. N 1, N 2, N 3., N 1, N 2, N 3,., N 1 = N 2 = N 3 =0., N 1 = N 2 = N 3 =0.,., Nim.,,., Nim.. Pile k. N 1,,N k., N 1, N k,., i, N i =0. normal case., i N i =0. reverse case. 1.1 Nim,. Definition 1.1. {N i } k i=1 = {N 1,,N k }, NIM({N 1,,N k })= NIM({N i }). {N i } k i=1 N i, N l i N l 1 i N 1 i N 0 i., N i = Ni l 2 l + Ni l 1 2 l Ni 1 2+Ni 0

3 August 10-11, , N l i =0,1., NIM({N i })=(N l N l k,n l N l 1 k,,n N 1 k,n N 0 k ) 2 =(N1 l + + Nk)2 l l +(N1 l N l 1 k )2 l 1 + +(N N k 1 )2 + (N N k 0 )., ,, N j i 0, 1. 1 Example 1.2. NIM({N i }). 1. N 1 =3,N 2 =4,N 3 =5. N 1, N 2, N 3, N 1 =3=0 1 1 N 2 =4=1 0 0 N 3 =5=1 0 1 NIM({3, 4, 5}) =0 1 0=2, NIM({3, 4, 5}) =(0, 1, 0) 2 =2. 2. N 1 =2,N 2 =5,N 3 =7. N 1, N 2, N 3, N 1 =2=0 1 0 N 2 =5=1 0 1 N 3 =7=1 1 1 NIM({2, 5, 7}) =0 0 0=0, NIM({2, 5, 7}) =(0, 0, 0) 2 =0. NIM. Proposition 1.3. NIM. 1. {N i } {N i}, NIM({N i }) = NIM({N i}). 2. NIM({M,M}) =0. 3. NIM({N 1,,N k }) = NIM({N 1,,N l }, NIM({N l+1,,n k })). 4. N i N i1, N i2, NIM({N 1,,N k }) = NIM({N 1,,N i1,n i2,,n l }). Proof.. NIM, 1., {N i } m {Ni m }, N1 m + + Nk m mod 2. mod2,.,,.

4 August 10-11, mod2 a + b = b + a. 2. M, 1+1=0,0+0=0 NIM({M,M}) =0. Theorem 1.4. Nim, {N i } NIM({N i })=0, Nim, NIM({N i }) 0., {N i } NIM({N i }) 0, Nim, {N i } NIM({N i })=0. Proof., {N i } NIM({N i })=0., {N i }. N i0, N i 0., 0 N i 0 <N i0., N i0 N i 0, 0 1., NIM({N i }) 1, N i0, NIM({N i }) 0 1.,. {N i }, {N i }, i i 0, N i = N i, N i0 >N i 0., NIM({N i })=0, j =0,,l N j N j k =0., N i0 N i 0, j = j 0., N j0 i 0 ((N 1) j 0 + +(N i 0 ) j 0 + +(N k) j 0 ) (N j0 1 (N i 0 ) j0 + + N j0 i N j0 j0 k )=Ni 0 (N i 0 ) j 0 =1.,,, N j N j0 i N j0 k =0 (N 1) j0 + +(N i 0 ) j0 + +(N k) j0 =1. NIM({N i }) 0., NIM({N i }) 0. M = NIM({N i })., M l +1. {N i } l +1 1, N i0., M l +1 1,., N i0 l +2 l +1 0 N i1, l +1 N i2,, L = NIM(N i2,m). M, N i2 M l +1 1, L l +1 0, N i2 >L., N i0 l +1 N i2 L. {N i2 } i2 {N i } N i0, N i1. Proposition 1.4, NIM({N i } i2,l) = NIM({N i } i2, NIM({N i2,m})) = NIM({N i } i2,n i2,m}) = NIM({N i },M) = NIM(NIM({N i }),M) = NIM(M,M) =0

5 August 10-11, , i 0 (N i+1 L) 2, N i 0, NIM(N i )=0. Example N 1 =7,N 2 =6,N 3 =5. N 1 =7=1 1 1 N 2 =6=1 1 0 N 3 =5=1 0 1 NIM({7, 6, 5}) =1 0 0, M =4., N i0, N 1 4, N 1 =3, i 0 =1., L =3. N 1 =3=0 1 1 N 2 =6=1 1 0 N 3 =5=1 0 1 NIM({3, 6, 5}) = N 1 =3,N 2 =4,N 3 =5. N 1 =3=0 1 1 N 2 =4=1 0 0 N 3 =5=1 0 1 NIM({3, 4, 5}) =0 1 0, M =2., i 0 =1., L = NIM(3, 2)=1,, N 1 L =1, N 1 =1=0 0 1 N 2 =4=1 0 0 N 3 =5=1 0 1 NIM({1, 4, 5}) = (normal case) normal case., i N i =0, NIM({N i }) = NIM({0,, 0}) =0., (Theorem 1.4), NIM({N i }) 0.,.

6 August 10-11, Definition 1.6. {N i } = {N 1,,N k }, NIM({N i }) 0. {N i } = {N 1,,N k }, NIM({N i })=0., Theorem 1.4,. Theorem 1.7.,.,.,. Theorem 1.8. Nim normal case,. Proof.,., Theorem 1.7,,. Theorem 1.7,,,.,, {N i }, N i0 0., N i0,. 1.3 (reverse case),.,,,.,,. Definition 1.9. {N i } = {N 1,,N k }, normal case, N i =1 0,, N i =1 0., normal case. Theorem 1.10.,.,. Proof. normal case, reverse case,, N i =1 0, N i =1,., normal case, reverse case,, N i =1 0, N i =1,.,.

7 August 10-11, , normal mode, reverse mode, 2.,, reverse mode,, reverse mode, N i =1, 0,, pile 0,, N i =1 0, reverse mode,., pile 1, 0, N i =1, reverse mode,., normal mode, reverse mode, N i =1.,, N i =1, 0., N i > 1 pile,, N i > 1 pile.,, normal mode, reverse mode.,. Theorem Nim reverse case,.

8 August 10-11, section., Nim K.. k., k K. N 1,,N k., N 1, N k K,., i, N i =0. normal case, i N i =0. reverse case section Nim Nim K, K = Nim K Nim. Definition 2.1. {N i } k i=1, NIM K({N 1,,N k }) = NIM K ({N i }). {N i } k i=1, N l i N l 1 i N 1 i N 0 i., N i = Ni l 2 l + Ni l 1 2 l Ni 1 2+Ni 0., N l i =0,1., NIM K ({N i })=(N l N l k,n l N l 1 k,,n N 1 k,n N 0 k ) 2 =(N1 l + + N k l )(K +1)l +(N1 l N l 1 k )(K +1) l 1 + +(N Nk 1 )(K +1)+(N Nk 0 )., K +1. Remark 2.2. NIM({N i }) NIM K ({N i }), 2, K +1., K +1. Example 2.3. NIM K ({N i }). 1. K =2,N 1 =3,N 2 =4,N 3 =5. N 1, N 2, N 3,, NIM 2 ({3, 4, 5}) =(2, 1, 2) 3 =23. N 1 =3=0 1 1 N 2 =4=1 0 0 N 3 =5=1 0 1 NIM 2 ({3, 4, 5}) =2 1 2= =23

9 August 10-11, Theorem 2.4. Nim K, {N i } NIM K ({N i })=0, Nim K, NIM K ({N i }) 0., {N i } NIM K ({N i }) 0, Nim K, {N i } NIM K({N i })= 0. Proof., {N i } NIM K ({N i })=0., {N i } K. N 1,,N m,0<m m, N 1,,N m., 0 N s <N s s =1, m., N s N s, 0 1., NIM K ({N i }) 1, N 1,,N m., K, NIM K ({N i }) 0 0.,. {N i }, {N i }, i>m, N i = N i, i m N i >N i., NIM K({N i })=0, j =0,,l N j N j k =0., i m N i N i, j = j 0 i i =1,,m., ((N 1) j0 + +(N k) j0 ) (N j0 1 N j0 i (N i )j0 j0 j0 + + Nk ) = N1 (N 1) j0 + Nm j0 (N m) j0 K.,,, N j N j0 k =0 (N 1) j0 + +(N k) j0 0. NIM K ({N i }) 0., NIM K ({N i }) 0. Nim K. M = NIM K ({N i })., M K +1 M l, l +1., {N i } l +1 1 M l. n, M l + n(k +1). N i1,,n im.. l,. N i, i = i 1,,i Ml l +1 0, 1., N i l 2 l 1., NIM K ({N i }) K +1 l +1 0., l, K., NIM K ({N i }) M, K +1 l, M l.,, l <l., N ij l 1,., M l. 1. M l M l., N ij, M l l 0.

10 August 10-11, M l <M l., N ij l 0 NIMK, K +1 l M l M l.,, N i, l 1 M l M l,., NIM K ({N i }), K +1 l 1., K, NIM K ({N i })=0. Example 2.5. NIM K ({N i }) K =2,N 1 =3,N 2 =4,N 3 =5. N 1 =3=0 1 1 N 2 =4=1 0 0 N 3 =5=1 0 1 NIM 2 ({3, 4, 5}) =2 1 2., N i 3 1, N 1, N 2, 011, N 1 =3=0 1 1 N 2 =3=0 1 1 N 3 =3=0 1 1 NIM 2 ({3, 3, 3}) =0 0 0=0. 2. K =2,N 1 =3,N 2 =4,N 3 =5,N 4 =9. N 1 = 3 = N 2 = 4 = N 3 = 5 = N 4 = 9 = NIM 2 ({3, 4, 5, 9}) = , N i 4 1, N 4, N 1 = 3 = N 2 = 4 = N 3 = 5 = N 4 =7= NIM 2 ({3, 4, 5, 7}) =

11 August 10-11, , N 4 N , N 1 = 1 = N 2 = 4 = N 3 = 5 = N 4 = 5 = NIM 2 ({1, 4, 5, 5}) = (normal case) normal case. Section,. Definition 2.6. {N i } = {N 1,,N k }, NIM K ({N i }) 0. {N i } = {N 1,,N k }, NIM K ({N i })=0., Theorem 1.7,. Theorem 2.7.,.,.,. Theorem 2.8. Nim K normal case,. 2.3 (reverse case),. K 2, K =1.,, K n,, n 1,,,,.,,. Definition 2.9. {N i } = {N 1,,N k }, normal case, N i =1 K +1, 0, N i =1 K +1, 0., normal case.

12 August 10-11, Theorem 2.10.,.,. Proof. normal case, reverse case,, N i =1 K +1, 0, N i =1 K +1,., normal case, reverse case,, N i =1 K +1, 0, N i =1 K +1,,.,. 1., normal mode, reverse mode, 2.,, reverse mode,, reverse mode, N i =1 K +1, 0,, pile 0,, 1, pile, N i =1 K +1, 0., reverse mode,., normal mode, reverse mode, N i =1 K +1.,, N i =1 K +1, 0., N i > 1 pile,, N i > 1 pile K.,, normal mode, reverse mode.,. Theorem Nim K reverse case,.

13 August 10-11, ,., n. 3.1, [2], n Nim K (normal case).,,., Nim n K. n P 1,,P n. k. N 1,,N k. n, N 1, N k,., i, N i =0.,, P i,. P i+1, P i+1,,p i 1,P i,, Nim K,. Definition 3.1. l-position,, l., n =2, 1-position., Nim K NIMK. Definition 3.2. {N i } k i=1, NIMn K({N 1,,N k }) = NIM n K({N i }), NIM K nk K +1. n =2, nk K +1=K +1, NIM K.,. Theorem 3.3. NIM n K({N i })=0, 1-position. Proof.,. NIM n K ({N i}) δ., δ =0, n 1, δ =0. δ 0, n 1, δ =0.,.

14 August 10-11, [1] Charles. L. Bouton, Nim, a game with a complete mathematical theorey, Ann. of Math. (2) (1902), no. 3, [2] S.-Y. R. Li, N-person Nim and N-person Moore s games, Internat. J. Game Theory 7 (1978), no. 1, [3] E.H. Moore, A generalization of the game callednim, Ann. of Math. (2) (1910), no. 11,

1 48

1 48 Section 2 1 48 Section 2 49 50 1 51 Section 2 1 52 Section 2 1 53 1 2 54 Section 2 3 55 1 4 56 Section 2 5 57 58 2 59 Section 2 60 2 61 Section 2 62 2 63 Section 2 3 64 Section 2 6.72 9.01 5.14 7.41 5.93

More information

各位                               平成17年5月13日

各位                               平成17年5月13日 9000 1 6 7 8 8 9000 1960 1 2 2 3 3 1471 4 1362 5 2006 6 7 8 1967 9 1988 1988 10 1000 1348 5000 3000 2 11 3 1999 12 13 14 9000 A 15 9000 9000 9000 10000 16 6000 7000 2000 3000 6800 7000 7000 9000 17 18

More information

サービス付き高齢者向け住宅賠償責任保険.indd

サービス付き高齢者向け住宅賠償責任保険.indd 1 2 1 CASE 1 1 2 CASE 2 CASE 3 CASE 4 3 CASE 5 4 3 4 5 6 2 CASE 1 CASE 2 CASE 3 7 8 3 9 10 CASE 1 CASE 2 CASE 3 CASE 4 11 12 13 14 1 1 2 FAX:03-3375-8470 2 3 3 4 4 3 15 16 FAX:03-3375-8470 1 2 0570-022808

More information

目    次

目    次 1 2 3 t 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 IP 169 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

More information

Tabulation of the clasp number of prime knots with up to 10 crossings

Tabulation of the clasp number of prime knots  with up to 10 crossings . Tabulation of the clasp number of prime knots with up to 10 crossings... Kengo Kawamura (Osaka City University) joint work with Teruhisa Kadokami (East China Normal University).. VI December 20, 2013

More information

2

2 1 2 119 119 5 500 1 30 102 1 113 3 4 120 2 3 113 5 230 1 1 3 4 5 6 7 8 1 [email protected] 2 9 3 ( ) 10 11 12 4 1. 2. 3. 4. 13 5 14 15 16 17 18 19 [ ] [ ] 20 [ ] [ ] [ ] 21 22 [ ] 23 < > < >

More information

AHPを用いた大相撲の新しい番付編成

AHPを用いた大相撲の新しい番付編成 5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

A Brief Introduction to Modular Forms Computation

A Brief Introduction to Modular Forms Computation A Brief Introduction to Modular Forms Computation Magma Supported by GCOE Program Math-For-Industry Education & Research Hub What s this? Definitions and Properties Demonstration H := H P 1 (Q) some conditions

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

bc0710_010_015.indd

bc0710_010_015.indd Case Study.01 Case Study.02 30 Case Study.05 Case Study.03 Case Study.04 Case Study.06 Case Study.07 Case Study.08 Case Study.21 Case Study.22 Case Study.24 Case Study.23 Case Study.25 Case Study.26

More information

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt NON COMMTATIVE ALGEBRAIC SPACE OF FINITE ARITHMETIC TYPE ( ) 1. Introduction (1) (2) universality C ( ) R (1) (2) ultra filter 0 (1) (1) ( ) (2) (2) (3) 2. ultra filter Definition 2.1. X F filter (1) F

More information

- 1 - - 2 - 320 421 928 1115 12 8 116 124 2 7 4 5 428 515 530 624 921 1115 1-3 - 100 250-4 - - 5 - - 6 - - 7 - - 8 - - 9 - & & - 11 - - 12 - GT GT - 13 - GT - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - -

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n 1 1.1 Excel Excel Excel log 1, log, log,, log e.7188188 ln log 1. 5cm 1mm 1 0.1mm 0.1 4 4 1 4.1 fx) fx) n0 f n) 0) x n n! n + 1 R n+1 x) fx) f0) + f 0) 1! x + f 0)! x + + f n) 0) x n + R n+1 x) n! 1 .

More information

橡HP用.PDF

橡HP用.PDF 1 2 3 ... 1... 2... 2... 3... 4... 12...12...12... 14...14...15...16... 17...17... 17...18...18...20...22... 26... 26 ... 27...27...28 32 1 2 3 8 9 O 1 2 7 C ln 6 O 4 3 C ln m + n = 8 8 9 1 2 7 3 C ln

More information

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a Page 1 of 6 B (The World of Mathematics) November 0, 006 Final Exam 006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (a) (Decide whether the following holds by completing the truth

More information

_TZ_4797-haus-local

_TZ_4797-haus-local 1.1.................................... 3.3.................................. 4.4......................... 8.5... 10.6.................... 1.7... 14 3 16 3.1 ()........................... 16 3. 7... 17

More information

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i = 1 1980 1) 1 2 3 19721960 1965 2) 1999 1 69 1980 1972: 55 1999: 179 2041999: 210 211 1999: 211 3 2003 1987 92 97 3) 1960 1965 1970 1985 1990 1995 4) 1. d ij f i e i x i v j m a ij m f ij n x i = n d ij

More information

2 1 Introduction

2 1 Introduction 1 24 11 26 1 E-mail: [email protected] 2 1 Introduction 5 1.1...................... 7 2 8 2.1................ 8 2.2....................... 8 2.3............................ 9 3 10 3.1.........................

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

独立性の検定・ピボットテーブル

独立性の検定・ピボットテーブル II L04(2016-05-12 Thu) : Time-stamp: 2016-05-12 Thu 12:48 JST hig 2, χ 2, V Excel http://hig3.net ( ) L04 II(2016) 1 / 20 L03-Q1 Quiz : 1 { 0.95 (y = 10) P (Y = y X = 1) = 0.05 (y = 20) { 0.125 (y = 10)

More information