Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智
|
|
|
- ひろみ わしあし
- 8 years ago
- Views:
Transcription
1 µ COMET LFV esys
2 clfv (Charged Lepton Flavor Violation) J-PARC µ COMET
3
4 ( )
5 ( )
6 ( )
7 ( ) B
8 ( ) B
9 ( ) B
10 ( ) B
11 ( ) B
12 ( ) B
13 ( ) B
14 2016 J- PARC µ KEK
15
16 3
17 3 3
18 3 3
19 3 3
20 3 3
21 3 3
22 clfv
23 clfv
24 clfv
25 clfv
26 clfv
27 clfv
28 clfv
29 clfv
30 clfv
31 clfv SM µ - e - ν µ ν e L µ ΔL µ =0 L e ΔL e =0 µ - A e - A L µ ΔL µ =-1 L e ΔL e =+1 vs µ
32 clfv SM ν µ µ - e - ν µ ν e m ixin g L µ 1 0 ν1 0 ΔL µ =0 L e e 1 ΔL e =0 µ e µ - A e - A W (m ν /m W ) 4 L µ ΔL µ =-1 L e ΔL e =+1 Very Small (10-52 ) vs µ
33 clfv GUT LFV
34 @ Planck mass scale SUSY-GUT Yukawa interaction SUSY Seesaw Model Neutrino Yukawa interaction CKM matrix LFV Neutrino oscillation L.J.Hall,V.Kostelecky,S.Raby,1986;A.Masiero, F.Borzumati, 1986
35 clfv LHC Masiero et al. JHEP03
36 LHC clvf LHC+cLFV LHC clfv LHC clfv LHC clfv TeV LHC LHC+cLFV LHC upgrade, ILC
37 clfv g-2 Hep-ph/ v2 S.Antusch et al This Experiment
38 clfv g-2 hep-ph/ v2 G.Isidori et al Hep-ph/ v2 S.Antusch et al δ 12 LL = 10 4 and δ 23 LL = GeV M~ 600 GeV This Experiment 200 GeV M GeV 500 GeV µ 1000 GeV 10 tan β 50 A U = 1 TeV M q = 1.5 TeV. and the GUT relations The red areas correspond to points within the funnel region which satisfy the B- physics constraints listed
39 clfv g-2 ~10 hep-ph/ v2 G.Isidori et al Hep-ph/ v2 S.Antusch et al δ 12 LL = 10 4 and δ 23 LL = GeV M~ 600 GeV Current Bound This Experiment This Experiment 200 GeV M GeV 500 GeV µ 1000 GeV 10 tan β 50 A U = 1 TeV M q = 1.5 TeV. and the GUT relations The red areas correspond to points within the funnel region which satisfy the B- physics constraints listed 0.002
40 Muon clfv MEGA SINDRUM II MEG Los Alamos µ eγ PSI µ-e conversion PSI µ eγ RUNNING! µ (28MeV/c) ( )µ ( 52MeV/c) µ 28MeV/c 4 x 10 7 s -1 ~10 7 s -1 3 x 10 7 s PRD 65, EPJ C (2006) (Au )7 x NP B834 (2010) x 10-11
41 µ eγ µ-e conversion
42 µ eγ µ-e conversion µ eγ µ-e conv
43 µ eγ µ-e conversion µ eγ µ-e conv µ eγ µ-e conv Loop vs Tree LHC
44 µ eγ µ-e conversion µ eγ µ-e conv µ eγ µ-e conv Loop vs Tree LHC
45 µ eγ µ-e conversion Z Z µ eγ µ-e conv µ eγ µ-e conv Loop vs Tree LHC
46 µ-e conversion µ eγ µ eγ µ eγ µ-e conversion
47 µ-e conversion µ eγ µ eγ µ eγ µ-e conversion ν µ ν e? γ
48 µ-e conversion µ eγ µ eγ µ eγ µ-e conversion µ-e conversion µ
49 µ 1s Neutrino-less muon nuclear capture (=µ-e conversion) µ - + (A, Z) e - + (A,Z) µ muon decay in orbit µ e ν ν nuclear muon capture µ + ( A, Z) ν µ + ( A, Z 1) B(µ - N e - N) = Γ (µ - N e - N ) Γ ( µ - N ν N ' )
50 µ E µe ~ m µ -B µ m µ : µ B µ : 1s R.Kitano, M.Koike, Y.Okada P.R. D66, (2002)
51 FNAL FNAL Mu2e Experiment CD-0 Tevatron Accumulator Ring Debuncher Ring C. Bhat and M. Syphers Mu2e Acc WG meeting Mar 9,
52 COMET J-PARC E21
53 COMET J-PARC p π µ 8GeV, ~7µA 56kW µ π µ J-PARC PAC J-PARC PAC -1 µ /
54 π π - +(A,Z) (A,Z-1)* γ + (A,Z-1) γ e + e -
55 π π - +(A,Z) (A,Z-1)* γ + (A,Z-1) γ e + e - π µν µ-e conv 0.88µs µ
56 π π - +(A,Z) (A,Z-1)* γ + (A,Z-1) γ e + e -
57 π π - +(A,Z) (A,Z-1)* γ + (A,Z-1) γ e + e -
58 µ 100nsec, ~1µsec - 8GeV µs (584ns x 2) ns 0.7 second beam spill 1.5 second accelerator cycle N bg = NP x R ext x R π-stop/p x A π x P RPC x P γ-e x A NP : total # of protons (~10 21 ) R ext : Extinction Ratio (10-9 ) R π-stop/p : π stop yield per proton (3.5 x 10-7 ) R RPC : Probability of γ from π (0.2) P γ-e : Probability of e from γ A : detector acceptance 1.4x10-5 BR=10-16, N bg ~ 0.1 Extinction < 10-9
59 COMET RCS: h=2 1 MR:h=8(9) 4(3) RF ON 8GeV 1.6 x ppb, 7µA, 56kW Linac RCS
60 COMET RCS: h=2 1 MR:h=8(9) 4(3) RF ON 8GeV 1.6 x ppb, 7µA, 56kW Linac RCS
61 COMET RCS: h=2 1 MR:h=8(9) 4(3) RF ON 8GeV 1.6 x ppb, 7µA, 56kW Linac RCS
62 π π µ π Mars and PHITS
63 µ π µ µ Guide π s until decay to µ s Suppress high-p particles µ s : p µ < 75 MeV/c e s : pe < 100 MeV/c Beam Blocker See Classical Electrodynamics, J.D.Jackson Ch.12-Sec.4 Beam collimator
64 µ π µ µ Guide π s until decay to µ s Suppress high-p particles µ s : p µ < 75 MeV/c e s : pe < 100 MeV/c Beam Blocker See Classical Electrodynamics, J.D.Jackson Ch.12-Sec.4 Beam collimator
65 COMET ~100MeV µ µ
66 60-MeV/c DIO electrons µ : τ µ - = 0.88 µs 66 µ rejection ~10-6 : < 10kHz 20% 105-MeV/c µ-e electron
67 JPNC
68 2x10 7 sec Single event sensitivity N µ µ µ 2.0x10 18 fcap, µ 0.6 Ae total protons muon yield per proton muon stopping efficiency 8.5x # of stopped muons 2.0x10 18 Single event sensitivity 90% C.L. upper limit 2.6 x x 10-17
69 2x10 7 sec Background Events Comments Radiative Pion Capture 0.05 Beam Electrons <0.1 MC stat limited Muon Decay in Flight < Pion Decay in Flight < Neutron Induced For high E n Delayed-Pion Radiative Capture Anti-proton Induced For 8 GeV p Muon Decay in Orbit 0.15 Radiative Muon Capture <0.001 Muon Capture with n Emission <0.001 Muon Capture with Charged Part. Emission <0.001 Cosmic-Ray Muons Electrons from Cosmic-Ray Muons Total 0.34
70 2x10 7 sec Background Events Comments Radiative Pion Capture 0.05 Beam Electrons <0.1 MC stat limited Muon Decay in Flight < Pion Decay in Flight < Neutron Induced For high E n Delayed-Pion Radiative Capture Anti-proton Induced For 8 GeV p Muon Decay in Orbit 0.15 Radiative Muon Capture <0.001 Muon Capture with n Emission <0.001 Muon Capture with Charged Part. Emission <0.001 Cosmic-Ray Muons Electrons from Cosmic-Ray Muons Total 0.34 < 10-9
71
72 π W
73 CDR TDR π µ
74 2016 J-PARC µ KEK J-PARC clfv COMET KEK
cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq
2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge
W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge
22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................
加速器の基本概念 V : 高周波加速の基礎
.... V : KEK [email protected] http://research.kek.jp/people/takata/home.html 2015 2015 4 16 1 2 (1) 3 (2) 4 5 6 ERL: Energy Recovery Linac LCLS: Linac Coherent Light Source LC : µ-µ Koji Takata (KEK)
目次 T2K 実験 ニュートリノ振動解析 外挿 ( 前置検出器 後置検出器 ) の 手法 Toy MCによるデモンストレーション まとめ 2
T2K 実験における新しい外挿法に よるニュートリノフラックス予測 日本物理理学会第 67 回年年次 大会 ( 関 西学院 大学 西宮上ケ原キャンパス ) 京 大理理, 高エ研 A 村上明, 市川温 子, 久保 一, 坂下健 A, 鈴鈴 木研 人, 中平武 A, 中家剛, 丸 山和純 A, 他 T2K Collaboration 1 目次 T2K 実験 ニュートリノ振動解析 外挿 ( 前置検出器 後置検出器
LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ
8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................
pptx
Based on N. Nagata, S. Shirai, JHEP 1403 (2014) 049. Ø Ø Y. Okada, M. Yamaguchi, T. Yanagida (1991), H. E. Haber, R. Hempfling (1991) J. R. Ellis, G. Ridolfi, F. Zwirner (1991) Scalar Par cles Gravi no
(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a
1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0
1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (
August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................
Strangeness spin in the proton studied with neutrino scattering
研究会 2008年4月7 8日 理研 Neutrino Scattering Experiment, Tokyo Tech Proton Spin Problem and Δs SU(3) flavor symmetry Nucleon Form Factors Neutrino Scattering and Δs E734, MiniBooNE, SciBooNE Model calculation
[pb/gev] T d / dp Data/Theory 6 5.5 0.5 0 0 00 00 00 500 600 p [GeV] T anti-k jets, R=0.6, y jet L dt=7 nb ( s=7 TeV) Systematic Uncertainties.8 NLO-pQCD (CTEQ 6.6)+ Non pert. corr. 0 00 00 00 500 600
Electron Ion Collider と ILC-N 宮地義之 山形大学
Electron Ion Collider と ILC-N 宮地義之 山形大学 ILC-N ILC-N Ee Ee == 250, 250, 500 500 GeV GeV Fixed Fixed target: target: p, p, d, d, A A 33-34 cm-2 LL ~~ 10 1033-34 cm-2 ss-1-1 s s == 22, 22, 32 32 GeV GeV
25 3 4
25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W
Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE
21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................
PowerPoint Presentation
KEK I. II. a. BESS b. c. d. III. BESS-Polar IV. Introduction D p GeV (
Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad
SuperKEKB EMITTANCE GROWTH BY MISALIGNMENTS AND JITTERS IN SUPERKEKB INJECTOR LINAC Y. Seimiya, M. Satoh, T. Suwada, T. Higo, Y. Enomoto, F. Miyahara, K. Furukawa High Energy Accelerator Research Organization
Mott散乱によるParity対称性の破れを検証
Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ
q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices
Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple
LEPS
LEPS2 2016 2 17 LEPS2 SPring-8 γ 3 GeV γ 10 Mcps LEPS2 7 120 LEPS Λ(1405) LEPS2 LEPS2 Silicon Strip Detector (SSD) SSD 100 µm 512 ch 6 cm 3 x y 2 SSD 6 3072 ch APV25-s1 APVDAQ VME APV25-s1 SSD 128 ch
Slide 1
LHC-ATLAS 実験におけるタウレプトン対 に崩壊するヒッグス粒子の探索 中村浩二, 塙慶太 A, 田中純一, 増渕達也, 山村大樹東大素セ, 筑波大数理 A 2011 年 9 月 16 日日本物理学会 @ 弘前大 1 ヒッグス探索とタウチャンネル 直接探索では mh
positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100
positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc
03J_sources.key
Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E
CMB and DM (Cosmic Microwave Background and Dark Matter) ~ ~
2003 2003 62 CMB and DM (Cosmic Microwave Background and Dark Matter) ~ ~ -PIC PIC CMB DM http://www-cr.scphys.kyotou.ac.jp cr.scphys.kyotou.ac.jp/ member/miuchi/education/lecture/2003_1st/ up up 5 223
Kaluza-Klein(KK) SO(11) KK 1 2 1
Maskawa Institute, Kyoto Sangyo University Naoki Yamatsu 2016 4 12 ( ) @ Kaluza-Klein(KK) SO(11) KK 1 2 1 1. 2. 3. 4. 2 1. 標準理論 物質場 ( フェルミオン ) スカラー ゲージ場 クォーク ヒッグス u d s b ν c レプトン ν t ν e μ τ e μ τ e h
Muon Muon Muon lif
2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................
Microsoft Word - 4NMR2.doc
4 NMR 4.1 Zeeman 1, 13 C, 19 F, 31 P NMR 1 13 C 1/2 4.1 7%&'- 89:;'
42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =
3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u
余剰次元のモデルとLHC
余剰次元のモデルと LHC 松本重貴 ( 東北大学 ) 1.TeraScale の物理と余剰次元のモデル.LHC における ( 各 ) 余剰次元モデル の典型的なシグナルについて TeraScale の物理と余剰次元のモデル Standard Model ほとんどの実験結果を説明可能な模型 でも問題点もある ( Hierarchy problem, neutrino mass, CKM matrix,
2 内容 大気ニュートリノ スーパーカミオカンデ ニュートリノ振動の発見 検証 今後のニュートリノ振動の課題
1 SK-I 大気ニュートリノにおける ニュートリノ振動の発見 石塚正基 ( 東京工業大学 ) 2016 年 2 月 20 日 第 29 回宇宙ニュートリノ研究会 東京大学宇宙線研究所 2 内容 大気ニュートリノ スーパーカミオカンデ ニュートリノ振動の発見 検証 今後のニュートリノ振動の課題 3 大気ニュートリノ 大気ニュートリノ生成 From SK website p π µ + ν µ e +
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35
7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±
7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α
kyoto1208-flavor-okada.pptx
1 Super B 岡田安弘 (KEK/ 総合研究大学院大学 ) 2012 年 8 月 27 日 -29 日京都大学 将来計画検討小委員会 ICEPP 東大 2009 年 11 月 7 日とそのアップダート 2 これからの B ファクトリーが目指すもの TeV 領域の新しい素粒子像の解明に フレーバー物理の側面から寄与すること 3 TeV TeV の物理 = 電弱対称性の破れの背後にある物理を解明する
EGunGPU
Super Computing in Accelerator simulations - Electron Gun simulation using GPGPU - K. Ohmi, KEK-Accel Accelerator Physics seminar 2009.11.19 Super computers in KEK HITACHI SR11000 POWER5 16 24GB 16 134GFlops,
発表済み論文 K. Abe et al. / Physics Letters B 79 (23) 78 82 8 Light WIMP search Physics Letters B 79 (23) 78 82 Data DAMA/LIBRA等で示唆さ れる軽い暗黒物質探索 8GeV signal MC XMASSで観測したevent rateを上回る領域を排除 select these events
OHO.dvi
1 Coil D-shaped electrodes ( [1] ) Vacuum chamber Ion source Oscillator 1.1 m e v B F = evb (1) r m v2 = evb r v = erb (2) m r T = 2πr v = 2πm (3) eb v
