chapter_22.fm

Size: px
Start display at page:

Download "chapter_22.fm"

Transcription

1 3Vladimir Krasilenko, Alexander Nikolsky, Sergei Pavlov: THE ASSOCIATIVE D-MEMORIES BASED ON MATRIX-TENSOR EQUIVALENTAL MODELS II UDK 4.93:7.5 THE ASSOCIATIVE D-MEMORIES BASED ON MATRIX-TENSOR EQUIVALENTAL MODELS Vladimir Krasilenko, Alexander Nikolsky, Sergei Pavlov 4ィ 99ィャィ ィー8ィィ9ィ 6ィー97 78ィィィェィィ74 769ィー86ィェィィ7 ィ c96ィィィ ィーィィ9ィェ6ィヲ 7ィ ィャ7ィーィィ ィィ ィェィヲ86ィェィェ4 9ィーィヲ 57 9ィョィャ8ィェ4 ィィ46ィ 8ィ 3ィェィィィヲ ィェィ 69ィェ69 ィャィ ィー8ィィ ツィェ6-ィーィェ468ィェ4 5ィコ9ィィ9ィ 5ィェィーィェ69ィーィェ4 ィャ65ィヲ ィェ4 ィャ65ィィ 9 ィ ィ 7ィーィィ9ィェ6-5ィコ9ィィ9ィ 5ィェィーィェ69ィーィェ4ィャ 9493ィィ9ィ ィェィィィャ, ィエィィ ィョ95ィィ ツィィィーィケ 6ィ ィケィャ 7ィ ィャ7ィーィィ 78ィィ 8ィ ィェィェィィィィ ィィ 8ィ 97ィェィ 9ィ ィェィィィィ 9496ィコ6ィコ6885ィィ869ィ ィェ4 9ィョィャ8ィェ4 6ィ 8ィ 469, 9ィコ56 ツィ 7 9ィョ8ィ ィ ィィ6ィェィェ6 ィィ ィャィェ668ィ ィ ィィ6ィェィェ6 ィィ46ィ 8ィ 3ィェィィ7. ィ 9ィョ3ィ 6ィー97 ィ 8ィィィーィコィーィョ84 ィィ 9ィャ63ィェ4 8ィ 5ィィ4ィ ィィィィ ィェィヲ86ィェィェ4 9ィーィヲ ィィ ィ 96ィィィ ィーィィ9ィェ6ィヲ 7ィ ィャ7ィーィィ, ィ 6ィー97 6ィェィコィィ ィィ 76ィコィ 4ィ ィー5ィヲ. The new principles of development of associative memory (AM) and neural networks (NN) for D-mage based on matrixtensor equivalental models (MTEMs) are considered. The given models use -D image adaptive-equivalentive weighting in order to increase memory capacity while storing highly correlated Dimages. The architectures of NN and AM are also suggested. Basic devices for implementations on the base of matrix-tensor equivalental model are matrix-tensor equivalentors (MTE). The MTEMs for two level and multilevel D-images are shown. The results of recognition processes modeling in such AM are given on the example of D-image recognition with the number of neuron from - thousand. A successful recognition of correlated image is achieved. Key words: optical neural networks, associative memory, matrix-tensor equivalentor, equivalental model, matrix multilevel logic.. INTRODUCTION The main perspective tendency of development of information-calculating systems and computer technologies is making them intellectual and similar to human thinking and perception []. Demonstration of the intelligence - an associative call from the memory by fragments (features), classification of patterns, their recognition, training, adaptation to the situation, (processed data, necessary precision, etc.), auto-regulation and auto-control - appears in highly developed systems (biological and technical) spontaneously. As the models of intellectual systems in the field of neurophysiology, cognitive psychology, artificial intelligence (AI), the next models of auto-processing nets are mainly used: connection models, neural nets models, models with parallel distributed processing, models with activity distribution []. Though there are differences and approaches peculiar to different fields of knowledge, where such models are used, basic researches reveal a number of important general principles besides spontaneous intellectual qualities. The principle of parallel information process on all the levels of working up in intellectual systems and the concept of active (not passive) memory (the functions of storage and associative processing are distributed among elements, which form a system) are related to such features. The model of neural net or the neural model is a connectional model, which imitates biophysical processes of working up of information in nervous system like in auto-processing system. The last one shows global system behavior (considered being "intelligent") caused by simultaneous local interactions of its numerous elements []. The great interest to neural model forces to revalue the fundamental theses in many fields of knowledge, including computer techniques. The neural models, concepts and paradigms with their new principles and wide parallel processing are almost the only way of development in creation of new nontraditional computer technique and active dynamic systems [3]. In science neural models, as the models of brain activity and cognitive processes, most probably will cause prospective results in neurophysiology, pathologophysiology, neurology, psychiatry, the appearance of the systems with increased computing resources and intelligent qualities for solving problems of medical informatics and diagnostics. Many failures on the way of improving of artificial intelligence appeared in recent years because firstly, the chosen computing techniques were not adequate to solve the important and complicated problems, and secondly, simple and not perfect neural models and nets were applied. Today, an active development of mathematical logic, especially matrix (multiciphered, fuzzy, neural) [4-8], accumulation of data about continual (analog) and obviously nonlinear functions of neurons [9-], elaboration of the neural net theory, neurobiology and neurocybernetic, and adequate algebrologic instruments for mathematical description and modeling [- 5], development of optical technologies create conditions for building technical systems, adequate in resources and architecture almost to any problem of artificial intelligence. The integration of data of neurophysiology, neuroanatomy, neurogenetic, neurochemistry, neurolinguistics i.e. neuroscience will become a basis of further development of neural intelligence and neural computers. Generalization of data of neural science makes possible to mark out a number of basic neurointellectual structures, among which associative memory of D-images takes an important place. It makes possible 45

2 to form a hypothesis about the object by a set of features, fragments of image and to extract an integrated pattern from the memory. Nervous system has a faculty to self-organization. Talking about active character of recognition processes in associative memory, processes of training and synthesis of internal images, the possibility to choose, to throw off (decrease) or on the contrary to add (increase) separated features, fragments, to change their weights while forming adequate internal images are meant here. In many neural models (with the exception [5]) used for optical realization of different associative devices and neural nets, only carrier sets Cb {ィC ; } N and Cu { ; } N are used in bipolar (b) and unipolar (u) coding respectively [,3]. Questions connected with increase of neural nets and associative memory (AM) capacity, especially storing large and greatly correlated images, were solving for a long time by many authors [6-8]. The methods and realization of effective recognition of greatly correlated vectors of memory, based on weighing input images [7-8] and weight of interconnections [5, 6], were proposed in [6-8]. But these propositions concerned only coding of binary images and one-dimensional images. Models, proposed in [3-5] and called equivalental, are more general and good for representation of bipolar and unipolar signals, including multilevel signals. The connections, especially braking, are described more natural there. In such models the basic operation is a standard equivalency of vectors. The models are suitable for different methods of weighing. Considering their prospects, in this work we will show how to build associative (auto-associative and hetero-associative) memory of correlated -D images, including multilevel (gray scale) images, on the basis of matrix-tensor models.. CONCEPTUAL BACKGROUND AND THEORY.. Basic neurological operations of normilixed equivalence For mathematical description of neural net associative memory (NNAM) algebro-logical operations will be considered (equivalental algebra [3-5]), combining linear algebra and neural bio-logic (NBL) [4,6]. Neural bio-logic is an integration (gnoseologically developed and specified) of known logic: multivalued, hybrid, continuous, controlled continuous [], fuzzy etc. At the same time, the integrated operations in fuzzy logic are: operation of fuzzy negation, t- norms and s-norms, and they have the relation of dualism according to general form of De Morgan principle. The examples of t-norms are: logical multiplication (min), algebraic multiplication ( a 66 b), limited multiplication etc. The examples of s-norms are logical sum (max), algebraic sum ( a + b ィC a 66 b), limited sum ( ト ( a + b) ), contrast sum etc. [] The basic operations of NBL, used in equivalental models NNAM [3-5], are binary operations of equivalence and nonequivalence, which have a few variants. The variants of these equivalence operations on a carrier set are shown on fig. (a, b, c) respectively for: ト C ナ eq a 6ユ5 b max{ min( ab, ), min( a, b) }; eq a 6ユ5 b a 66 b+ a66 b ; eq 3 a 6ユ5 + b + a ィC b. () a E E3,5,8,6,4,,8,6,4, eq ナ a6ユ5 b eq a 6ユ5 b eq 3 a 6ユ5 + b,6,4, Figure - Operations of equivalence,8,5,5 u [ ; ] N E a a 46 ISSN ー4ィ 665ィコィー86ィェ6ィコィ. 5ィェ68ィャィ ィーィィィコィ. 778ィ 956ィェィェ7 ア,

3 3Vladimir Krasilenko, Alexander Nikolsky, Sergei Pavlov: THE ASSOCIATIVE D-MEMORIES BASED ON MATRIX-TENSOR EQUIVALENTAL MODELS Their negations are first, second and third nonequivalence respectively. In general case for scalar variables a, b ハ ト C [ A, B] - continuous line segment, signals ト themselves and their functions and segment C can be brought to segments [-D,D] (or [-,]) in bipolar coding and [,D] (or [,]) in unipolar coding. Further a carrier set ト C [, ] and its variables will be considered. Besides, for easier transformations we can limit ourselves at first to operation of equivalence (nonequivalence) of the second type, namely ( 6ユ5 ) and ( 6ユ5 ) respectively. Extending this basic operation ( ) for vector, matrix case of variables and making a corresponding normalization for quality registration of the components in vector or matrix, we will get normalized equivalence ( 9) of two sets of variables A a ij m チ n and B b ij m チ n A 6ユ5 n B m n m チ n ( a 6ユ5 b ) ij ij and normalized nonequivalence: i j A 6ユ5 B n m n m チ n ( a 6ユ5 b ) ij ij as integrated i j negation of normalized equivalence. If excitation matrix (input D image) is S inp, weight matrix of connections of k, l-th neuron-equivalent with input image is T k, l, then namely this neuron-equivalent will complete operation ( 6ユ5 ), because the signal on its output n ヲツ kl will be: ヲツ kl S inp 6ユ5 T, and () n kl ヲツ kl ハ ト C [, ] The operation ( 6ユ5 ) will be completed by dual neuron-nonequivalent with the signal ヲツ kl ハ ト C on its n output: ヲツ kl ィC ヲツ kl S inp 6ユ5 T n kl (3) Let us mark out, that with the help of properties of equivalence operations [5] the signals (direct and dual) can be also represented on the output of integrated (dual) neuronequivalent (nonequivalent) in such a way: ヲツ kl S inp 6ユ5 T,,, n k, l ヲツ kl S inp 6ユ5 T n k, l ヲツ kl S inp 6ユ5 T n kl ヲツ kl S inp 6ユ5 T,, (4) n kl ヲツ kl S inp 6ユ5 T n kl ヲツ kl S inp 6ユ5 T n kl Therefore, if such integrated neurons have dual inputs and dual outputs, then the last ones can be defined (each one) in four ways considering () ツ (4). And that, maybe, provides correspondent vitality of neural nets at the expense of such a repeated backup. Normalized equivalence ( 6ユ5 ) and nonequivalence ( ) are n 6ユ5 n more general new complementary metrics in matrix space R. + In particular, ( 6ユ5 n ) is a normalized metric distance d ( A, B) 6ィ8 m チ n, and for A and B ハ {, } N it turns into normalized distance of Hamming d n ( A, B) 6ィ8 N. The variants of operations of equivalence and nonequivalence depend on different types of operations of t-norms and s-norms used in them and integrated operations of crossing and joining up in fuzzy logic. Depending on type, variants of equivalent algebra (EA) [5], as a new algebro-logical instrument for creation of equivalental theory of NNAM on the basis of matrix NBL... Nonelinear transformation The basic operation of NBL with variable a i, j from A ト a i, j range of continuous normalized set can be an operation of integrated nonlinear m チ n C [, ] m チ n transformation ヲミ( a, ヲチ) with coefficient ヲチ: ヲム' ( a, ヲチ) a ヲチ, ヲム'' ( a, ヲチ) ( a) ヲチ ( ィC a) ヲチ, ヲム''' ( a, ヲチ) ヲム' ( a, ヲチ) ( ィC a) ヲチ, ヲム'''' ( a, ヲチ) ヲム'' ( a, ヲチ) ( ィC a) ヲチ ィC ( ィC a) ヲチ, a ハ [, ], ヲチ,, ュ ゙. One should mark out that for ヲチ operation p''' is in kernel a negation operation in continuous and fuzzy logic, p'' is also a negation operation, and ヲム'''' p'. Let us introduce two more iteration equivalental operations of nonlinear transformation, defined in the next way: ヲテ( a, ヲチ) 6ユ5 max( a, ヲチ) 6ユ5 max( a, ヲチ) 6ユ5 ュ 6ユ5 max( a, ヲチ), ヲチ ィC time ヲテ( a, ヲチ) 6ユ5 min( a, ヲチ) 6ユ5 min( a, ヲチ) 6ユ5 ュ 6ユ5 min( a, ヲチ).(5) ヲチ ィC time From (5) can be seen that the second operation is a negation of the fist one and vise versa. Besides, for a >, 5 fist ヲテ > and second ヲテ > functions will be: ヲテ > ( a, ヲチ) 6ユ5 a 6ユ5 a 6ユ5 ュ 6ユ5 a ヲチ ィC time 6ユ5 a 6ユ5 ュ 6ユ5 a, (6) ヲテ > ( a, ヲチ) 6ユ5 a 6ユ5 a 6ユ5 ュ 6ユ5 a 6ユ5 a 6ユ5 ュ 6ユ5 a, and for ヲチ ィC time ヲチ ィC time a<,5 these functions ヲテ < and ヲテ < will be: ヲテ > ( a, ヲチ) 6ユ5 a 6ユ5 ュ 6ユ5 a, ヲチ ィC time ヲテ > ( a, ヲチ) 6ユ5 a 6ユ5 ュ 6ユ5a. (7) ヲチ ィC time ヲチ ィC time 47

4 Hence it is obvious that for all a ハ [, ], ヲテ( a, ヲチ) ン, 5 and ヲテ( a, ヲチ) ワ, 5. By analogy let us determine these functions of variable a : ヲテ( a, ヲチ) ヲテ( a, ヲチ), ヲテ( a, ヲチ) ヲテ( a, ヲチ). (8) From (8) it follows that these functions are symmetric concerning variable aa ( ). Weighing (equivalently) these functions of variable, we will get nonlinear iterative transformation, reducing ratio between signals a and a. We call it competitive nonlinear transformation and let us define it taking into account properties of the operations: aヲチ kn a 6ユ5 ヲテ( a, ヲチ) a 6ユ5 ヲテ( a, ヲチ) a 6ユ5 ヲテ( a, ヲチ) a 6ユ5 ヲテ( a, ヲチ), aヲチ kn a 6ユ5 ヲテ( a, ヲチ) a 6ユ5 ヲテ( a, ヲチ) a 6ユ5 ヲテ( a, ヲチ) a 6ユ5 ヲテ( a, ヲチ). (9) Expression (9) can be written in more convenient way taking into consideration (6) and (7): aヲチ kn Or in another way: 6ヲテ( a, ヲチ + ), for a > 5,, 6 63ヲテ( a, ヲチ + ), for a < 5,, aヲチ 6ヲテ( a, ヲチ + ), for a > 5,, kn 6 63ヲテ( a, ヲチ + ), for a <, 5. aヲチ kn 6 6ユ5 a 6ユ5 ュ 6ユ5 a, for a >, 5, ( ヲチ + ) ィC time 6 6ユ5 a 6ユ5 ュ 6ユ5 a, for a <, 5, 63 ( ヲチ + ) ィC time aヲチ 6 6ユ5 a 6ユ5 ュ 6ユ5 a, for a >, 5, kn ユ5 a 6ユ5 ュ 6ユ5 a, for a <, 5. () It can be seen from () that any variable a or a of the range >,5 sums equivalently with itself ヲチ times at competitive nonlinear transformation, and a variable of the range <,5 - sums nonequivalently ヲチ times with itself. At the same time the indicators for ( ヲチ + ) equivalence (nonequivalence) in corresponding ranges for variable aヲチ kn and its negation aヲチ kn respectively are "" and "" for ranges (>,5) and (<,5) in a case and "" and "" for the same ranges respectively in a case. Hence, we can see that different nonlinear transformations can be also expressed by operations of equivalence (nonequivalence) or by t-norms in case of ヲム i ( a, ヲチ) transformation..3 Matrix-tenzor equivalental models (MTEM) of NNAM For simplification at first let us consider NNAM for associative recognition and reading of two-level (binary) -D images. Input, output, and q th trained images are respectively S inp Sinp ij ハ {, } N m チ n, S out Sout ij ハ {, } N, S q Sq ij ハ {, } N, where q ハ { ツ Q}. Then tensor of weights of interconnections q from input neurons to output will be T ハ [, ] N チ N, Q q q where T i, j, i', j' --- for simple NNAM, Q ( S ij, 6ユ5 S i', j' ) q where ワ i ワ m, ワ j ワ n, ワ i' ワ m, ワ j' ワ n. Considering determination of normalized equivalency ( 6ユ5 ) the component of interconnection tensor can be assign n as: q Ti, j, i', j' Si, j6ユ5 n Si', j', where Si, j Si', j' ( S ij, ュS i, j ュSQ i, j, S Q ( i', j' ュS i', j' ) t, where T i, j, i', j' ハ {, 6ィ8 Q ュ ( Q ィC ) 6ィ8 Q, }. () To determine a new state of k, l-th neuron S out in (t+) moment it is necessary to consider contributions of all weights, and it means to calculate normalized equivalence between S inp () t and matrix (k, l-th tensor plane) T k, l [ T ij ] N k, l ヘ[ x] 6, if x ン x 6 63, if x < x and to take its threshold function The expression for net recalculation is: or considering duality: (function of activation) [5]. Sk, l out ( t + ) ヘ[ S inp () t 6ユ5 T n k, l] () Sk, l out ( t + ) ヘ[ S inp () t 6ユ5 T and n k, l] Sk, l out ( t + ) ヘ[ S inp () t 6ユ5 T.(3) n k, l] ヘ[ S inp () t 6ユ5 T n kl, ] Considering () expression () (let it be basic) can be transformed: Sk, l out ( t + ) ヘ Q Q Q, Q --- S q ( kl, 6ユ5 ヲツ q ) ヘ[ Sk, l6ユ5n ヲツ ] q Q where ヲツ q S inp () t S q n 6ユ5 ; ヲツ ( ヲツ, ュヲツ q, ュヲツ Q ) t. Combining all k, l-th outputs into S out ( t + ) matrix, one can write an expression for recalculation of equivalental model of simple NNAM, increasing threshold scalar operator 48 ISSN ー4ィ 665ィコィー86ィェ6ィコィ. 5ィェ68ィャィ ィーィィィコィ. 778ィ 956ィェィェ7 ア,

5 3Vladimir Krasilenko, Alexander Nikolsky, Sergei Pavlov: THE ASSOCIATIVE D-MEMORIES BASED ON MATRIX-TENSOR EQUIVALENTAL MODELS ヘ( x) to matrix pel-by-pel ヘ( x) : Q Q S out ( t + ) ヘ[ net k, l ] ヘ[ [ Sk, l6ユ5n ヲツ ]] Q Q [ ヘ kl [ Sk, l6ユ5n ヲツ ]] m チ n N..4. MTEM of adaptive-equivalental NNAM (4) To improve the properties of the models, namely MTEM of NNAM during recognition of greatly correlated patterns, we will introduce two weighing coefficients ヲチp k, l and ヲテヲツ ( q, p) (in essence ヲチ matrix and ヲツkn p vector) and modify training so as weights of interconnections could be calculated in the next way: q ヲチヲテ, Tijkl,,, Q q p q --- T, (5) Q ( ijkl,,, 6ユ5 F k, l ( ヲチ p k, l ヲテヲツ ( q, p) )) q p q where F k, l - equivalental operation with variables ヲチ p and ヲテ( p) of p-th degree from coefficients 69 Q 6 + q ヲチ k, l 6--- S 63 ;. The Q kl, 6ユ5, 5 ヲツ 6 63 q S inp () t S q n 6ユ5 6 q first coefficient takes into consideration the "equivalence" (similarity) of the input images with one of the stored pattern images. The second one accounts the "equivalence" of the k-th and l-th pixel of the pattern images. The process of recalculation of MTEM of NNAM with such dual adaptive-equivalental weighing comes to matrixtensor procedures with operation of "equivalence": S out( t + ) ヘ Q p F q 69 N --- ( S q inp() t チ T), N --- ( S ヲチ 6ユ5 inp チ q T) 6 チ 6ユ ユ5 q tr65 チ T 66, 67 here Sヲチ inp S inp 6ユ5 ヲチ p, p F q q p q p ヲツ ヲチkn 6ユ5 ヲツ kn (the other types of equivalence operations are possible). The expression for recalculation of the state of one k, l-th neuron (not the whole matrix) in MTEM of NNAM with adaptive-equivalental weighing has more evident form: then we can decompose this image into k-images, each having only two levels. Each two-level or -bit image is referred to as a bit plane. Using different codes for transformation of multilevel image in digit-bit plane, we can complete thus analog-digital transformation of images in any needed code: unit position code, unit normal code at morphological threshold decomposition, binary code at irredandunt coding, alternating code, codes of Fibonacci and others. The devices, which implement such transformation parallel for all pixels, called analog-digit image converters are considered in [, ]. For our MTEM of NNAM we used mainly two types of coding in AD-transformations of multilevel images. In the first case we used morphological threshold decomposition with programmed number of levels or bit planes and low (high) threshold levels. At that the whole set of digit levels ツ 55 for every gray level image (or for every of three main colors R, G, B) was transformed in programmed (as a rule 8 in our experiments) number of bit ordered planes. That led to actual compression of information, and multilevel image, having 56 levels, was transformed in multilevel image with less number of levels. But levels of the last one remained the same and that is why total dynamic range did not change. Applying the operation of pel-by-pel logic sum of corresponding ordered bit planes we form (of 8 planes) a result prepared (converted) bit plane (two-level image) (RCBP). Thus any input image and all trained multilevel images are represented by their RPBPs. The last ones are used as input image and trained images correspondingly in NNAM for twolevel images. In the second case we used 8-digit ADC of picture type (virtual) for transformation of multilevel images. For that purpose, a corresponding subprogram was written. In hardware realization and in this program we use a new algorithm of ADC and a new mathematical model on the basis on neural logic, but we will not describe then here in detail (we will do that in another work). One should note that all 8 bit planes (input, standard, output, gray level image) are processed parallel (or consecutively, virtually) and used during recognition with the help of 8 independent (possibly dependent) NNAM for two-level, two-gradation images. Hence, MTEM of NNAM with AE weighing for multilevel images in the first case of ADC does not differ from the one described in section.4., as since RPBP, similar by shape, but prepared one was used instead of ordinary D two-level images. For the second case the model consists of several two-level images, i.e. it is a superposition, combination of digit-by-digit bit planed models. Sk, l ヘ out( t + ) Sk q, l 6ユ5 ( ヲチ p 6ユ5 S n q n inp 6ユ5 S q ) p N n N kn. (6) 3.SYSTEM DESIGN AND PROPOSED IMPLE- MENTATIONS.5. MTEM of NNAM with weighing for multilevel images There are basically two types of still images: two-level and multilevel. A two-level image is often called a "blackand-white" image, where as a multilevel image is usually called a gray level image. If we represent each pixel of a multilevel image by means of as k-bit binary code word, 3.. Systems of NNAM Fig. shows the structure scheme of neural net associative memory for multilevel D images with the first variant of transformation of input and trained multi-gradation (colour) D images into a result bit plane. Analog-digit converter (ADC) of picture type (PT) and digit-analog converters (DAC) of picture type perform necessary trans- 49

6 formations of multilevel images in a set of bit planes and visa versa. Schemes of coding and decoding of picture type (C of PT and DC of PT) complete transformation of the set of bit planes S out ツ S 7 out into one result two-level image RCBPinp and inversion of output RCBP out into a set of bit planes S out ツ S 7 out respectively. Trained multilevel images S q, being input into memory with the help of ADC of PT and C of PT, are transformed into RCBP q. That is why in ordinary addressed memory of page type only two-level (binary) images are stored. For the second variant of coding, according to section.5., the structure scheme will differ from the one on fig. only because it does not have coder and decoder, and the number of blocs of NNAM and blocs of memory of trained images MTI will be equal to the number of bit planes. Every i-th bit plane Si inp of input and S i ュS i q ュSi Q of trained images is processed on i-th NNAM i, which forms i-th bit plane Si out of output image on its output. All NNAM ツ NNAM 7 can work independently and jointly. In the last case the internal result measure of equivalence can be a certain complicated function (of vector normalized equivalence type) of particular i-th measures of equivalence of i-th bit planes. Taking into consideration limitation connected with the size of the article, let's concentrate on realization of basic associative memory with two-level -D images. 3.. Implementations As can be seen from section for simultaneous parallel calculation of all components of ヲツ Q vector or ヲツヲチ vector, net vector vector-matrix and matrix-tensor procedures with operation of equivalence are necessary to form result sets of values, data proportional to equivalence. Besides, for simultaneous calculation of all coefficients ヲチ ij, all functions p F q q p, ヲツ kn, ヲチ p, matrixes of (D-array) elements are required for component-by-component calculation of equivalence operations, nonlinear transformations, threshold processing, sum and so on. That is why proposed MTEMs of NNAM are easier represented on modern and progressive matrix architecture, multifunctional elements of matrix logic [4,7,3,] and processors of picture type [3, 4, 5]. One should mention that normalization may not be done, it is necessary to change threshold, taking function of activation. The device, which performs operation over S matrix and T tensor, namely S チ ケ T, will be called matrix-tensor equivalentor (MTE). According to elaborated in paragraph models (MTEMs of NNAM) the basic structure element for them will be just these MTEs. If ( 6ユ5) equivalency is used, then MTE can be built on ordinary digit matrix-tensor multipliers, including optical, as: (7) Fig. 3 shows architecture of NNAM on the basis of two matrix-tensor eqivalentors MTE and MTE. The first nonlinear converter NC of matrix type is used for competitive nonlinear transformation (expression (9) section..), and the second one NC of PT is used for threshold procession according to activation function. Input commutator-multiplexer M and output commutator-demultiplexer D are intended to input, output and form back propagation of iteration recalculations. ケ チ S チ T S チ T + S チ T S inp multilevel D image ADC of PT. Sinp 7 Sinp input Neuro netvorks Coder image associative of memory. Decoder PT two-level D-images of RCBPinp. PT RCBPout teaching images memory teaching images (MTI) q ハ{,...Q} ヲチ (MTEM NNAM) S out 7 S out DA C of PT S out multilevel D image RCBP Figure - Schematic block diagram of associative memory for multilevel D-images 5 ISSN ー4ィ 665ィコィー86ィェ6ィコィ. 5ィェ68ィャィ ィーィィィコィ. 778ィ 956ィェィェ7 ア,

7 3Vladimir Krasilenko, Alexander Nikolsky, Sergei Pavlov: THE ASSOCIATIVE D-MEMORIES BASED ON MATRIX-TENSOR EQUIVALENTAL MODELS Feedback Loop Sinp M q T [ ヲツ ] [ ] S ( t) () t int NC S out MTE MTE x x ヲツ p kn q T tr [ ヘ ] DM S out NN AM D-images Figure 3 - Block diagram of NNAM Light SLM S inp Q times SLM 3 SLM 4 Phァ h s SLM S ` S q All Q teaching images S q BS SLM 3 Sinp Q multiplaxing S inp SLM SLM LA SLM 4 S All Q teaching images S q Computer a) b) S Q Figure 4 - Optical system for MTE a) and inputting in SLM images b) In a fig.4. one of possible variants of optical realization MTE is shown. Input images Sinp are recorded from the managing computer in first spatial light modulators (SLM ) Q times, i.e. multiplicited. This multiplication is carried out at recording in SLM in the computer. Contrastly inverted input image S inp is also recorded in SLM 3 Q times. On the second SLM all Q trained images (S, ュSq) are recorded and on the fourth SLM 4 - all Q trained contrastly inverted images ( S, ュS q ). The lens array LA serves for spatial integration within each q-zone thus, on an input of every q-photodetector of array PDA a signal will be proportional to normalized equivalence of an input image with the trained S q. Non-linear transformation insfead of blocks NC and NC are shown in the circuit on fig3. They are carried out over the PDA output signals in the computer. Instead of PDA it is possible to use commercial liquid crystal television (LCTV) with 5x5 pixels and 3 ms refresh rates [6]. In this case it is possible to work with D-imagesdimantion 3x3 pixels and x teaching D-images, since on every LCTV it is necessary to record all Q images by dimension mxn. And it puts forward restriction on m チ n< 5 チ 5 6ィ8 Q at given Q or restriction on Q < ( 5 チ 5) 6ィ8 ( m チ n) with the given format of the images mxn D. Let's estimate productivity of such NNAM on the basis of optical realization of MTE. The recording in all SLM (LCTV) (fig4.) and updating given in each iteration is made simultaneously. Nonlinear processing simulating the work of NC and NC (fig.3) and recordings of the processed data in SLM can be combined. Let's consider therefore, that one iterative recalculation of a network the system has executed in 5 ms. At dimension of matrix of the input image 3x3 pixels or " 3 elements of a vector (image) the matrix of weight coefficients will have " 6 components or connections. It means that the system in 5 ms calculated as a matter of fact 6 connections. Thus, the rating show that productivity of NNAM realized on the simplest traditional circuits (fig.4) and on a basis slowly working LCTV archives 66 7 of connections/s. There is a quite real opportunity to increase capacity of SLM up to 5x5 (9 line pairs/ mm) pixel resolution and 5ms response time [7]. In this 5

8 case at dimension of D - image equal x pixels(and Q) in 5ms already 8 connections are calculated. Therefore ratings will show productivity of NNAM at a level 66 of connections/s. The common time of reading from associative memory does not exceed ( ィC 3)ヲモ ter ヨ 8c.The usage of other more high-speed The suggested matrix-tensor equivalental models MTEM s for construction on their basis of neuro-net associative memory of two-level and multilevel D-images, comprising models with doubled weighting, are of great importance, since they provide the opportunity to implement the whole number of competitive NNAP systems with increased capacity, productivity and fast acting. The result of modeling and experiment prove the validy of the theoretical work. Since suggested MTEM s are realized on the base of matrix tenzor (vectormatrix) procedures and multipliers and equivalentors it is possible to make a conclusion about necessity and, possibility of construction of complete digital optical NN associative memory and optical pattern of recognition systems. optoelectronic matrixes [3-5], calculating necessary operation of equivalence and matrix-tenzor procedures will allow to reduce significantly the time of reference to NNAM. In this work we wont concentrate on realizations in details, as our purpose is to show new most general principles of their realization. 4. RESULTS OF MODELING For modeling we developed a program realization of MTEMs models. Algorithm is realized in a program product on a low class PC. Technical characteristics this product: - any quantity of segments (elements, neurons) of a processed image with the dimensions in X x Y up to 3 neurons; - time of recognition of a image - part of a second to second; - a number of iterations (steps) necessary for recognition of a image - to 5; - training period depends only on time of data base insert and is significantly shorter than that of other well-known neuro - net paradigms; - correlation between the quantity of sample vectors and number of neurons in the network (network capacity) is -,5 times more (3%) than that in Hopfield networks (4-5%); - the level of distortion of image which permits its authentic recognition is up to 3%; - the number of gradation of images under process is 56 in each color, as well as black - and -white image; - quantity of digit layers at the process of image coding- 8 beat layers; - a possibility of space-invariant recognition of images; Mathematical models used are equivalental models. Metric system for comparison of images is non - Euclidean. A possibility can be fore seen of an adaptive regulation of the network for renewing and extending data base and for the optimization criterion and metric parameters. We shall gave it's characteristics below. The results of modeling are shown on fig a) 5. CONCLUSION b) for differ- Figure 5 - Output of neurons open layer ent p: a) p; b) p3. q p ヲツヲチ 5 ISSN ー4ィ 665ィコィー86ィェ6ィコィ. 5ィェ68ィャィ ィーィィィコィ. 778ィ 956ィェィェ7 ア,

9 3Vladimir Krasilenko, Alexander Nikolsky, Sergei Pavlov: THE ASSOCIATIVE D-MEMORIES BASED ON MATRIX-TENSOR EQUIVALENTAL MODELS Figure 6 - Two-level D-images recognition results Figure 8 - Multilevel D-images invariant recognition results 6. REFERENCES Figure 7 - Multilevel -D images recognition on base of RCBP result. N.M. et al..amosov Neurostructures and Intelligent Robots. Naukova Dumka, Kiev, 99.. D. A. Redgia, G. G. Satton Autoprocessing Nets and Their Significance for Biomedical Researches. TIIER, vol. 76, 6, pp , Freeman James a., D.M. Skapura Neural Networks: Algorithms, Applications and Programming Techniques, Addison- Wesley Publishing Company, V.G. Krasilenko, O.K. Kolesnitsky, A.K. Boguhvalsky "Creation Opportunities of Optoelectronic Continuous Logic Neural Elements, Which are Universal Circuitry Macrobasis of Optical Neural Networks ". Proc. SPIE, Vol. 7, pp. 8-7, V.I. Levin. "Continuous Logic, Its Generalization and Application". Automatica and Telemechanica, 8, pp. 3-, V.G. Krasilenko et. al. "Lines of Optoelectronic Neural Elements with Optical Inputs/Outputs Based on BISPIN-devices for Optical Neural Networks". Proc. SPIE, Vol. 7, pp. - 7, V.G. Krasilenko, A.T.Magas "Fundamentals of Design of Multifunctional Devices of Matrix Multiciphered Logic with Fast Programmed Adjusting". Measuring and Computer Technique in Technological Processes. 4, pp. 3-, A.S. Abdul Awwal, "Khan M. Iftekharuddin. Computer Arithmetic for Optical Computing. Special Section". Optical Eng. Vol. 38, 3, E.N. Sokolov, G. G.Vaytkyavichus. Neurointelligence: from Neuron to Neurocomputer. M.: Nauka, -38 p, N.V. Pozin Modeling of Neural Structures. M.: Nauka, - p Yu.G. Antomonov Principles of Neurodynamics. Naukova 53

10 Dumka, Kiev, L.N. Volgin. "Complementary Algebra and Relative Models of Neural Structures with Coding of Channel Numbers". Electrical Modeling, Vol. 6, 3, pp V.G. Krasilenko, A.K.Bogakhvalskiy, A.T.Magas. "Equivalental Models of Neural Networks and Their Effective Optoelectronic Implementations Based on Matrix Multivalued Elements". Proc. SPIE, Vol. 355, pp. 7-36, V.G. Krasilenko et. al. "Applications of Nonlinear Correlation Functions and Equivalence Models in Advanced Neuronets". Proc. SPIE, Vol. 337, pp. -, V.G. Krasilenko et. al. "Continuous Logic Equivalental Models of Hamming Network Architectures with Adaptive-Correlated Weighting". Proc. SPIE, Vol. 34, pp , Guo Doughui, Chen Zhenxiang, Lui Ruitaugh, Wu Boxi. "A Weighted Bipolar Neural Networks with High Capacity of Stable Storage". Proc. SPIE, Vol. 3, pp B.Kiselyov, N.Kulakov, A.Mikaelian, V.Shkitin. "Optical Associative Memory for High-order Correlation Patterns". Opt. Eng., Vol. 3, 4, pp A.L. Mikaelian. "Holographic Memory: Problems and Prospective Applications". Proc. SPIE. Vol. 34, pp. -, A.L. Mikaelian (Editor). Optical Memory and Neural Networks. Proc. SPIE, Vol. 34, V.G. Krasilenko et. al. "Gnoseological Approach to Search of Most General Functional Model of Neuron". Collected research works, 7 () according to the results of 7-th STC "Measuring and Computer Technique in Technological processes", Khmelnitsky, MCTTP, pp. 3-7,.. O.K. Kolesnitskiy, V.G. Krasilenko, "Analog-Digit Transformers of Picture Type for Digit Optoelectronic Processors (Review)". Autometry.-, pp. 6-9, 99.. O.K. Kolesnitskiy, V.G. Krasilenko, "Analog-to-Digital Image Converters for Parallel Digital Optoelectronic Processors". Pattern Recognition and Image Analysis. Vol.,, pp. 7-33, V.G. Krasilenko et. al., "Digital Optoele9tronic Processor of Multilevel Images", Ellectronnoe Modelirovanie, Vol. 5, 3, pp. 3-8, Patent (SU). Device for Multiplication of Square Matrix of Picture-Image, V. G.Krasilenko et. al., Publ. At BI 46, A.Huang, "About Architecture of Optical Digit Computing Machine"//TIIER.-Vol. 7, 7.-pp. 34-4, チ ィ 8ィコィ 569, 85ィケ-4ィ ィ ィィ 8ィェィ ィェ, ィ 9ィィ ツィコ69 385ィ ィ ィー97 ィャィー6ィィィコィ 67ィーィィィャィィ4ィ ィィィィ 9ィャ ィ 89ィ ィィィィ ィコ6ィャ7ィィィィ6ィェィェ66 ィャィィィコ867868ィ ィャィャィェ66 ィョ9ィー86ィヲ9ィー9ィ ィョ78ィ 95ィェィィ7. ィェィ 69ィェ69ィ ィェィ ィェィ ィコ6ィィ869ィ ィェィィィィ ィェ6ィャ ィコ6ィェ ツィェ66 ィ 9ィー6ィャィ ィーィ. ィ ィェィェィ 7 ィャィー6ィィィコィ 79657ィー ィョィャィェィケ3ィ ィーィケ ィ 77ィ 8ィ ィーィェ4 4ィ ィー8ィ ィー4, ィェ6ィ 6ィィィャ4 ィェィ 8ィ 5ィィ4ィ ィィ6 9ィャ ィ 89ィ ィィィィ. 38ィィ9ィェ 78ィィィャ8 ィィ9765ィケ469ィ ィェィィ ィェィョィーィケ97 ィャィー6ィィィコィ 67ィーィィィャィ 67 9ィャ ィ 89ィ 67 ィコ6ィャ7ィィ6ィヲィェ66 ィャ6ィコ867868ィ ィャィェ66 78ィィ9ィー866 ィコ8ィョ9ィ ィェィェ7. 6ィェィ 4ィ 9ィェ69ィ ィェィ ィェィ ィコ6ィョ9ィ ィェィェ6 ィェ6ィャ ィコ6ィェ966 ィ 9ィー6ィャィ ィーィ. ィ ィェィ ィャィー6ィィィコィ ィャィェ3ィョ9ィ ィーィィ ィ 7ィ 8ィ ィーィェ6 9ィィィー8ィ ィーィィ, ィェ6ィ 6ィェ6 ィェィ 8ィ 5ィ 66 9ィャ ィ 89ィ ィィ9ィェ6 78ィィィコ5ィ 77 9ィィィコ68ィィ9ィーィ ィェィェ7. The optimization method of microcommand's addressing circuits for compositional control unit is proposed. Method based on the encoding of transition's numbers of hard-logic automata. Given method allows to reduce the number of LSI-outputs in the addressing circuits. The method is illustrated by example. 778ィ 9576ィエ ィョ9ィー86ィヲ9ィー96 (77) ィィ8696ィヲ 9ィィ9ィーィャ4 ィャ63ィー ィ 4ィーィケ 8ィ 5ィィ469ィ ィェ6 9 9ィィ ィコ6ィャ7ィィィィ6ィェィェ66 ィャィィィコ867868ィ ィャィャィェ66 ィョ9ィー86ィヲ9ィー9ィ ィョ78ィ 95ィェィィ7 (877) []. ィェィ 9ィー67ィエ 98ィャ7 57 8ィ 5ィィ4ィ ィィィィ 56ィィ ツ9ィコィィ 9ィャ 77 3ィィ86ィコ6 78ィィィャィェ76ィー ィ ィャィャィィ8ィョィャ4 56ィィ ツ9ィコィィ ィョ9ィー86ィヲ9ィー9ィ (397) []. 5ィェィ ツィィィー5ィケィェィ 7 9ィー6ィィィャ69ィーィケ ィ ィー ィェ6ィ 6ィィィャ69ィーィケ ィョィャィェィケ3ィェィィ7 ツィィ95ィ ィャィィィコ869ィャ 9 9ィャ 77, 5ィィィ 6 4ィ ィャィェ4 ィャィィィコ869ィャ 7868ィ ィャィャィィ8ィョィャ6ィヲ 56ィィ ツ9ィコ6ィヲ ィャィ ィー8ィィ4 (39) ィィ 7868ィ ィャィャィィ8ィョィャ6ィヲ ィャィ ィー8ィィ ツィェ6ィヲ 56ィィィコィィ (39) ィ ィャィィ 357. ィェィ 9ィー67ィエィヲ 8ィ ィ 6ィー 785ィ ィ ィー97 ィャィー6 67ィーィィィャィィ4ィ ィィィィ 9ィー6ィィィャ69ィーィィ 877, ィコ6ィー684ィヲ 78ィィィャィェィィィャ 78ィィ 9ィィィェィー4 56ィ ィェィ 9 ツィー ツィィィコ [3]. 3ィョ9ィーィケ 57 8ィ 9ィャ4 ィ 568ィィィーィャィ (58) 765ィョ ツィェ6 ィャィェ639ィー96 678ィ ィー68ィェ4 5ィィィェィヲィェ4 7ィヲ (9) C { ヲヒ, ュ, ヲヒ g }, ヲヒ g ハ C ィ ィー5ィケィェ69ィーィケ 678ィ ィー68ィェ4 983ィィィェ 58 ィャ3ィョ ィコ6ィー684ィャィィ ィェィー ィョ9569ィェ4 983ィィィェ []. 8ィ 3ィ 7 9 ヲヒ g ハ C ィィィャィー 9 Ik g (K, ュ,K g ) ィィ 6ィィィェ 946 O g. 678ィ ィー68ィェ4 983ィィィェィ 58 4ィ 7ィィ949ィ 6ィー97 ィャィィィコ86ィコ6ィャィ ィェ4 (8) Y t 6ロ7 Y, Y { y, ュ, y N } - ィャィェ639ィー96 ィャィィィコ86678ィ ィィィヲ. ィョ9569ィェ4 983ィィィェィ 58 4ィ 7ィィ949ィ 6ィー97 55ィャィェィー4 ィャィェ639ィー9ィ 56ィィ ツ9ィコィィ ィョ9569ィィィヲ X { x, ュ, x L }. 3ィョ9ィーィケ 9 785ィ ィコィ 36ィヲ 9 ィャィィィコ86ィコ6ィャィ ィェ4 ィィィャ6ィー 969ィェィィ ィ 89ィ, ィー6 9ィーィケ 95ィィ 8 Y t 4ィ 7ィィ9ィ ィェィ 9 983ィィィェ b i, ィ 8 - Y g 9 95ィョ6ィエィヲ 4ィ ィェィヲ 983ィィィェ b j, ィー6 AY ( g ) AY ( t ) +, () A(Y k ) - ィ 89 ィャィィィコ86ィコ6ィャィ ィェ4 Y k ( k ハ { t, g} ). 5ィー6ィャ 95ィョ ツィ 57 ィィィェィー878ィーィ ィィィィ 58 78ィィィャィェィィィャ6 877 (4ィィ9.), 789ィーィ 9576ィエ 96ィ 6ィヲ ィコ6ィャ7ィィィィ6 ィ 9ィー6ィャィ ィーィ 9 "39ィーィコ6ィヲ" 56ィィィコ6ィヲ S (85, RG) ィィ ィ 9ィー6ィャィ ィーィ 9 "7868ィ ィャィャィィ8ィョィャ6ィヲ 56ィィィコ6ィヲ" S (56, 3). 877 ィョィェィコィィ6ィェィィ8ィョィー 95ィョ6ィエィィィャ 6ィ 8ィ 46ィャ. 36 9ィィィェィ 5ィョ "3ィョ9ィコ" 9 8ィィ9ィー8 7ィ ィャ7ィーィィ ィ 9ィー6ィャィ ィーィ S RG ィィ 9 9 ツィー ツィィィコ 56 4ィ ィェ697ィー97 ィェィョ594 ィコ. 3ィョ9ィーィケ 9 ィャ6ィャィェィー 98ィャィェィィ t 9 RG ィェィ 67ィー97 ィコ6 K(a m ) ィーィコィョィエ6 969ィー67ィェィィ7 a m ハ A ィ 9ィー6ィャィ ィーィ S, 8 {a, ュ,a M }. 3ィョ9ィーィケ 9 ィャ6ィャィェィー 98ィャィェィィ t 9 56 ィェィ 6ィィィー97 ィ 89 A(Y i ) ィャィィィコ86ィコ6ィャィ ィェ4, 967ィエィヲ 9 9 ヲヒ g ハ C. 395ィィ 8 Y i ィェ 7957ィー ィャ 9 ヲヒ g, ィー6 ィィ4 ィョ78ィ 9576ィエィヲ 7ィ ィャ7ィーィィ 73 9ィャ9ィー 54 ISSN ー4ィ 665ィコィー86ィェ6ィコィ. 5ィェ68ィャィ ィーィィィコィ. 778ィ 956ィェィェ7 ア,

11 38.8.9ィ 8ィコィ 569, 85ィケ-4ィ ィ ィィ 8ィェィ ィェ, ィ 9ィィ ツィコ69: チ ィャィィィコ86ィコ6ィャィ ィェィ ィャィィ y n ハ y i 94ィ ィィ8ィ ィー97 9ィィィェィ 5 y. 36 y ィコ 9683ィィィャ6ィャィョ 56 78ィィィ ィ 957ィー97 ィィィェィィィ, ィ 89ィョ7 6 ツ8ィェィョ6 ィャィィィコ86ィコ6ィャィ ィェィョ 9 ヲヒ g. 38ィィ 5ィー6ィャ 969ィー67ィェィィ ィ 9ィー6ィャィ ィーィ S ィェ ィャィェ7ィー ィィ ヲヒg 69ィーィィィェィョィー, ィー6 9ィィィェィ 5 y ィェ 68ィャィィ8ィョィー97. 5ィー6ィャ 95ィョ ツィ ィコ6ィャィ ィィィェィ ィィ6ィェィェィ 7 9ィャィ 85 68ィャィィ8ィョィー ィョィェィコィィィィ 8 8(X, T), 76 ィコ6ィー684ィャ ィ ィェ69ィィィー97 ィ 89 96ィ 6 ツ8ィェ6ィヲ 9 ヲヒ g ハC, ィィ 88(X, T), ィィ4ィャィェ76ィエィィ 969ィー67ィェィィ ィ 9ィー6ィャィ ィーィ S. 59ィケ T{T, ュ,T R } - ィャィェ639ィー96 9ィェィョィー8ィェィェィィ 78ィャィェィェ4, ィコ6ィィ8ィョ6ィエィィ 969ィー67ィェィィ7 a m ハ A, R ]log M[. 8ィョィェィコィィ6ィェィィ869ィ ィェィィ 4ィ 983ィ ィー97 78ィィ 69ィーィィ3ィェィィィィ ィコ6ィェ ツィェ66 969ィー67ィェィィ7 ィ 9ィー6ィャィ ィーィ S ィャィィ869ィ ィェィィ7 99 ィャィィィコ86ィコ6ィャィ ィェ 966ィー9ィー9ィー9ィョ6ィエィヲ 5ィー6ィャィョ 969ィー67ィェィィ6 9. ィェ6ィャ8ィ 786ィ 9 ィョィェィコィィィィ 8 ィィ ヲラ. 6ィ ィコ6ィヲ ィ ィー ィ 8ィ 469ィ ィェィィィャ ィェ6ィャ8ィ 786ィ (8ィィ9. ), ィョィェィコィィ6ィェィィ8ィョ6ィエィィ 95ィョ6ィエィィィャ 6ィ 8ィ 46ィャ. 395ィィ 9ィィィェィ 5 y 68ィャィィ8ィョィー97, ィー6 786ィィ96ィィィー ィェィ 8ィ ィエィィ9ィ ィェィィ 9 ツィー ツィィィコィ. 786ィーィィ9ィェ6ィャ 95ィョ ツィ 9ィャィ 85 ィェ68ィャィィ8ィョィー 78ィャィェィェ4 Z, ィコ6ィィ8ィョ6ィエィィ ィェ6ィャ8ィ ィ 9ィー6ィャィ ィーィ S. 386ィ 8ィ 469ィ ィー5ィケ ィコ ィャィィ8ィョィー 78ィャィェィェ4 88(Z) ィィ ヲラ ヲラ(Z), ィョ78ィ 9576ィエィィ 56 ィィ RG 966ィー9ィー9ィー9ィェィェ6, ツィー6 78ィィ96ィィィー ィコ 6 ツ8ィェ6ィャィョ 786ィョ 877. ァキ ァャァウ Z ァアァャ ァカ ァウァエ ァオァア Y y ァキ ァャァウ ァカ ァアァ蟋罘ワ ァウァエ ァオァア Y RG ァエ RG ァエ 4ィィ9ィョィェ6ィコ - 5ィー8ィョィコィーィョ8ィェィ 7 9ィャィ ィ 8ィ 469ィ ィェィィィャ ィェ6ィャ8ィ 786ィ 4ィィ9ィョィェ6ィコ - 5ィー8ィョィコィーィョ8ィェィ 7 9ィャィ ィコ6ィャ7ィィィィ6ィェィェ66 ィャィィィコ867868ィ ィャィャィェ66 ィョ9ィー86ィヲ9ィー9ィ ィョ78ィ 95ィェィィ7 4ィ 487ィェ69ィーィケ ィ 89ィ ィャィィィコ86ィコ6ィャィ ィェ4 R 67857ィー97 ィコィ ィコ ィョィェィコィィ7 6ィー ツィィ95ィ M 678ィ ィー68ィェ4 983ィィィェ 58: R ]log M [. 6ィ ィコィィィャ 6ィ 8ィ 46ィャ, 9ィャィ 85 ィィィャィー R R + R () ィョ9ィーィケ t ツィィ ィャ4 85, ィー6ィ 78ィィ 94765ィェィェィィィィ ィョ9569ィィ7 R > t 397 (3) ィェ6ィ 6ィィィャ ィェィィィーィケ 8ィ 93ィィ8ィェィィ ィ ィャ [3]. 6ィー6 78ィィ96ィィィー ィコ ィョ95ィィ ツィェィィ6 ツィィ95ィ ィャ. 3ィョ9ィーィケ ィ 9ィー6ィャィ ィー S 786ィィ496ィィィー H 78669, ツィー ィー 5ィィィェィョ 6 787ィャ6ィヲ 9ィー8ィョィコィーィョ8ィェ6ィヲ ィーィ ィ 5ィィ4 (356), ィィ R 3 ]log H[. 38ィィ 94765ィェィェィィィィ ィョ9569ィィ7 R 3 ワ t 397 (4) 9ィー6ィィィャ69ィーィケ 9ィャ4 877 ィャ63ィェ6 ィョィャィェィケ3ィィィーィケ. 57 5ィー66 9 ィ ィェィェ6ィヲ 8ィ ィ 6ィー 785ィ ィ ィー97 999ィーィィ 786ィ 8ィ 469ィ ィー5ィケ ィェィ 9ィー67ィエィヲ 8ィ ィ 6ィー 785ィ ィ ィー97 ィャィー6ィィィコィ 9ィィィェィー4ィ ィ 8ィ 469ィ ィェィィィャ ィェ6ィャ8ィ 786ィ, 9ィコ56 ツィ 7 95ィョ6ィエィィ 5ィーィ 74:.868ィャィィ869ィ ィェィィ ィャィェ639ィー9ィ 9 C, ィ 89ィ ィィ7 ィャィィィコ86ィコ6ィャィ ィェ 965ィ 9ィェ6 (), 68ィャィィ869ィ ィェィィ 9683ィィィャ66 73 ィィ 356 ィ 9ィー6ィャィ ィーィ S. 6ィー6ィー 5ィーィ ィェ7ィー97 965ィ 9ィェ6 ィャィー6ィィィコ ィィ4 8ィ ィ 6ィー4 [].. 86ィィ869ィ ィェィィ ィェ6ィャ869 h F h 96ィィ ツィェ4ィャィィ ィコ6ィ ィャィィ K(F h ) 8ィ 487ィェ69ィーィィ R ィャィィ869ィ ィェィィ ィャィェ639ィー9ィ ィコ6ィィ8ィョ6ィエィィ 78ィャィェィェ4 Z. 386ィ ィャ F h, 966ィー9ィー9ィー9ィョ6ィエィィィャ 6ィィィェィ ィコ694ィャ 7ィ 8ィ ィャ < 8, ヲラ > 9ィーィ 9ィィィー ィー9ィー9ィー9ィィ 6ィィィェ ィェ6ィャ ィャィィ869ィ ィェィィ 786ィ 8ィ 469ィ ィェィェ6ィヲ 356 ィ 9ィー6ィャィ ィーィ S ィョィ 5ィェィィィャ 9ィー65ィ 69 8 h ィィ ヲラ h, 9683ィ ィエィィ ィョィェィコィィィィ ィョ78ィ 95ィェィィ7 RG ィィ 56, ィィ 9966ィャ 9ィー65ィ ィ Z h, 9683ィ ィエィィ ィョィェィコィィィィ ィョ78ィ 95ィェィィ ィャィィ869ィ ィェィィ 9ィィ9ィーィャ4 ィョィェィコィィィヲ Z Z (X, T) ィャィィ869ィ ィェィィ ィーィ ィ 5ィィ ィ ィャィィ Z ィィ 946ィ ィャィィ 8 ィィ ヲラ. 868ィャィィ869ィ ィェィィ 9ィィ9ィーィャ ィョィェィコィィィヲ 88(Z) ィィ ヲラ ヲラ(Z). 5. 5ィィィェィー4 56ィィ ツ9ィコ6ィヲ 9ィャ ィ ィ ィェィェ6ィャ 55ィャィェィーィェ6ィャ ィ ィ 4ィィ9. 5ィャィ 85 8ィ 5ィィ4ィョィー97 ィェィ 39 ィィ5ィィ 39, 9ィャ4 38 ィィ 73 - ィェィ ィ 99ィャ6ィー8ィィィャ 78ィィィャィェィェィィ 5ィー6ィヲ ィャィー6ィィィコィィ ィェィ 78ィィィャ8 9ィィィェィー4ィ 877, ィ 9ィー6ィャィ ィー S ィコ6ィー6866 4ィ ィ ィェ 356 (6ィ ィ 5.). 55

12 ィ ィ 5ィィィ - 387ィャィ 7 9ィー8ィョィコィーィョ8ィェィ 7 ィーィ ィ 5ィィィ ィ 9ィー6ィャィ ィーィ S 877 S a m K(a m ) a s K(a s ) Xh ヲラ h 8h h 6ィ ィ 5ィィィ - 386ィ 8ィ 469ィ ィェィェィ 7 787ィャィ 7 9ィー8ィョィコィーィョ8ィェィ 7 ィーィ ィ 5ィィィ ィ 9ィー6ィャィ ィーィ S 877 S a m K(a m ) Xh K(Y h ) Zh h a x D D 3 D 4 x - a a 3 x x D D 3 D 5 D 6 a x x Z 3 a x x D D 4 D 6 3 x x Z 3 a a x 3 D D 3 D 4 4 a 3 x 3 D D 3 D 6 5 a x 3-4 x 3 Z Z 3 5 a x D D 3 D 5 6 x Z 6 a 3 a 3 x x 4 D D 3 D 5 D 6 7 a 3 x x 4 Z 3 7 a x x 4 - D 4 D 5 8 x x 4 Z Z ィケ 8ィィ9ィー8 RG ィィ 9 ツィー ツィィィコ 56 ィィィャィー 9 D-ィーィィ7ィ, ヲラ {D,D }, 8{D 3, ュ,D 6 }, R, R 4, R 6. 6ィーィ ィコ, 965ィ 9ィェ6 () 397 9ィャ ィェ4 ィィィャィーィケ ィェィ ィィィャィー H 8 9ィー86ィコ, 6ィェィ ィコ6 78 F ィィ F 4, F ィィ F ィ ィ 6ィー. 38ィィ996ィィィャ 786ィ ィャ 95ィョ6ィエィィ ィェ6ィャ8ィ : F ィィ F 4, F ィィ F 7, F 3 3, F 5 4, F 6 5, F ィ ィコィィィャ 6ィ 8ィ 46ィャ, ィィィャィー97 H 6 8ィ 45ィィ ツィェ4 ィェ6ィャ869, 57 ィコ6ィィ869ィ ィェィィ7 ィコ6ィー684 69ィーィ ィー6 ツィェ6 R 3 ]log H [ (5) 78ィャィェィェ4 Z q ハ Z, ィー6 9ィーィケ Z{Z,Z,Z 3 }. 3ィョ9ィーィケ K(F )K(F 4 ), K(F )K(F 7 ), K(F 3 ), K(F 5 ), K(F 6 ), K(F 8 ). 4ィ 5ィィ4ィ ィィ7 769ィー86ィェィェ6ィヲ 356 (6ィ ィ 5.) 786ィィ496ィィィー97 55ィャィェィーィ 8ィェ6. 5ィィ9ィーィャィ ィョィェィコィィィヲ Z 9 6ィ ィエィャ 95ィョ ツィ ィィィャィー 95ィョ6ィエィィィヲ 9ィィ: H Z r V Crh Am Xh ( r h, ュ, R 3 ), (6) 6ィ ィ 5ィィィ 3-6ィ ィ 5ィィィ 786ィ 8ィ 469ィ ィー57 ィコ669 ィ 9ィー6ィャィ ィーィ S 877 S Zh 8 h ヲラ h h D 3 D 4 D, 4 D 3 D 5 D 6 D, 7 D 4 D 6 D 3 D 3 D 6 D 5 D 3 D 5 D 6 D 4 D ィ 5ィィ4ィ ィィィィ ィコ6ィャィ ィィィェィ ィィ6ィェィェ4 9ィャ 76 ィーィ ィ 5ィィィ ィャ 9 ィ ィ 4ィィ9 397, 69ィーィ ィー6 ツィェ6 6ィー8ィ 3ィェ4 9 7 ツィ ィーィィ []. 59ィケ 5ィーィィ ィェ 8ィ 99ィャィ ィー8ィィ9ィ 6ィー97. 96ィィ ツ9ィコィ 7 9ィャィ ィ 9ィー6ィャィ ィーィ S 78ィィ9ィェィ ィェィ 8ィィ9.3, 49ィケ 85 9ィィィェィー4ィィ869ィ ィェィ 76 9ィィ9ィーィャ (6). Crh - ィ ィョ59ィ 78ィャィェィェィ 7, 8ィ 9ィェィ 7 ィィィェィィ, 95ィィ ィィ ィー65ィケィコ6 95ィィ 9 h-ィヲ 9ィー86ィコ 356 Z r. Am - ィコ6ィェィイ6ィェィコィィ7 78ィャィェィェ4 T r ハ T, 966ィー9ィー9ィー9ィョ6ィエィ 7 ィコ6ィョ 969ィー67ィェィィ7 a m ハ A ィィ4 h-ィヲ 9ィー86ィコィィ 356; Xh - ィコ6ィェィイ6ィェィコィィ7 56ィィ ツ9ィコィィ ィョ9569ィィィヲ, ィエィ 7 h-ィヲ 786 ィ 9ィー6ィャィ ィーィ S. ィ 78ィィィャ8, ィィ4 ィーィ ィ 5. ィィィャィャ Z A 3 x ナ A 3 x x 4 T T T 3 x ナ T T x x 4. x x x3 x4 T T PLA ァャァウ 3 Z Z Z 3 3 y clock ROM ァアァャ & ァアァ蟋罘ワ D3 D4 D5 D6 D D D D D RD C RG T T 6ィ ィ 5ィィィ S (6ィ ィ 5.3) 9683ィィィー 9ィー65ィ 4 Z h (96ィィ ツィェ4ィヲ ィコ6 9ィー86ィコィィ), 8 h ィィ ヲラ h (ィョィェィコィィィィ ィョ78ィ 95ィェィィ7 RG ィィ 56), h - ィェ6ィャ8 9ィー86ィコィィ ィ ィ 5ィィィ ィー97 ィーィ ィ 5ィィィヲ ィィ9ィーィィィェィェ69ィーィィ ィョィェィコィィィヲ 8 ィィ ヲラ. 395ィィ 38 8ィ 5ィィ4ィョィー97 ィェィ 357, ィー6 9ィィ9ィーィャ4 ィョィェィコィィィヲ 8 ィィ ヲラ 6ィェィェィ ツィェ6 4ィ ィ 6ィー97 ィーィ ィ 5ィィィヲ 38. 4ィィ9ィョィェ6ィコ 3-96ィィ ツ9ィコィ 7 9ィャィ ィ 9ィー6ィャィ ィーィ S 877 S ィーィャィーィィィャ, ツィー6 9ィィィェ86ィェィィ4ィ ィィ7 RG C y *Clock, Clock - 9ィィィェィ 5 9ィィィェ86ィェィィ4ィ ィィィィ ISSN ー4ィ 665ィコィー86ィェ6ィコィ. 5ィェ68ィャィ ィーィィィコィ. 778ィ 956ィェィェ7 ア,

13 ィェ9ィコィィィヲ, : チ ィ ィェィィ7 ィ 9ィー ィコィ 4ィ 5ィィ, ツィー6 78ィィ 94765ィェィェィィィィ ィョ9569ィィィヲ (3) ィィ (4) ィャィー6 ィコ6ィィ869ィ ィェィィ7 ィェ6ィャ ィー ィョィャィェィケ3ィィィーィケ 9ィー6ィィィャ69ィーィケ 8ィ 5ィィ4ィ ィィィィ ィ 9ィー6ィャィ ィーィ S. 38ィィ 5ィー6ィャ 5ィコ6ィェ6ィャィィ ィ ィー97 76 ィャ8 869ィーィ 8ィ 4ィェ69ィーィィ R - t 397 ィィ ィャ63ィー 69ィーィィィ ィーィケ 35-4% 76 98ィ 9ィェィェィィ6 9 ィー8ィ ィィィィ6ィェィェ6ィヲ 8ィ 5ィィ4ィ ィィィヲ ィ 9ィー6ィャィ ィーィ S ィェィェ4ィヲ ィャィー6 78ィィ96ィィィー ィコ ィ 65 ィャ5ィェィェ4ィャ 9ィャィ ィャ 877 ィィ4-4ィ 99ィェィィ7 38, ィョ95ィィ ツィィ9ィ 6ィエ6 98ィャ7 68ィャィィ869ィ ィェィィ7 ィャィィィコ86678ィ ィィィヲ. 6ィ ィコィィィャ 6ィ 8ィ 46ィャ, ィャィー6 ィコ6ィィ869ィ ィェィィ7 ィェ6ィャ ィィィャィェィィィャ, 95ィィ ィコ8ィィィー8ィィィャ 5ィコィーィィ9ィェ69ィーィィ 9ィャ ィー97 ィャィィィェィィィャィョィャ 9ィー6ィィィャ69ィーィィ チ ィ 8ィコィ ィ 5ィ ィーィィィェ8.. 5ィィィェィー4 ィャィィィコ867868ィ ィャィャィェ4 ィョ9ィー86ィヲ9ィー9 ィョ78ィ 95ィェィィ7. - 8ィィ9: ィコ8ィ ィィィェ4, ィケ ィコィーィィ869ィ ィェィィ ィィ8694 9ィィ9ィーィャ ィェィ 69ィェ ィ ィャィャィェ4 56ィィ ツ9ィコィィ ィィィェィー8ィ 5ィケィェ4 9ィャ. -.: 687 ツィ 7 5ィィィェィィ7-65ィコ6ィャ, ィ 8ィコィ ィィィェィー4 ィョ9ィー86ィヲ9ィー9 ィョ78ィ 95ィェィィ7 ィェィ 7868ィ ィャィャィィ8ィョィャ4 56ィィ ツ9ィコィィ ィョ9ィー86ィヲ9ィー9ィ. - 6ィェィコ: 6ィェ67, ィェ9ィコィィィヲ, ィ 99ィャ6ィー8ィェィ 4ィ ィ ツィ 6ィ ィイィィィェィェィィ7 ィ ィェ9ィ ィャィ 57 ィィ9ィコィョ99ィー9ィェィェ4 ィェィヲ86ィェィェ4 9ィーィヲ, 69ィョィエ9ィー9576ィエィィ 6ィ 8ィ ィ 6ィーィコィョ ィャィェ66ィャ8ィェ4 9ィィィェィ 569, 4ィ ィ ィェィェ4 9 9ィィ ィィ9ィコ8ィーィェ4 98ィャィェィェ ィェ ィ 568ィィィーィャ 6ィ ィイィィィェィェィィ7 9ィーィヲ ィェィ ィコ6ィェ ツィェ6ィヲ 94ィ 68ィコ, ィィ 6ィコィ 4ィ ィェィ 6 67ィーィィィャィ 5ィケィェ69ィーィケ. 4ィ 48ィ ィ 6ィーィ ィェ4 8ィコィョ88ィェィーィェ4 786ィョ84, 78ィェィ 4ィェィ ツィェィェ4 57 8ィ ィ 6ィー4 9 8ィ 5ィケィェ6ィャ 98ィャィェィィ ィェ ィ 568ィィィーィャ 57 6ィェィコィィ "9ィコ5ィ ィ " ィコィ 36ィヲ ィィ4 9ィーィヲ, 967ィエィィ 9 ィ ィェ9ィ ィャィ 5ィケ, 9 6ィ ィイィィィェィェィェィョ6 6ィェィコィョ. 5ィィィェィー4ィィ869ィ ィェィ ィ 8ィィィーィコィーィョ8ィ ィェィヲ86ィェィェ6ィヲ ィャィーィ 9ィーィィ, 83ィ 6ィエィヲ 8ィ 99ィャィ ィー8ィィ9ィ ィャィョ6 786ィ 5ィャィョ. 4ィ 49ィィ9ィ ィャ4ィヲ ィー 76949ィィィーィケ ィー6 ツィェ69ィーィケ 83ィェィィ7 4ィ ィ ツ 786ィェィィ869ィ ィェィィ7, ィィ5ィケィー8ィ ィィィィ, 95ィ 3ィィ9ィ ィェィィ7, 5ィャィョ57ィィィィ, 6ィ 8ィ ィーィェ66 ィャ65ィィ869ィ ィェィィ7 ィィ ィィィャ 766ィ ィェ4, 57 83ィェィィ7 ィコ6ィー684 ィィ9765ィケ4ィョ6ィー ィィ9ィコィョ99ィー9ィェィェ4 ィェィヲ86ィェィェ4 9ィーィィ, 69ィェ69ィ ィェィェ4 ィェィ 7ィ 8ィ ィィィャ 6ィ ィョ ツィェィィ7 9 ィョ ツィィィー5ィャ. 457ィェィョィー6 4ィ ィ ツィョ 6ィ 'ィェィ ィェィェ7 ィ ィェ9ィ ィャィ 56 3ィーィョ ツィェィィ ィェィヲ86ィェィェィィ ィャ83, ィエ6 46ィヲ9ィェ66ィーィケ 6ィ 86ィ ィコィョ ィ ィ ィ ィー69ィィィャ68ィェィィ 9ィィィェィ 569, 7ィコ6 4ィ ィ ィェ6 ィョ 9ィィ576 ィィ9ィコ8ィーィェィィ ツィ 969ィィ ィ 78676ィェ69ィ ィェ6 ィ 568ィィィーィャ 6ィ 'ィェィ ィェィェ7 ィャ83 ィェィ ィコ6ィェ96ィヲ 9ィィィ 686, 6 69ィェ6 ィヲ66 67ィーィィィャィ 5ィケィェ69ィーィケ. 486ィ 5ィェ6 8ィコィョ8ィェィーィェ6 786ィョ8ィィ 57 86ィ 6ィーィィ 9 8ィ 5ィケィェ6ィャィョ ツィ 96. 5ィ 78676ィェ69ィ ィェ6 ィ 568ィィィーィャ 57 66ィェィコィィ "9ィェ9ィコィョ" ィコ63ィェ67 4 ィャ83, ィエ6 967ィーィケ 6 ィ ィェ9ィ ィャィ 56, 9 6ィ 'ィェィ ィェィョ 66ィェィコィョ. 5ィィィェィー469ィ ィェ6 ィ 86ィーィコィーィョ8ィョ ィェィヲ86ィェィェ67 ィャィーィ ィャ836, ィエ6 89'74ィョ 857ィェィョィーィョ 786ィ 5ィャィョ. 366, ィエ6 89ィィ9ィ ィーィケ97, ィィィエィィィーィィ ィー6 ツィェ69ィーィケ 89'74ィ ィェィェ7 4ィ ィ ツ 786ィェィョ9ィ ィェィェ7, 65ィケィー8ィ 67, 45ィ 3ィョ9ィ ィェィェ7, ィャィョ5767, 49686ィーィェ66 ィャ6569ィ ィェィェ7 ィーィ 766ィ ィェィィ 7ィャ, 57 89'74ィ ィェィェ7 7ィコィィ 9ィィィコ68ィィ9ィー69ィョ6ィーィケ 3ィーィョ ツィェ6 ィェィヲ86ィェィェ6 ィャ836, ィエ6 4ィ 9ィェ69ィ ィェ6 ィェィ 7ィ 8ィ ィィィャ6 ィェィ 9 ツィ ィェィェ7 4 ィョ ツィィィー5ィャ. The problem of combining of an ensemble of artificial neural networks that process multivariate signals presented as discrete time series is considered. An algorithm for combining of the networks on a finite sample is proposed and its optimality is proven. Recurrent procedures for real-time processing are developed. An algorithm for assessing the "contribution" of each member network into the combined estimate is proposed. Architecture of a neural meta-network for the considered problem's solution is synthesized. The presented approach provides improvement of the solution's precision in extrapolation, filtering, smoothing, emulation, reverse modeling and other similar problems that can be solved using artificial neural networks based on supervised learning paradigm ィェィ 9ィー67ィエ 98ィャ7 ィィ9ィコィョ99ィー9ィェィェ4 ィェィヲ86ィェィェ4 9ィーィィ (65) ィェィ 35ィィ 3ィィ86ィコ6 78ィィィャィェィェィィ 9 4ィ ィ ツィ 6ィ 8ィ ィ 6ィーィコィィ ィィィェ68ィャィ ィィィィ ィーィ ィコィィ, ィコィ ィコ 786ィェィィ869ィ ィェィィ, ィィ5ィケィー8ィ ィィ7, 95ィ 3ィィ9ィ ィェィィ, 5ィャィョ57ィィ7, 6ィ 8ィ ィーィェ6 ィャ65ィィ869ィ ィェィィ, ィ ィ 7ィーィィ9ィェ6 ィョ78ィ 95ィェィィ, ィー.. 9 4ィ ィ ツィ, ィコ6ィー684 ィャ6ィョィー ィ 4ィーィケ 83ィェ4 9 8ィ ィャィコィ ィェィヲ869ィー96ィヲ 7ィ 8ィ ィィィャ4 6ィ ィョ ツィェィィ7 9 ィョ ツィィィー5ィャ. 797 ィィ9765ィケ469ィ ィェィィ ィ ィェ, , 9 ィョィェィィ989ィ 5ィケィェ4ィャィィ ィ 7786ィコ9ィィィャィィ8ィョ6ィエィィィャィィ 9ィャ63ィェ69ィー7ィャィィ, ィエィィィャィィ 83ィ ィーィケ 69ィーィ ィー6 ツィェ6 9563ィェ4 ィェ5ィィィェィヲィェ4 9ィー6ィ 9ィーィィ ツ9ィコィィ 4ィ ィ ツィィ 9 ィョ9569ィィ7 ィ 78ィィ68ィェ6ィヲ ィィ ィーィコィョィエィヲ ィェ6785ィェィェ69ィーィィ 6 ィ 8ィ ィコィー8ィィ9ィーィィィコィ 6ィ 8ィ ィ ィ ィー49ィ ィャ4 9ィィィェィ 569. ィャ9ィー 9 ィーィャ 95ィョィー 6ィーィャィーィィィーィケ, ツィー6 6ィェィ ィィ ィーィ 3 4ィ ィ ツィ ィャ63ィー ィ 4ィーィケ 83ィェィ 9 76ィャ6ィエィケ6 8ィ 45ィィ ツィェ4 9ィーィヲ, 6ィー5ィィ ツィ 6ィエィィ97 ィ 8ィィィーィコィーィョ86ィヲ, ィコ65ィィ ツ9ィー96ィャ ィェィヲ86ィェ69, ィ 568ィィィーィャィ ィャィィ 6ィ ィョ ツィェィィ7, ィェィ ツィ 5ィケィェ4ィャィィ ィョ9569ィィ7ィャィィ, 97696ィ ィ ィャィィ 68ィ ィェィィ4ィ ィィィィ 6ィ ィョ ツィ 6ィエィヲ 94ィ 68ィコィィ ィーィ ィコ, ツィー6 94ィ 68 ィコ6ィェィコ8ィーィェ6ィヲ 9ィーィィ 57 ィコ6ィェィコ8ィーィェ6ィヲ 4ィ ィ ツィィ 7957ィー97 69ィーィ ィー6 ツィェ6 9563ィェ6ィヲ 786ィ 5ィャ6ィヲ. 8ィ ツ9ィー96 83ィェィィ7 4ィ ィ ツィィ ィャ63ィー ィ 4ィーィケ 9ィョィエ9ィー9ィェィェ ィェ6 9 76ィャ6ィエィケ6 ィーィ ィコ ィェィ 449ィ ィャ66 ィ ィェ9ィ ィャィ 57 (ィコ6ィャィィィーィーィ ) ィェィヲ869ィーィヲ [-9], ィコ6ィ 6ィェィィ ィィ ィー 3 ィ ィェィェ4 6ィ 8ィ ィ ィ ィー49ィ 6ィー97 7ィ 8ィ 555ィケィェ6 ィェ9ィコ65ィケィコィィィャィィ 65, 946ィェ4 9ィィィェィ 54 ィコ6ィー684 ィ 5 ィェィコ6ィー684ィャ 6ィ 8ィ 46ィャ ィコ6ィャィ ィィィェィィ8ィョ6ィー97 9 6ィ ィイィィィェィェィェィョ6 6ィェィコィョ, ィエィョ6 76 ィコィ ツ9ィー9ィョ 6ィェィコィィ, 765ィョ ツィェィェ4 9 76ィャ6ィエィケ6 56ィコィ 5ィケィェ4 9ィーィヲ, 967ィエィィ 9 ィ ィェ9ィ ィャィ 5ィケ ィーィ ィコ, ィコィ ィコ 5ィー6 76ィコィ 4ィ ィェ6 ィェィ 8ィィ9.. ィ 78ィ ィコィーィィィコ ィェィ ィィィ 65ィケ3 8ィ 97869ィー8ィ ィェィェィィ 765ィョ- ツィィ5ィィ 9ィ 766ィ ィコ 6ィ ィイィィィェィェィィ6 9ィーィヲ ィ ィェ9ィ ィャィ 57: ィャ6ィョ5ィケィェ4ィヲ ィィ 69ィェ69ィ ィェィェ4ィヲ ィェィ 9493ィェィェ6ィャ ィョ98ィェィェィィィィ [3]. 6 6ィー7 9683ィ ィー5ィケィェ6 6ィェィィ 69ィーィ ィー6 ツィェ6 6ィー5ィィ ツィ 6ィー97 8ィョ 6ィー 8ィョィ, ィィ 6ィ ィイィィィェ7ィー ィー6, ツィー6 6ィ ィ 6ィェィィ ィィ9765ィケ4ィョ6ィー 5ィィィェィヲィェィョ6 ィコ6ィャィ ィィィェィ ィィ6 996ィィ ィコ6ィャ76ィェィェィー 9 ィー6ィヲ ィィ5ィィ ィィィェ6ィヲ 68ィャ [9]. 6ィョ5ィケィェ4ィヲ 766 ィィィャィー 69ィーィ ィー6 ツィェ6 598ィィ9ィーィィ ツ9ィコィィィヲ ィ 8ィ ィコィー8 9 6ィー5ィィ ツィィ 6ィー ィャィ ィーィャィ ィーィィ ツ9ィコィィ ィ 65 57

07 チ チ チ

07 チ チ チ 13000601060506030405060002 0209040805020008010608 06 0108070806 04020505060705080207 080302030408000606 07 チ03010403 05080306050806 02040902000508020102 01020507020804050600030101020102 070106000304050606030608

More information

NO- 3 (2010)

NO-  3 (2010) 1301060403010204020205080203 0209040805020008010603 05ィ 080200ィィ09ィー08ィィ080609ィ ィェ 0802010208ィ 05ィケィェ06ィヲ 0905ィョ03ィ 06ィヲ 0706 ィェィ 01040608ィョ 09 0900020802 09090704ィィ, ィィィェ000608ィャィ 02ィィ06ィェィェ0401 ィー0201ィェ06050600ィィィヲ

More information

ィ ィ 06ィーィ ィエ02ィェィ ィコ08ィィィー0208ィィ07ィャ ィィィェィー ィコィーィョィ 05ィケィェ0609ィーィィ ィィ09ィコィョ0909ィー0902ィェィェ ィィ09ィー02ィャ. 06

ィ ィ 06ィーィ ィエ02ィェィ ィコ08ィィィー0208ィィ07ィャ ィィィェィー ィコィーィョィ 05ィケィェ0609ィーィィ ィィ09ィコィョ0909ィー0902ィェィェ ィィ09ィー02ィャ. 06 1302080102ィェィ 0902ィェィィィェィ 0601050606060706 03040608090802010207 00080603000806060806 ィィィャ. 00. 00. 080205010403ィ 04060909ィィィヲ09ィコ06ィヲ 08ィコィ 0102ィャィィィィ ィェィ ィョィコ 08. 00. 0006080603020609 0808ィィィー0208ィィィィ

More information

PIV7.vp

PIV7.vp 13 13070208 338(510) 090908 69.5(508ィィィー) 0332 0402ィコ06ィャ02ィェ010609ィ ィェ06 ィコ 07ィョィ 05ィィィコィ 02ィィィィ 07 ツ02ィェ04ィャ 09060902ィー06ィャ 060200 040801 02ィー0902ィー09ィー0902ィェィェ04ィヲ 080201ィ ィコィー0608 ィ ィコィ 0102ィャィィィコ

More information

Aksenov.vp

Aksenov.vp 13000608060204 0908050804030006 チ 08080503010200 (08 60-0502ィーィィ06 0906 01ィェ07 0806030102ィェィィ07) * 00. 09. 08ィコ0902ィェ0609 080601ィィ050907 20 ィィ06ィェ07 1947 00. 00 1970 00. 06ィェ 06ィコ06ィェ ツィィ05 0606ィャ09ィコィィィヲ

More information

ィ ィェ 0203ィ 07ィ ィー04ィヲ ィャ02ィェィー ィコ09ィ

ィ ィェ 0203ィ 07ィ ィー04ィヲ ィャ02ィェィー ィコ09ィ 13060606070905010808 0506040801060008 1 1305020203040408010603 08020902010808 040302080806020408 0705ィ ィェ 0203ィ 07ィ 080609 0307ィー04ィヲ 050502ィャ02ィェィー. 00000202010808 050608060508 080502ィコ09ィ ィェ0108 0203ィョィャィ

More information

R03_LAVAMAT_54610_01_oS_5kg_sy_ZP.bk

R03_LAVAMAT_54610_01_oS_5kg_sy_ZP.bk 13LAVAMAT 54610 05ィーィィ08ィ 05ィケィェィ 07 ィャィ 03ィィィェィ -ィ 09ィー06ィャィ ィー 06ィェ09ィー08ィョィコ02ィィ07 0706 ィョ09ィーィ ィェ0609ィコ02 ィィ 05ィコ090705ィョィ ィーィ 02ィィィィ 130709ィ 03ィ 02ィャィ 07 0706ィコィョ07ィ ィー0205ィケィェィィ02ィ, ィョ09ィ 03ィ 02ィャ04ィヲ

More information

ィコィィィェ ィコ060909ィコィィィヲ 03ィョ08ィェィ 05 ィャ020301ィョィェィ ィェ ィ 09ィ ィ 09ィー09ィョ02ィー 08ィ 0409ィィィーィィ06 ィャ020301ィョィ

ィコィィィェ ィコ060909ィコィィィヲ 03ィョ08ィェィ 05 ィャ020301ィョィェィ ィェ ィ 09ィ ィ 09ィー09ィョ02ィー 08ィ 0409ィィィーィィ06 ィャ020301ィョィ 13000609ィコ060909ィコィィィヲ 03ィョ08ィェィ 05 ィャ020301ィョィェィ 080601ィェ060006 0708ィ 09ィ Moscow Journal of International Law 01ィ ィョ ツィェ06-ィー02060802ィーィィ ツ0209ィコィィィヲ ィィ ィィィェ000608ィャィ 02ィィ06ィェィェ06-0708ィ ィコィーィィ ツ0209ィコィィィヲ

More information

Na2008_10

Na2008_10 "01ィ 08ィコ06ィーィィ ツ0209ィコィ 07" ィー0208ィャィィィェ06050600ィィ07: 0902ィャィ ィェィーィィ ツ0209ィコ0602 ィィ09090502010609ィ ィェィィ02 (ィェ02 ィー08ィ 01ィィ 02ィィ 06ィェ ィェ04ィヲ 070601 010601 09 ィィ04 ィョ ツ02 ィェィィィィ 05ィーィィ 06 0506 00ィィ ツ0209

More information

tom2.p65

tom2.p65 1308ィコィ 0102ィャィィ07 ィェィ ィョィコ 04020907ィョィ 05ィィィコィィ 06ィ ィーィ 0809ィーィ ィェ 06ィェ09ィーィィィーィョィー ィィ09ィー0608ィィィィ ィィィャ. 01.00ィ 080103ィ ィェィィ 08040903020902010608 0300040805060705080609 050603030307 000407ィョ09ィコ 2 05080201ィェ020902ィコ0609ィ

More information

ÐÔ45.pmd

ÐÔ45.pmd 13000601060506030405060002 0209040805020008010608 06 0108070806, 0002090202030406 06 050302040608 07080408060104 0908040508020005080607 010800060201080905010407 0303020801020106 チ0305080607 0701060003040506060306

More information

Gender.pm6

Gender.pm6 13000601060506030405060002 0209040805020008010608 04020505060705080207 080302030408000606 070408090505080607 010205070208040506000301010407 0701060003040506060306 0600. 08. 00. 0102040508020102 010301020304010403

More information

ÐÔ 42 â ïå÷àòü.pmd

ÐÔ 42 â ïå÷àòü.pmd 13000601060506030405060002 0209040805020008010608 06 0108070806 07080408060104 0908040508020005080607 010800060201080905010407 0303020801020106 チ0305080607 0701060003040506060306 0600030106 01.05.050802000204020204

More information

untitled

untitled 13 13 130306090907ィエィ 02ィー0907 020400ィ ィェィ ィャ - 030208ィー09ィ ィャ ィィ 0002080607ィャ 00ィー060806ィヲ ィャィィ08060906ィヲ 0906ィヲィェ04 060401ィ ィー0205ィケ09ィコィィィヲ 0106ィャ ー01ィ ィー08ィ ア 13090908 63.3(2)722.78 (29=020400) 09

More information

1300ィィ ィ ィィ04ィ ィー0608 ィィ ィェィェ ィ ィ , 00ィー ィ ィェィィ ツ0209ィコィィ02 03ィィ01ィコ0609ィーィィ 00ィィ ィ ィィ04ィ ィー0608,

1300ィィ ィ ィィ04ィ ィー0608 ィィ ィェィェ ィ ィ , 00ィー ィ ィェィィ ツ0209ィコィィ02 03ィィ01ィコ0609ィーィィ 00ィィ ィ ィィ04ィ ィー0608, 13. 0302 0102ィヲ09ィー09ィィ02 04ィ ィコ0506 ツィ 02ィー0907 00ィー0608060800ィ ィェィィ ツ0209ィコィィ02 03ィィ01ィコ0609ィーィィ 00ィィ0108060006ィ ィィ04ィ ィー0608 06ィ 08ィ 040609ィ ィェィィィィ 09090704ィ ィェィェ060006, ィェ02 09ィャィ ツィィ09ィ 02ィャ060006

More information

Áeçuìÿííûé-1

Áeçuìÿííûé-1 13000804010307010607 06010506040700030106 050200040300030101020102 0003010302040003010608 04ィ ィ 06ィーィ 06ィエィ 07 0706 0804ィェ06 ツィェ04ィャ 04ィ ィコ06ィェィ ィャ 05ィコ06ィェ06ィャィィィコィ 0904040409ィ 02ィー ィコ 03ィィ04ィェィィ ィェ02

More information

untitled

untitled 1306080002040301010808 050602060002050605 030601 06ィ ィエ02ィヲ 080201ィ ィコ02ィィ02ィヲ 09. 08. 09020102080405 ィィ 00. 08. 0108000809020008 000609ィコ09ィ 2007 1306ィ ィャ060302ィェィェィ 07 09ィー06ィィィャ0609ィーィケ. 07 ツ02ィ ィェィィィコ

More information

ULANOV.qxd

ULANOV.qxd 13 130000ィ ィー0208ィィィコィィ 0802 ツィィ 0705ィ ィェ0609ィ 0109ィィ03ィョィー0907 ィコィョ01ィ ィャ02010502ィェィェ02ィヲ, ィェ02030205ィィ 06ィェ 06ィ 02ィエィ 02ィー. 000606ィ ィエ02, ィャ02010502ィェィェ0609ィーィケ 0902000601ィェ07 09ィーィ ィェ0609ィィィー0907 ィー02ィャ,

More information

ÐÔ 48.pmd

ÐÔ 48.pmd 13000601060506030405060002 0209040805020008010608 06 0108070806, 0002090202030406 06 050302040608 07080408060104 0908040508020005080607 010800060201080905010407 0303020801020106 チ0305080607 0701060003040506060306

More information

1307 チ チ チ01040

1307 チ チ チ01040 13000601060506030405060002 0209040805020008010608 06 0108070806 04020505060705080207 080302030408000606 07 チ03010403 05080306050806 02040902000508020102 01020507020804050600030101020102 070106000304050606030608

More information

< FCEE2F7E8EDF1EAE8E95FCAF0E8ECE8EDE0EBFCEDEEE520EDE02E2E2E>

< FCEE2F7E8EDF1EAE8E95FCAF0E8ECE8EDE0EBFCEDEEE520EDE02E2E2E> 130808ィィィャィィィェィ 05ィケィェ0602 ィェィ 09ィィ05ィィ02 070806ィーィィ09 0302ィェィエィィィェ ィィ 0102ィー02ィヲ: ィャ020301ィョィェィ 080601ィェ0402 09ィーィ ィェ01ィ 08ィー04 070806ィーィィ09060102ィヲ09ィー09ィィ07 130808ィィィャィィィェィ 05ィケィェ0602 ィェィ 09ィィ05ィィ02

More information

Accounting Report

Accounting Report 1308ィェ09ィ 08ィケ/08020908ィ 05ィケ 2001 000407ィョ09ィコ 4.1 Accounting Report RUSSIAN EDITION 0609010601ィェ04ィヲ 0106ィコィョィャ02ィェィー 0706 ィョ ツ02ィーィョ 09 0106ィ 0409ィ 06ィエ02ィヲ 070806ィャ04030502ィェィェ0609ィーィィ 08 06ィャィィィー02ィー

More information

4_2009.p65

4_2009.p65 1300030506010608 0402050506070508020102 01070008010606080401020102 010807 チ01020102 0802010208 2009 4 (57) 0906050502ィー02ィェィケ 060401ィ 02ィー0907 09 1995 00. 0004010601ィィィー 4 08ィ 04ィ 09 000601 13000209ィーィェィィィコ

More information

Îáëîæêà1.pm6

Îáëîæêà1.pm6 1308. 00. 0302ィー080609 090602010302010408080608 05 0205010200080006 020904080104 0906020508030404 13080604060909 000609080709020006 チ 030306040200 ィC 0106ィコィー0608 0002060008ィ 00ィィ ツ0209ィコィィ01 ィェィ ィョィコ,

More information

J1_1998

J1_1998 1304ィョ08ィェィ 05 090602ィィ06050600ィィィィ ィィ 090602ィィィ 05ィケィェ06ィヲ ィ ィェィー08060706050600ィィィィ. 1998. 0606ィャ I. 01 3 00. 08ィ ィヲ040208 04070505080603 080808 0003010501060105060002 00 0003010604080905010207 08050606

More information

<D1E0F3F8EAE8ED312E7670>

<D1E0F3F8EAE8ED312E7670> 13070208 621.9.048:629.78 090908 30.61 0351 04020202ィェ0402ィェィー04: ィコィ 00020108ィ ィー0201ィェ06050600ィィィィ ィャィ 03ィィィェ0609ィー080602ィェィィ07 00010607ィC00080006 (04ィ 09. ィコィ 0002010806ィヲ ィコィ ィェ01. ィー0201ィェ. ィェィ ィョィコ,

More information

KITMIR2_04.vp

KITMIR2_04.vp 13 13070208 [327+339.5](510) 090908 66.5(508ィィィー)+66.59(508ィィィー) 0845 050601020803ィ ィェィィ02 0402ィコ06ィャ02ィェ010609ィ ィェ06 ィコ 07ィョィ 05ィィィコィ 02ィィィィ 07 ツ02ィェ04ィャ 09060902ィー06ィャ 060200 040801 04020202ィェ0402ィェィー04:

More information

Мир Евразии №1(2016)

Мир Евразии №1(2016) 130102040102-080906080705080607 010205070208040506000301010407 0701060003040506060306 000604 03000408050606 01ィ ィョ ツィェ04ィヲ 03ィョ08ィェィ 05. 060401ィ 02ィー0907 09 ィャィ 07 2008 00. 0004010601ィィィー 0601ィィィェ 08ィ

More information

I. 02ィ ィエィィ02 ィィ ィー ィーィィ ツ0209ィコィィ ィ ィコ02ィィ06ィェィェィ 07 ィコ ィィ07: ィケ07ィコ06ィェ0609 (06ィー09. 08

I. 02ィ ィエィィ02 ィィ ィー ィーィィ ツ0209ィコィィ ィ ィコ02ィィ06ィェィェィ 07 ィコ ィィ07: ィケ07ィコ06ィェ0609 (06ィー09. 08 1304070505080203 0103020104080806 チ0305080203 0209020305060002 00020508020005080607 010205070208040506000301010407 0701060003040506060306 ィィィャ. 00.00. 09020002010205020008 0601050606060706 010302010408080606

More information

R03_KB9820E_EU_Compact_R5.bk

R03_KB9820E_EU_Compact_R5.bk 13COMPETENCE KB9820E 00ィェ06000600ィョィェィコ02ィィ06ィェィ 05ィケィェ04ィヲ 0909ィー08ィ ィィ09ィ 02ィャ04ィヲ 01ィョ01060906ィヲ 03ィコィ 00 010507 0708ィィ0006ィー06090502ィェィィ07 07ィィィエ02090401 07080601ィョィコィー0609 ィェィ 07ィ 08ィョ 06ィェ09ィー08ィョィコ02ィィ07

More information

BEJ pmd

BEJ pmd 130902050608ィョ0909ィコィィィヲ 05ィコ06ィェ06ィャィィ ツ0209ィコィィィヲ 03ィョ08ィェィ 05. 2016. 01 3. 05. 119ィC133. Belarusian Economic Journal. 2016 No 3. P. 119ィC133. 0506080606050606 チ0305080808 020003010808 チ0309020003 チ030508020102

More information

Est_na_perelome.pdf

Est_na_perelome.pdf 1304060909ィィィヲ09ィコィ 07 08ィコィ 0102ィャィィ07 01ィ ィョィコ 06ィェ09ィーィィィーィョィー 00ィィ0506090600ィィィィ 0605060306060808 0108 0303040309020003 08070905060704010409 0604080206000607 000609ィコ09ィ 2002 13070208 18 090908 87.8

More information

VP:CorelVentura 7.0

VP:CorelVentura 7.0 132012 0601050606060706 06050602040606 0305060305060002050108010608 ィィ 06030901060806 ィィィャ. 05.06.00ィ 09ィィ050609ィ 01020206 チ010808 010807 チ010808 0802010803040301000608 0606ィャ 2 0306090907ィエィ 02ィー0907

More information

untitled

untitled 1306ィコc0702pィィィャ02ィェィーィ 05ィケィェィ 07 ィィ ィコ05ィィィェィィ ツ02cィコィ 07 00ィ pィャィ ィコ06050600ィィ07 2008 0606ィャ 71 01 1 05. 61 ィC 69 1 71 71 71 71 7 1 71 71 71 71 71 71 71 71 71 7 0304020909030004 06050302090505020008010608

More information

Èçâ_¹4(95)_2011_ñ1.pm6

Èçâ_¹4(95)_2011_ñ1.pm6 130604090209ィーィィ07 07080107. 050208ィィ07 1 01 4 (95) 130605000305060608 07040809050508020102 01020507020804050600030101020102 070106000304050606030608 020902030506000301010407 0502000306 04070401080908

More information

2_2004_

2_2004_ 1301ィ ィョ ツィェ06-ィャ02ィー0601ィィ ツ0209ィコィィィヲ 03ィョ08ィェィ 05 01 2 (35) (ィ 07080205ィケ ィC ィィ06ィェィケ) 2004 07 チ0403020606030906: 00ィィィェィィ09ィー020809ィー0906 06ィ 08ィ 040609ィ ィェィィ07 ィィ ィェィ ィョィコィィ 04060909ィィィヲ09ィコ06ィヲ 0802010208ィ

More information

Verstka_#14.FH10

Verstka_#14.FH10 133 (14)/2004 ィ 07080205ィケ 05020108 02030902 0601020408 0507060801060108 0201020105 050802040906 06 01080203040204 1304ィョ08ィェィ 05 ー0608020902010608 ィィ 0304080002 ア - ィェ02ィコ06ィャィャ0208 ツ0209ィコ0602 ィェ02000609ィョ01ィ

More information

для типогр-часть1.p65

для типогр-часть1.p65 13030209060606 チ0305080203 000701080006 08ィェィ 05ィィィーィィィコィ 0906ィ 04ィーィィィヲ 09 0502090208ィェ06ィヲ 080008ィィィコ02 ィィ ィェィ 0905ィィ03ィェ02ィャ 000609ィー06ィコ02 030601 080201ィ ィコ02ィィ02ィヲ 050208000207 08ィョ0800ィィィェ07ィェィ 00020301ィョィェィ

More information

untitled

untitled 131 02cィェ0609ィ ィェ 09 07ィェ09ィ p02 1932 00., 0006cィコ09ィ 07 ツ080201ィィィー0205ィケ: 020202 060401ィ ィー0205ィケ09ィー0906 ー06030506-0509 ア 0801080209 080201ィ ィコ02ィィィィ: 119991, 000609ィコ09ィ, 010503-1, 0902ィェィィィェ09ィコィィィヲ

More information

13

13 13 13 1301ィ 080601ィェィ 07 ィャ0201ィィ02ィィィェィ, ィェィ ィェィ 03 090400050701 0708020109ィーィ 09050702ィー 0906ィ 06ィヲ 0106090605ィケィェ06 01ィィィェィ ィャィィ ツィェィョ06 09ィー08ィョィコィーィョ08ィョ 09 090609ィーィ 0902 ィー08ィ 01ィィ02ィィ06ィェィェ06-ィ

More information

МР153.pm6

МР153.pm6 130407040503 020902060106 チ0503 050800020508040802010203 0004-153 1 0209020603 0708080508010608 0001060008010603! 0303040302 06080503090708060800060307 0407040508 020908050806030905-0102 020501080802000506030505

More information

Untitled-1

Untitled-1 13030502ィェィ 00ィ 08ィーィ ィェ0609ィ 000201ィィィ 05ィコ06ィェ06ィャィィィコィ 04ィ 08ィョィ 0203ィェ0401 09ィー08ィ ィェ 020607ィョィエ02ィェ06 00ィィィェィィ09ィー020809ィー0906ィャ 06ィ 08ィ 040609ィ ィェィィ07 04060909ィィィヲ09ィコ06ィヲ 0802010208ィ 02ィィィィ 09 ィコィ

More information

Ò_1.PM6

Ò_1.PM6 131 132 3 20 0502ィー 070609ィー09060902ィー09ィコ06ィヲ 04060909ィィィィ: ィコ08ィィ04ィィ09ィェ0402 07090502ィェィィ07 ィィ ィャ0201ィ ィェィィ04ィャ04 ィャ06010208ィェィィ04ィ 02ィィィィ 00ィ ィー0208ィィィ 0504 XIV 00090208060909ィィィヲ09ィコ06ィヲ ィェィ ィョ ツィェ06-0708ィ

More information

soderzhanie-05.indd

soderzhanie-05.indd 1303040300030508 チ010407 040704010809 0907020204030506000301010207 09060603040806070404 06 020902030506000301010207 0004050906 060401ィ 02ィー0907 09 07ィェ09ィ 0807 1925 00. 01 5 (1057) 00ィ ィヲ, 2013 00. 03000103010607

More information

КАФЕДРА ТЕОРИИ ВЕРОЯТНОСТЕЙ

КАФЕДРА  ТЕОРИИ ВЕРОЯТНОСТЕЙ 1308080803020408 060302040606 000304020806010205060307 (2005 2009) 13050601020803ィ ィェィィ02 1 030802070601ィ 09ィ ィー0205ィィ ィィ 0906ィー08ィョ01ィェィィィコィィ 2 07 ツ02ィ ィェ06-070201ィ 000600ィィ ツ0209ィコィ 07 010207ィー0205ィケィェ0609ィーィケ

More information

-15_Kam

-15_Kam 13060505090302020008010608 06 04080504080902060806, 00010301010603 06080803080604 000608ィー06ィェ 06. 08ィ ィャィケ02ィェ, 0105ィェ09ィィ 09. 0109ィ 0802 050604070806070408 0404010808 06 060101020008000606: 0209050204

More information

Untitled-2

Untitled-2 130205080205080808 010204020205080808 050608010608 070104 01080607040806050602 050202020106 チ0305080607 07050307 020508020508020102 0701060304050606030608 03. 08. 0207010803 0203040308010605060403 0408050603010608

More information

チ ィィ 09ィー08ィ ィェ ィィ ィー0907 ィ ィ ィーィェ04ィャ 05ィィ

チ ィィ 09ィー08ィ ィェ ィィ ィー0907 ィ ィ ィーィェ04ィャ 05ィィ 1306080201020006 チ0305080607 040704010809 000106 01 2 2004 197 040605ィケ 0804ィェ06 ツィェ0401 ィィィェ09ィーィィィーィョィー0609 09 0708060202090902 ィィィェィー020008ィ 02ィィィィ 04060909ィィィィ 09 ィャィィ080609ィョ06 05ィコ06ィェ06ィャィィィコィョ

More information

MP-14.pmd

MP-14.pmd 132 00ィィ08 07020802090601ィ 01 1 (15) Union des traducteurs de Russie (UTR) Translators Union of Russia (UTR) 05060604 07020802090601 ツィィィコ0609 04060909ィィィィ (050304) 07 ツ0802030102ィェ 09 1991 000601ィョ チ0502ィェ

More information

ィ ィコ02ィィ02ィヲ ィャィィ ィ ィェ0609ィェ ィケ ィコ06ィヲ, ィ 09ィ ィー ィィ N 19, 00.02ィャ09ィコ;

ィ ィコ02ィィ02ィヲ ィャィィ ィ ィェ0609ィェ ィケ ィコ06ィヲ, ィ 09ィ ィー ィィ N 19, 00.02ィャ09ィコ; 1305020902060808 0404090808 00 ー05030606 ア 06ィェィー0208ィェ02ィー-ィー0201ィェ06050600ィィィィ 09 09080201ィェ02ィヲ 03ィコ060502 (0308ィ ィコィーィィ ツ0209ィコ0602 08ィョィコ0609060109ィー0906) 0306 ィャィ ィー0208ィィィ 05ィ ィャ ィコ06ィェィコィョ0809ィ

More information

028265rs.p65

028265rs.p65 13WS 431 TX Cィーィィ08ィ 05ィケィェィ 07 ィャィ 03ィィィェィ 04ィョィコ0609060109ィー0906 0706 ィョ09ィーィ ィェ0609ィコ02 ィィ 05ィコ090705ィョィ ィーィ 02ィィィィ Washing machine Instructions for installation and use 040501ィェ000709ィヲ07 090705 ツィエィェ

More information

OKO-LAVAMAT_88840_advanced.bk

OKO-LAVAMAT_88840_advanced.bk 1300KO-LAVAMAT 88840 update 06ィコ06050600ィィ ツィェィ 07 09ィーィィ08ィ 05ィケィェィ 07 ィャィ 03ィィィェィ -ィ 09ィー06ィャィ ィー 06ィェ09ィー08ィョィコ02ィィ07 0706 ィョ09ィーィ ィェ0609ィコ02 ィィ 05ィコ090705ィョィ ィーィ 02ィィィィ 131 0709ィ 03ィ 02ィャィ 07 0706ィコィョ07ィ

More information

Vest_2_2006.pmd

Vest_2_2006.pmd 13000209ィーィェィィィコ 020002 040801. 2006. 01 2 06.01.0604020808020008 08ィャ0208ィィィコィ ィェ09ィコィィ02 ィィ09090502010609ィ ィェィィ07 02ィ 05ィケィェ020006 000609ィー06ィコィ 04060909ィィィィ 04ィ 0909ィャィ ィー08ィィ09ィ 06ィー0907 0609ィェ0609ィェ0402

More information

<443A5C4F6C65675CC8C8CCCA5CD1DAC5C7C4DB5CF1FAE5E7E42DD0F3F1F1E05CCCE0F2E5F0E8E0EBFB20D1FAE5E7E4E05C56656E C546F6D312E7670>

<443A5C4F6C65675CC8C8CCCA5CD1DAC5C7C4DB5CF1FAE5E7E42DD0F3F1F1E05CCCE0F2E5F0E8E0EBFB20D1FAE5E7E4E05C56656E C546F6D312E7670> 1304060909ィィィヲ09ィコィ 07 ィ ィコィ 0102ィャィィ07 ィェィ ィョィコ 06ィェ09ィーィィィーィョィー ィィ09ィー0608ィィィィ ィャィ ィー0208ィィィ 05ィケィェ06ィヲ ィコィョ05ィケィーィョ0804 0604070204 III (XIX) 0005030402050506070508020102 080409030209020106 チ030508020102

More information

Ãëÿíåö.pm6

Ãëÿíåö.pm6 1300. 07. 01ィョ010609ィ 06. 02. 04ィ ィコィィ070609ィ 0402ィェ09ィコィィ02 000507ィェ0202090402 03ィョ08ィェィ 0504: 010806ィェ06ィー0607 090606ィ 08ィ 03ィ 02ィャ06ィヲ 070609090201ィェ0209ィェ0609ィーィィ 0006ィェ060008ィ 00ィィ07 03ィコィ ィー0208ィィィェィ

More information

R03_LAVALOGIC_1820_LCD_5kg_BT_db.bk

R03_LAVALOGIC_1820_LCD_5kg_BT_db.bk 13LAVAMAT LAVALOGIC 1820 Cィーィィ08ィ 05ィケィェィ 07 ィャィ 03ィィィェィ -ィ 09ィー06ィャィ ィー 06ィェ09ィー08ィョィコ02ィィ07 0706 ィョ09ィーィ ィェ0609ィコ02 ィィ 05ィコ090705ィョィ ィーィ 02ィィィィ 130709ィ 03ィ 02ィャィ 07 0706ィコィョ07ィ ィー0205ィケィェィィ02ィ, ィョ09ィ

More information

Женские глянцевые журналы: хронотоп воображаемой повседневности

Женские глянцевые журналы: хронотоп воображаемой повседневности 1300. 07. 01ィョ010609ィ 06. 02. 04ィ ィコィィ070609ィ 0402ィェ09ィコィィ02 000507ィェ0202090402 03ィョ08ィェィ 0504: 010806ィェ06ィー0607 090606ィ 08ィ 03ィ 02ィャ06ィヲ 070609090201ィェ0209ィェ0609ィーィィ 0006ィェ060008ィ 00ィィ07 03ィコィ ィー0208ィィィェィ

More information

13000601060506030405060002 0209040805020008010608 06 0108070806 04020505060705080207 080302030408000606 00020901020104080205080607 010205070208040506000301010407 0701060003040506060306 0002ィェィー08 080200ィィ06ィェィ

More information

ÐÔ pmd

ÐÔ pmd 13000601060506030405060002 0209040805020008010608 06 0108070806 07080408060104 0908040508020005080607 010800060201080905010407 0303020801020106 チ0305080607 0701060003040506060306 0600030106 01.05.050802000204020204

More information

Китай - надвигается война?

Китай - надвигается война? 1308.05. 08ィョィャィィィェ0609 08ィィィーィ ィヲ ィC ィェィ 0109ィィ00ィ 02ィー0907 0906ィヲィェィ? 05ィ ィェィコィー-0302ィー0208ィ ィョ0800 1000803 2005 1 13070208 94(470) 090908 63.2(2) 08 908 08 908 08.05. 08ィョィャィィィェ0609 08ィィィーィ ィヲ ィC ィェィ

More information

R03_OKO-LAVAMAT_LAVALOGIC_1810_LCD.bk

R03_OKO-LAVAMAT_LAVALOGIC_1810_LCD.bk 13LAVAMAT LAVALOGIC 1810 Cィーィィ08ィ 05ィケィェィ 07 ィャィ 03ィィィェィ -ィ 09ィー06ィャィ ィー 06ィェ09ィー08ィョィコ02ィィ07 0706 ィョ09ィーィ ィェ0609ィコ02 ィィ 05ィコ090705ィョィ ィーィ 02ィィィィ 130709ィ 03ィ 02ィャィ 07 0706ィコィョ07ィ ィー0205ィケィェィィ02ィ, ィョ09ィ

More information

Untitled-30

Untitled-30 0502ィコ02ィィ07 VI 060506020406 チ0305080607 0603080506060905 06 060408020600060201010407 080205060700 01080402020200 03000408050606 VI.1. 060408020600060201010407 080205060700 03000408050606 04ィョィコ06090601ィィィー0205ィケ

More information

ィィ 0108ィョ00ィィ01 ィョ ツ02ィ ィェィィィコ0609, 08ィ 0408ィ ィ 06ィーィ ィェィェ0401 ィコ06ィャ07ィ ィェィィ02ィヲ 00ィ ィヲィコ ィー: 07 ツ02ィ ィェ ィコィー04 09 ィ

ィィ 0108ィョ00ィィ01 ィョ ツ02ィ ィェィィィコ0609, 08ィ 0408ィ ィ 06ィーィ ィェィェ0401 ィコ06ィャ07ィ ィェィィ02ィヲ 00ィ ィヲィコ ィー: 07 ツ02ィ ィェ ィコィー04 09 ィ 130206080600ィィ02 ィョ ツ02ィェィィィコィィ! 06ィー06 ィョ ツ02ィ ィェ0602 07060906ィ ィィ02 08ィ 0408ィ ィ 06ィーィ ィェ06 090902ィャィィ08ィェ06 ィィ04090209ィーィェ06ィヲ ィコ0608070608ィ 02ィィ02ィヲ 00ィ ィヲィコ0806090600ィー, ィャィィ08060904ィャ 05ィィ01020806ィャ

More information

World Bank Document

World Bank Document 13Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized 38520 0304030206050902000603 1 07030408000903010603 00 000405010307 0108020903 132

More information

untitled

untitled 306006030400306-00080603000806060808 2007 05ィ 0608ィェィィィコ 08ィ ィ 06ィー ィョ ツィ 09ィーィェィィィコ0609 ィコ06ィェィコィョ0809ィ ィェィ ィョ ツィェ040 07080602ィコィー0609 0706 ィィィェ000608ィャィ 02ィィ06ィェィェ06ィャィョ 0706ィィ09ィコィョ 03ィコィ ィー0208ィィィェィ

More information

Fungi4.p65

Fungi4.p65 130109080008 4 0006080206020805060104, 00060802060208050608020504 06 02060408000903010608 01040609080006 13122 0709070201ィィ ィャ0201ィィ02ィィィェ09ィコ06ィヲ ィャィィィコ06050600ィィィィ 080806070809050102050605 060507 チ03010608

More information

1306ィェ000608ィャィ 02ィィ06ィェィェ0402 ィィ ィー020502ィコ06ィャィャィョィェィィィコィ 02ィィ06ィェィェ0402 ィー0201ィェ ィィィィ 5 PLUS チ PLUS ィョ0502ィヲ

1306ィェ000608ィャィ 02ィィ06ィェィェ0402 ィィ ィー020502ィコ06ィャィャィョィェィィィコィ 02ィィ06ィェィェ0402 ィー0201ィェ ィィィィ 5 PLUS チ PLUS ィョ0502ィヲ 130603090106 チ0305080603 0108070806PLUSPLUS 4 06ィェ000608ィャィ 02ィィ06ィェィェ0402 ィィ ィー020502ィコ06ィャィャィョィェィィィコィ 02ィィ06ィェィェ0402 ィー0201ィェ06050600ィィィィ 050601020803ィ ィェィィ02 06ィェ000608ィャィ 02ィィ06ィェィェ0402 09ィィ09ィー02ィャ04

More information

チ :

チ : 1300ィィィェィィ09ィー020809ィー0906 ィコィョ05ィケィーィョ0804 04060909ィィィヲ09ィコ06ィヲ 0802010208ィ 02ィィィィ 0802010208ィ 05ィケィェ0602 000609ィョ01ィ 0809ィー0902ィェィェ0602 ィ 06010302ィーィェ0602 06ィ 08ィ 040609ィ ィー0205ィケィェ0602 ィョ ツ0802030102ィェィィ02

More information

untitled

untitled 13 130006010607ィケ07ィェ0609ィ 01ィ ィーィ 05ィィ07 03090002ィェィケ0209ィェィ 05ィーィ 08 ツ02ィェィコ0609ィ 030502ィェィ 05ィーィ ィェィィ0905ィ 090609ィェィ 05ィィィェ010806ィャ 0904000608ィ ィェィィ07: 01ィィィ 00ィェ0609ィーィィィコィ ィィ 07080600ィィ05ィ ィコィーィィィコィ

More information

Симпозиум-2007-пробный p65

Симпозиум-2007-пробный p65 130209020305060002 000205060208020003020200 040205050606 080805080105080203 020602030903010603 0402050506070508020102 060506020406 チ030508020102 0209020305060008 0601050606060706 060806080405080207 060100060809020303020606

More information

untitled

untitled 1304020505060705080808 0808080203000608 01080708 01ィ ィョ ツィェ04ィヲ 05060902ィー 040801 0706 070806ィ 0502ィャィ ィャ ィ ィィ060706090802030102ィェィィィヲ 02.09. 05ィィ05ィ 0209ィ, 03.08. 08ィ 0807ィョ01ィィィェィ, 08.06. 0906ィコ0609ィ,

More information

Microsoft Word Contents-v02

Microsoft Word Contents-v02 13070208 004.8 08.00. 0306ィェ06ィャィ 080209 0209050204 00030602020200 07 チ030608 080201060308050608 00 0506050603000809 080209090809020408060600010207 08060905060408000606 0306ィェ06ィャィ 080209 08.00. 02ィ 040608

More information

GIS_Nov_Kar

GIS_Nov_Kar 1309.00. 010609ィィィコ0609ィ, 06.00. 08ィ 0807ィコィィィェ 0002ィー0601ィィ ツ0209ィコ0602 08ィョィコ0609060109ィー0906 0706 09ィ 0608ィョ 07060502090401 01ィ ィェィェ0401, ィィ01 09090601ィョ 09 ィ ィ 0404 01ィ ィェィェ0401, 0708020109ィ 08ィィィー0205ィケィェ06ィヲ

More information

№ 1 (13) 2002

№ 1 (13) 2002 130802010208ィ 05ィケィェ0602 000609ィョ01ィ 0809ィー0902ィェィェ0602 ィコィ 0402ィェィェ0602 06ィ 08ィ 040609ィ ィー0205ィケィェ0602 ィョ ツ0802030102ィェィィ02 09040903020006 07080600020909ィィ06ィェィ 05ィケィェ060006 06ィ 08ィ 040609ィ ィェィィ07 0005ィ

More information

katalog.p65

katalog.p65 1305020203040408010603 050601020803ィ ィェィィ02 010102 ィィ ィコィ ィコ 06000608ィャィィィーィケ 04ィ ィコィ 04...2 0609ィー0608ィィ07 0309ィェ000205ィケ09ィコ060006 0109ィィ0302ィェィィ07 09 030908ィ 04ィィィィ 1.1...3 0609ィー0608ィィ07 0309ィェ000205ィケ09ィコ060006

More information

Оглавление.pmd

Оглавление.pmd 1306.03. 01060802ィェィコ0609 0209ィェ060904 ィ 09ィー06ィャィ ィーィィ04ィィ080609ィ ィェィェ060006 07080602ィコィーィィ080609ィ ィェィィ07 060401ィ ィェィィ02 ツ02ィー090208ィー0602, 0702080208ィ ィ 06ィーィ ィェィェ0602 ィィ 0106070605ィェ02ィェィェ0602 0402ィコ06ィャ02ィェ010609ィ

More information

772_a.p65

772_a.p65 13000501050506030405060002 020500050606 05 0108070806 07080408040106 ISSN 0453-8048 000505010608 090804080500050508020102 01080005020108090501020102 070105000304050606030607 06ィャ. 00.01. 08ィ 08ィ 0406ィェィ

More information

13

13 13 13 1301 0302090201020408050003020808 06 C04040503000808 09080508 070208 553.5/9.042+347.249+333.8+330.191.4(471+571) 030806ィ 0502ィャ04 08ィ 0409ィィィーィィ07 ィィ 0609090602ィェィィ07 090408ィケ020906ィヲ ィ ィ 0404

More information

untitled

untitled 0801060106 0204020108 03080703030408 0108 04070505080200 0805040803: 000805 ツィョィエィィ02 090600ィ 03 0004ィ 0301ィョィエィィ02 090600ィ 03 00000205ィィ ツィィ02 090600ィ 09 0708060706090201ィィ03 00 チ02ィャィョ 08ィ 01ィョ02ィー0907

More information

Libretto_New_RS

Libretto_New_RS 1304ィョィコ0609060109ィー0906 0706 05ィコ07ィョィ ィーィ 02ィィィィ 05060604080905010808 000801060108 CIS 04070505080607, 1 RO Rom09n00,13 SB 050403050806,25 050601020803ィ ィェィィ02 0709ィーィ ィェ0609ィコィ, 2-3 04ィ 0907ィ ィコ0609ィコィ

More information

TIT.p65

TIT.p65 1304060909ィィィヲ09ィコィ 07 ィ ィコィ 0102ィャィィ07 ィェィ ィョィコ 05ィィィ ィィ0809ィコ0602 06ィー01020502ィェィィ02 010700080106060804010403 0108070806 00 050609060406 01 2, 2010 00. 05020203040408010603 08 65-0903060607 030209030204

More information

059_1

059_1 13 13Cloe Madanes STRATEGIC FAMILY THERAPY Jossey-Bass Publishers San Francisso 130805ィョ 00ィ 01ィ ィェ0209 0506040806030106 チ0305080808 0503000307010808 06030408030608 03020802090601 09 ィ ィェ0005ィィィヲ09ィコ060006

More information

/ ィ ィェィコィー-0302ィー0208ィ ィョ ィィィー0208ィ ィーィョ08ィェ06-07ィョィ 05ィ

/ ィ ィェィコィー-0302ィー0208ィ ィョ ィィィー0208ィ ィーィョ08ィェ06-07ィョィ 05ィ 13 13050006010300 0508060704010608010008 01 2 / 050209010003 06 0506080905 01 418 05ィ ィェィコィー-0302ィー0208ィ ィョ0800 2002 00. 09ィィィー0208ィ ィーィョ08ィェ06-07ィョィ 05ィィ02ィィ09ィーィィ ツ0209ィコィィィヲ ィィ05050609ィー08ィィ080609ィ

More information

Êîé Áýàôóò. Ðåâîëþöèÿ Quixtar.pmd

Êîé Áýàôóò. Ðåâîëþöèÿ Quixtar.pmd 13COY BAREFOOT THE QUIXTAR REVOLUTION DISCOVER THE NEW HIGH-TECH, HIGH-TOUCH WORLD OF MARKETING 1 132 09060909060206030808 MLM 13080207 090608080706 040300020907000608 QUIXTAR 0102000403 000405020802060309010209020106

More information

Overshoot (R) (Lat 16 Jan).qxd

Overshoot (R) (Lat 16 Jan).qxd 130802010300 0603090102070602030606 13OVERSHOOT The Ecological Basis of Revolutionary Change carrying capacity: cornucopian myth: drawdown: cargoism: overshoot: crash: maximum permanently supportable load.

More information

Mova_12.p65

Mova_12.p65 13000501050506030405060002 020500050606 05 0108070806 07080408040106 02010209ィケィコィィィヲ ィェィ 020606ィェィ 05ィケィェィィィヲ ィョィェ0609020809ィィィー02ィー 06ィャ. 05. 05. 0002 ツィェィィィコ0609ィ 00020008 01ィ ィョィコ060906-ィー02060802ィーィィ

More information

Microsoft Word - Муравьев.doc

Microsoft Word - Муравьев.doc 132011 06080201020006 チ0305080607 040704010809 000106 237 02 08060909ィィィヲ09ィコ06ィヲ 05ィコ06ィェ06ィャィィ ツ0209ィコ06ィヲ ィェィ ィョィコ02 09ィコ090604ィケ 0708ィィ04ィャィョ 07ィョィ 05ィィィコィ 02ィィィヲ 08060909ィィィヲ09ィコィィ01 ィョ ツ02ィェ0401

More information

1304ィ ィ 06ィーィ ィェ02ィェィ ツ ィェィィィィ ィィィヲ09ィコ06ィヲ 08ィコィ 0102ィャィィィィ 01ィ ィョィコ 08ィィ04ィィィコ06-ィー0201ィェィィ ツ0209ィコ06ィャ ィィィェ09ィーィィィ

1304ィ ィ 06ィーィ ィェ02ィェィ ツ ィェィィィィ ィィィヲ09ィコ06ィヲ 08ィコィ 0102ィャィィィィ 01ィ ィョィコ 08ィィ04ィィィコ06-ィー0201ィェィィ ツ0209ィコ06ィャ ィィィェ09ィーィィィ 1301ィ 0708ィ 09ィ 01 08ィョィコ0607ィィ09ィィ 05ィ 090205ィケ0209 080502ィコ09ィ ィェ0108 01ィィィコ0605ィ 0209ィィ ツ 0006010205ィィ080609ィ ィェィィ02 08ィ 0907080609ィー08ィ ィェ02ィェィィ07 09040906ィコ06 ツィ 09ィー06ィーィェ0401 090605ィェ 09 0705ィ 04ィャ02

More information

№4--(2012).vp

№4--(2012).vp 13000601060506030405060002 0209040805020008010608 06 0108070806 0408 00030402070108040202010808 08050502000608000608 050604020606030905010409 0007050200 0605000305060608 000405010609 07 チ0309010409 050800030203010607

More information

hydra main.pm6

hydra main.pm6 1305ィェィ ィコ06ィャィィィャ0907 09 08ィ 04ィェ0606ィ 08ィ 04ィィ02ィャ 03ィィ0906ィーィェ060006 ィャィィ08ィ 05ィコ0605ィケィコ06 ィェィ 0502ィャ0502 03ィィ0906ィーィェ0401? 080605ィィ ツ0209ィー0902ィェィェ06 060202ィェィィィーィケ 05ィー06 08ィ 04ィェ0606ィ 08ィ 04ィィ02

More information

part-2_glava-4_ p65

part-2_glava-4_ p65 130105ィ 09ィ 4. 05060401ィ ィェィィ02 ィィ 08ィ 0409ィィィーィィ02 ィー020608ィィィィ ィィィェ000608ィャィ 02ィィィィ 289 ィェィィィコィ 000608ィャィィ08ィョ06ィー0907 ィェ06ィャ0208ィ ィコィ 030106ィヲ ィィ04 00 ィーィィ0706090401 0706090502010609ィ ィー0205ィケィェ0609ィー02ィヲ,

More information

25_rozdil.indd

25_rozdil.indd 1325 05ィーィ ィ ィィ05ィケィェィ 07 09ィー02ィェ06ィコィ 0801ィィ07 Satya Reddy Atmakuri, MD, Michael H. Gollob, MD ァレ Neal S. Kleiman, MD 0000030203010603 00 21 0902ィコ02 08ィ 0907080609ィー08ィ ィェ02ィェィェ0609ィーィケ ィィ0302ィャィィ ツ0209ィコ06ィヲ

More information

NOR4.QXD

NOR4.QXD 3080800080805C080203 050205030205060002: 060704000608 06 070400407 080800080805 03080209ィ ィェ 06ィェ09ィーィィィーィョィー 08ィ 09ィコィ 04ィ 2008 3070208 327 090908 66.4 08 26 080800080805C080203 050205030205060002: 060704000608

More information

3 A3 10

3 A3  10 03ィョ08ィェィ 05 0902ィー0208ィィィェィ 08ィィ07 ィィ ィコ0608ィャ0502ィェィィ02 00040205020406 0803ィ 090202ィー, ィェ02 ィェィ 01060107 0902ィ 02 0708ィィィャ02ィェ02ィェィィ07, 09ィー0607 ツィ 07 090601ィ 00ィェィィ00ィー ィィ05ィィ ィェィ 010605060102 04ィ ィャ020804ィ

More information

RA2.qxd

RA2.qxd 1300ィィ01ィ 02ィーィケ0907 04 0906 ツィェ07 1993 08. 012 (126) 0506ィーィィィヲ 2004 0206ィャ060907 ツィェィィィヲ ィェィ ィョィコ060906-070607ィョ050708ィェィィィヲ 03ィョ08ィェィ 05 05070605ィケィェ02 09ィィ01ィ ィェィェ07 04 0106T 040305 07ィコ08ィ 07ィェィィ

More information

r-01.p65

r-01.p65 130003010604080905010808 08050608 06 080800080805 01 5(35), 2004 0003010604080905010808 08050608 06 080800080805 04ィョ08ィェィ 05 090602ィィィ 05ィケィェ06-070605ィィィーィィ ツ0209ィコィィ01 ィィ09090502010609ィ ィェィィィヲ 5(35)

More information

Kniga9.vp

Kniga9.vp 13Education in and for the Information Society UNESCO Publications for the World Summit on the Information Society Author: Cynthia Guttman 1300ィィィェィィ09ィー020809ィー0906 ィコィョ05ィケィーィョ0804 ィィ ィャィ 090906090401

More information

CH_0_RU.p65

CH_0_RU.p65 13080200030805 03060906ィ ィィ02 0706 06ィ 08ィ 040609ィ ィェィィ06 09 06ィ 05ィ 09ィーィィ 0708ィ 09 ツ0205060902ィコィ 09 ィョ ツィ 09ィーィィ02ィャ ィャ060506010203ィィ 03ィ ィー08ィィ02ィィ07 0908ィ ィェ010208 04ィョィィ 0106ィャ0209 060505ィィ 08ィィィェ

More information

033722rs.p65

033722rs.p65 13M M ARGHERITA 05ィーィィ08ィ 05ィケィェィ 07 ィャィ 03ィィィェィ 09 09ィョ03ィコ06ィヲ 06ィェ09ィー08ィョィコ02ィィィィ 0706 ィョ09ィーィ ィェ0609ィコ02 ィィ ィィ09070605ィイ040609ィ ィェィィ06 Washer-dryer Instructions for installation and use 13CIS GB 05ィーィィ08ィ

More information

ィィィェ01ィィィェ (0005ィ 09ィェ04ィヲ ィ ィコィー0608) ィ ィヲ0105

ィィィェ01ィィィェ (0005ィ 09ィェ04ィヲ ィ ィコィー0608) ィ ィヲ0105 132002 00020508020005080607 090601010006050606 チ0305080607 040704010809 0606ィャ 6 01 2 04020505060705080607 010205070208040506000301010407 010700080106060804010407 0701060003040506060306 0601050606060706

More information