橡HP用.PDF
|
|
|
- ふみな ほうねん
- 9 years ago
- Views:
Transcription
1 1 2 3
2
3
4 1
5 2
6 3
7 8 9 O C ln 6 O 4 3 C ln m + n = C ln 6 O 4 C ln m + n = 8 4
8 3 2 2' 3' 4 4' C ln 5 6 6' 5' Clm m + n = ' 3' 4 4' C ln 5 6 6' 5' Clm m + n = 4-7 5
9 6
10 7
11 8
12 9
13 10
14 11
15 12
16 13
17 14
18 15
19 16
20 17
21 18
22 19
23 20
24 21
25 22
26 23
27 24
28 25
29 26
1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n
1 1.1 Excel Excel Excel log 1, log, log,, log e.7188188 ln log 1. 5cm 1mm 1 0.1mm 0.1 4 4 1 4.1 fx) fx) n0 f n) 0) x n n! n + 1 R n+1 x) fx) f0) + f 0) 1! x + f 0)! x + + f n) 0) x n + R n+1 x) n! 1 .
近畿中国四国農業研究センター研究報告 第7号
230 C B A D E 50m 558 0 1km (mg L 1 ) T N NO 2 3 N NH 4 N 2.0 0 (a) 2001 1.5 6 20 21 5 1.0 0.5 0.0 2.0 1.5 1.0 0.5 0.0 14:00 17:00 (b) 2001 7 3 4 20:00 23:00 2:00 (h) 5:00 8:00 11:00 10 0 5 10 15
lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d
lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3
Japan Research Review 1998年7月号
Japan Research Review 1998.7 Perspectives ****************************************************************************************** - 1 - Japan Research Review 1998.7-2 - Japan Research Review 1998.7-3
() 3 3 2 5 3 6 4 2 5 4 2 (; ) () 8 2 4 0 0 2 ex. 3 n n =, 2,, 20 : 3 2 : 9 3 : 27 4 : 8 5 : 243 6 : 729 7 : 287 8 : 656 9 : 9683 0 : 59049 : 7747 2 : 5344 3 : 594323 4 : 4782969 5 : 4348907 6 : 4304672
WECPNL = LA +10log10 N 27 N = N 2 + 3N3 + 10( N1 + N 4) L A N N N N N 1 2 3 4 Lden Lden Lden Lden LAE L pa pa 2 a /10 LpA = 20 log 10 ( pa = p 10 ) n na p0 p na n an n p0 2 Lp p L p
Series
5 1000 3000 5000 R 3000 1000 5000 C D 683 1000 3000 5000 Series 1000 1000 3000 5000 3000 5000 1000 3000 5000 684 685 1000 3000 5000 Series A B ØØ ØØ ØØ Ø R C D 1000 3000 5000 Series 1000 3000 5000 DXT170
untitled
1 2 4 50 50 3 1 12ha 500m 45 2,000m 4 m 250m 250m m % % 5 1 0 1 0 6 DID DID DID DID DID DID 7 X 5 1/2 1/2 ( PL) = A + 1 LN( X1) + 2 LN( X 2) + 3 X 3 + 4 LN( X 4) + 5 LN( X 5) + 6 X 6 + 7 X 7 + 8 LN( X
: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ
17 6 8.1 1: Bragg-Brenano x 1 Bragg-Brenano focal geomer 1 Bragg-Brenano α α 1 1 α < α < f B α 3 α α Barle 1. 4 α β θ 1 : α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ Θ θ θ Θ α, β θ Θ 5 a, a, a, b, b, b
B
B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T
1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j )
(Communication and Network) 1 1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j ) p i = P (X n = s i )
h4_1_et
1 RY RO RM RG RR RW RD LN LM LB LC LD MW MG MB CW SB VR BB EB WR LR MR BR DR PM SM MC CB BO 2 3 RY RO RR RW RD RM RG LN LM LB LC LD MW MG MB 4 CW SB VR BB EB 5 PI PY PP PG PB 6 WR LR MR BR DR 7 SM MC CB
応力とひずみ.ppt
in [email protected] 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S
1-17ミニマル継手.indd
http://www.pisco.co.jp 266 (mm) ø3 ø4 ø5 ø6 (mm) ø2 ø2.5 ø3 ø4 (mm) M3 0.5 M5 0.8 267 (mm) M3 0.5 M5 0.8 (mm) M3 0.5 M5 0.8 M6 1 R1/8 0.5MPa (UD) 0.4MPa -100kPa 0 50ºC ( ) 1MPa (UD) 0.4MPa -100kPa 0 50ºC
…h…L…–…†…fi…g1
RY RO RR RW LN LM LB LC MH MG MB RD RM RG LD CW SB VR BB EB PW PY PP PG PB 0 contents WR LR MR BR DR PM SM MC CB BO 0 P P7 P P5 P9 P 0 P4 P48 P54 P60 P66 P 04 RY RO RR RW RD RM RG LN LM LB LC LD MH MG
1 c Koichi Suga, ISBN
c Koichi Suga, 4 4 6 5 ISBN 978-4-64-6445- 4 ( ) x(t) t u(t) t {u(t)} {x(t)} () T, (), (3), (4) max J = {u(t)} V (x, u)dt ẋ = f(x, u) x() = x x(t ) = x T (), x, u, t ẋ x t u u ẋ = f(x, u) x(t ) = x T x(t
縺 縺05 [ )
1306050100010708 1997 03. 070503 167, 02 12 0806 タ07 09 090908090107060109 04030801 04 縺040702070506010907 020701000909 タ 090908090107 ィャ 1996 0602050701090501000305080908 02 3 He: 0509010707090905 09
untitled
10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10
3.1 3.2 3.3 3.4 3.4.1Complete Subtree Method(CS ) 3.4.1RSA-CS 3.5 4.1 4.2 4.3 4.4 4.5 2
3.1 3.2 3.3 3.4 3.4.1Complete Subtree Method(CS ) 3.4.1RSA-CS 3.5 4.1 4.2 4.3 4.4 4.5 2 [1] 3 1 4 log n Layer Number : LN 0,1,2 Relative Node Number : RNN 0,1,2 Node Revocation Pattern : NRP 5 LN0 K0000
68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1
67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10
II III II 1 III ( ) [2] [3] [1] 1 1:
2015 4 16 1. II III II 1 III () [2] [3] 2013 11 18 [1] 1 1: [5] [6] () [7] [1] [1] 1998 4 2008 8 2014 8 6 [1] [1] 2 3 4 5 2. 2.1. t Dt L DF t A t (2.1) A t = Dt L + Dt F (2.1) 3 2 1 2008 9 2008 8 2008
09 II 09/11/ y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1 Warming Up 1 u = log a M a u = M log a 1 a 0 a 1 a r+s 0 a r
09 II 09/11/16 1 5.6 1. y = e x y = log x = log e x 2. e x ) = e x 3. ) log x = 1 x 1 Warming Up 1 u = log a M a u = M log a 1 a 0 a 1 a r+s 0 a r a s 1 a 2 f g) = f g + f g 1. fx) = x e x f x) = 2. fx)
3
00D8103005L 004 3 3 1... 1....1.......4..1...4.....5 3... 7 3.1...7 3....8 3.3...9 3.3.1...9 3.3.... 11 3.4...13 3.4.1...13 3.4....17 4... 4.1 NEEDS Financial QUEST... 4....5 4.3...30 4.4...31 4.5...34
KEIRIN
KEIRIN KEIRIN PCOSS CIO PC PC OSS OSS 2003 CIO 2003 IT IT 2006 2006 IT IT IT IT 2008 2008 IT IT 2001 2001 5IT IT 5IT IT IT IT (NGN) Web2.0 (NGN) Web2.0 2005 IT CIO 2005 2005 IT CIO 2006 CIOIT IT SE 2006
A1304T-…K…C…h
A1304T 2 A1304T A1304T A1304T 3 23 63 41 57 4 LN Zb Zz 29 @? Zb Zz 32 5 PO 14 <
1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (
1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +
F0 P( T, K) C ( TK, ) exp ( rt) < dk + 3 dk F K K # # 0 r K T P C S 0 0 F0= exp ( rt) S0T 0 F0
日 経 5 株 価 指 数 のモデル フリー インプライド ボラ Titleティリティの 計 算 方 法 に 関 して : ボラティリティ 予 測 力 の 観 点 から Author(s) 山 口, 圭 子 Citation 一 橋 経 済 学, 3(1): 9-43 Issue 008-07-0 Date Type Departmental Bulletin Paper Text Version
II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R
II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =
29
9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n
QOL 02 QOL QOL UI AI EAThoracotomy TTThoracoscopy TS QOL EA type-c y score UI 3 AI 8 School score QOL score 12
54 1 2018 2 4-1 OK-432 1 15 14 15 US CT MRI 17 cm 0.16 g/kg/day OK-432 3 1 ke 2 2 ke 3 1 1,150 ml 13 US OK-432 4-2 TJ-28 TJ-28 2003 3 2017 6 250 TJ-28 44 16 28 TJ-28 7 2 46 8.5 2 2 9 34 79.1 10 23.3 34
P0681-P0758-›ºflÅŠpB5.qxd
000/000 Series 000 (VVQ) 000 000 ø ø (VVQ) J C Z 7 F P J G T L S M 68 68 J C Z 7 00 0 00 0 000 68 F P J 000 G T L 68 Series A M 000 S 68 J C Z 7 0 ø 0 ø ø ø ø ø ø ø ø ø ø ø ø ø 0 0 øø øø 686 J C Z 7 687
20000926手引き(セット版).PDF
2000 11 30 375 (1) Aeq,T,vehcle pa A ASJ Model 1998 d ASJ Model 1998 g AE Aeq,T,vehcle T (2) Aeq,T,store 15 pa r 0 pa (r 0 ) r pa d A d Aeq,T,a 10 pa 11 11 pa (r 0 ) r Aeq,T,b 12 AE 13 13 AE (r 0 ) r Aeq,T,c
untitled
( 9:: 3:6: (k 3 45 k F m tan 45 k 45 k F m tan S S F m tan( 6.8k tan k F m ( + k tan 373 S S + Σ Σ 3 + Σ os( sin( + Σ sin( os( + sin( os( p z ( γ z + K pzdz γ + K γ K + γ + 9 ( 9 (+ sin( sin { 9 ( } 4
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
IS-LM (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2)
1 2 2 2 2.1 IS-LM 1 2.2 1 1 (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2) 1 1. 2. 1 1 ( ) 2.3. 3 2.3 1 (yield to maturity) (rate of return)
2001 Miller-Rabin Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor RSA RSA 1 Solovay-Strassen Miller-Rabin [3, pp
200 Miller-Rabin 2002 3 Rabin-Solovay-Strassen self-contained RSA RSA RSA ( ) Shor 996 2 RSA RSA Solovay-Strassen Miller-Rabin [3, pp. 8 84] Rabin-Solovay-Strassen 2 Miller-Rabin 3 4 Miller-Rabin 5 Miller-Rabin
6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1
6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) (e) Γ (6.2) : Γ B A R (reversible) 6-1 (e) = Clausius 0 = B A: Γ B A: Γ d Q A + d Q (e) B: R d Q + S(A) S(B) (6.3) (e) // 6.2 B A: Γ d Q S(B) S(A) = S (6.4) (e) Γ (6.5)
Korteweg-de Vries
Korteweg-de Vries 2011 03 29 ,.,.,.,, Korteweg-de Vries,. 1 1 3 1.1 K-dV........................ 3 1.2.............................. 4 2 K-dV 5 2.1............................. 5 2.2..............................
P SYJ300.indd
3ポートソレノイドバルブ 300/500/700 Series 弾性体シール オプション 詳細はP.1214ご参照ください VQZ VP VG VP3 パイロット弁の強度向上 パイロット弁カバーにステンレス材を使用して強度を向上 さらに 取付けねじもM1.7からM2にして取付けに対しても強度を向上 流量特性 シリーズ カバー ステンレス 300 500 700 流量特性 C[dm3/(s bar)]
