IPRS_vol9_A4_fix.indd
|
|
|
- こうしろう てっちがわら
- 6 years ago
- Views:
Transcription
1 NRI Vol
2
3 Contents Restructuring Occupational Pension Plans in Crisis: A US Labor Management Case Study DAVID S. BLITZSTEIN (Rotman International Journal of Pension Management Vol.6 Issue 1 Spring 2013) 23 When Do Derivatives Add Value in Pension Fund Asset Allocation? JIAJIA CUI, BART OLDENKAMP, MICHEL VELLEKOOP (Rotman International Journal of Pension Management Vol.6 Issue 1 Spring 2013) 35 The Kay Review on Long-Horizon Investing: A Guide for the Perplexed GORDON L. CLARK (Rotman International Journal of Pension Management Vol.6 Issue 1 Spring 2013) 43 The Defi ned Ambition Pension Plan: A Dutch Interpretation NIELS KORTLEVE (Rotman International Journal of Pension Management Vol.6 Issue 1 Spring 2013)
4 vol Nomura Research Institute. Ltd. All rights reserved. 4
5 Nomura Research Institute. Ltd. All rights reserved. vol.9 1
6 vol Nomura Research Institute. Ltd. All rights reserved. 6
7 vol Nomura Research Institute. Ltd. All rights reserved. 7
8 vol Nomura Research Institute. Ltd. All rights reserved. 8
9 vol Nomura Research Institute. Ltd. All rights reserved. 9
10 vol Nomura Research Institute. Ltd. All rights reserved. 10
11 vol Nomura Research Institute. Ltd. All rights reserved. 11
12 vol.9 Notes References 2013 Nomura Research Institute. Ltd. All rights reserved. 12
13 vol.9 David S. Blitzstein 13
14 vol.9 14
15 vol.9 15
16 vol.9 16
17 vol.9 17
18 vol.9 18
19 vol.9 19
20 vol.9 20
21 vol.9 21
22 vol.9 Notes References 22
23 vol.9 Jiajia Cui Bart Oldenkamp Michel Vellekoop 23
24 vol.9 r 24
25 vol.9 V ν κ ω db t =rb t dt ds t =(r+p t )S t dt+s t V t dy t +μs t- (dν t λv t dt) dv t =κ(ν V t )dt+ω V t(ρdy t + 1 ρ 2 dζ t) B S Y Z N S V ρ N λ >0 μ 1<μ < 0 p t p t = η V t + μ ( λ λ Q )V t ηλ Q λ ζ dπ t /π t- = rdt V t (ηdy t +ζdζ t )+(λ Q /λ 1)(dΝ t λv t dt). ω ( ρη+ ζ (1 ρ 2 )) S V ζ 25
26 vol.9 γ h (W max E t [ T hw t ) 1 γ ] α 1 γ W t t Α i t i t α i n W T =W tσα i i=1 i A T i A t γ 26
27 vol.9 γ γ γ = νζ κ Q κ κ Q κ= 27
28 vol.9 28
29 vol.9 29
30 vol.9 30
31 vol.9 31
32 vol.9 32
33 vol.9 33
34 vol.9 Notes References 34
35 vol.9 Gordon L. Clark 35
36 vol.9 36
37 vol.9 37
38 vol.9 38
39 vol.9 39
40 vol.9 40
41 vol.9 41
42 vol.9 Notes References 42
43 vol.9 Niels Kortleve 43
44 Articles must retain Creative Commons License Attribution-Noncommercial-No Derivative Works License - there is a Japanese version of the license which can be downloaded from which must accompany print and online versions of the translation. Vol.9
45 Rotman International Journal of Pension Management Vol.6 Issue 1 Spring 2013 Editorial - Defining Defined Ambition Pension Plans KEITH AMBACHTSHEER The Defined Ambition Pension Plan: A Dutch Interpretation NIELS KORTLEVE Restructuring Occupational Pension Plans in Crisis: A US Labor Management Case Study DAVID S. BLITZSTEIN Dynamic DC: Keeping Your Options Open IOULIA TRETIAKOVA and MARK S. YAMADA Why Canada Has No Retirement Crisis FRED VETTESE Risk-Management Practices at Large Pension Plans: Findings from a Unique 27-Fund Survey ALEX BEATH and JODY MACINTOSH When Do Derivatives Add Value in Pension Fund Asset Allocation? JIAJIA CUI, BART OLDENKAMP, MICHEL VELLEKOOP The Kay Review on Long-Horizon Investing: A Guide for the Perplexed GORDON L. CLARK Platforms and Vehicles for Institutional Co-Investing JAGDEEP SINGH BACHHER and ASHBY H. B. MONK ICPM INVESTS IN PENSION RESEARCH: FOUR NEW PROJECTS RECEIVE FUNDING STEFAN LUNDBERGH
46
法制度改革と電子マネーにおける立法の可能性
100-0005 1-6-5 CopyrightC 2006 Nomura Research Institute, Ltd. All rights reserved. CopyrightC 2006 Nomura Research Institute, Ltd. All rights reserved. CopyrightC 2006 Nomura Research Institute, Ltd.
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
untitled
http://www.riskdatabank.co.jp The of Japan, Ltd. All rights reserved. 2 The of Japan, Ltd. All rights reserved. 3 The of Japan, Ltd. All rights reserved. 4 The of Japan, Ltd. All rights reserved. 5 The
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
Fuji Xerox Co., Ltd. All rights reserved.
2011 Fuji Xerox Co., Ltd. All rights reserved. 2 2011 Fuji Xerox Co., Ltd. All rights reserved. 2011 Fuji Xerox Co., Ltd. All rights reserved. 2011 Fuji Xerox Co., Ltd. All rights reserved. 2011 Fuji Xerox
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,
,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:[email protected] E-mail:[email protected] E-mail:[email protected] 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
第86回日本感染症学会総会学術集会後抄録(I)
κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β
( ) ( )
20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))
: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =
72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(
Microsoft Word - 11問題表紙(選択).docx
A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx
遺産相続、学歴及び退職金の決定要因に関する実証分析 『家族関係、就労、退職金及び教育・資産の世代間移転に関する世帯アンケート調査』
2-1. (2-1 ) (2-2 ) (2-3 ) (Hayashi [1986]Dekle [1989]Barthold and Ito [1992] [1996]Campbell [1997] [1998]Shimono and Ishikawa [2002]Shimono and Otsuki [2006] [2008]Horioka [2009]) 1 2-1-1 2-1-1-1 8 (1.
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T
NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977
LLG-R8.Nisus.pdf
d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =
ハピタス のコピー.pages
Copyright (C) All Rights Reserved. 10 12,500 () ( ) ()() 1 : 2 : 3 : 2 4 : 5 : Copyright (C) All Rights Reserved. Copyright (C) All Rights Reserved. Copyright (C) All Rights Reserved. Copyright (C) All
Copyright 2008 All Rights Reserved 2
Copyright 2008 All Rights Reserved 1 Copyright 2008 All Rights Reserved 2 Copyright 2008 All Rights Reserved 3 Copyright 2008 All Rights Reserved 4 Copyright 2008 All Rights Reserved 5 Copyright 2008 All
Untitled
II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j
untitled
Horioka Nakagawa and Oshima u ( c ) t+ 1 E β (1 + r ) 1 = t i+ 1 u ( c ) t 0 β c t y t uc ( t ) E () t r t c E β t ct γ ( + r ) 1 0 t+ 1 1 = t+ 1 ξ ct + β ct γ c t + 1 1+ r ) E β t + 1 t ct (1
Copyright 2017 JAPAN POST BANK CO., LTD. All Rights Reserved. 1
Copyright 2017 JAPAN POST BANK CO., LTD. All Rights Reserved. 1 Copyright 2017 JAPAN POST BANK CO., LTD. All Rights Reserved. 2 60 50 40 30 20 10 0 20173 20183 Copyright 2017 JAPAN POST BANK CO., LTD.
2
DX Simulator Copyright 2001-2002 Yamaha Corporation. All rights reserved. Version 1.2, 2002 YAMAHA CORPORATION 2 z x z x c 3 z Windows Macintosh Windows Macintosh x 4 z Windows Macintosh Windows Macintosh
P. 2 P. 4 P. 5 P. 6 P. 7 P. 9 P.10 P.12 P.13 P.14 P.14 P.15 P.17 P.18 P.20 P P P P P.25 P.27 P.28 Copyright 2016 JAPAN POST BA
201729 3 1 2016 8 12 P. 2 P. 4 P. 5 P. 6 P. 7 P. 9 P.10 P.12 P.13 P.14 P.14 P.15 P.17 P.18 P.20 P.21 10 P.22 11 P.23 12 P.24 13 P.25 P.27 P.28 Copyright 2016 JAPAN POST BANK CO., LTD. All Rights Reserved.
1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h
IB IIA 1 1 r, θ, φ 1 (r, θ, φ)., r, θ, φ 0 r
21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........
II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re
II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
1000 Copyright(C)2009 All Rights Reserved - 2 -
1000 Copyright(C)2009 All Rights Reserved - 1 - 1000 Copyright(C)2009 All Rights Reserved - 2 - 1000 Copyright(C)2009 All Rights Reserved - 3 - 1000 Copyright(C)2009 All Rights Reserved - 4 - 1000 Copyright(C)2009
N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)
23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/
simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =
II 6 [email protected] 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [
環境マネジメントシステムが抱える課題と対応策――ISO14001の取り組み現場から
SJRM S J R M R i s k R e v i e w 9 ISO 14001 Issues and Actions on Environmental Management Systems (EMS): From the Consulting Field of the ISO 14001 Environmental Management System: EMS 1 EMS ISO 14001
20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................
05Mar2001_tune.dvi
2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k
JFE.dvi
,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : [email protected] E-mail : [email protected] SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho
all.dvi
72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G
64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k
63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5
untitled
( 9:: 3:6: (k 3 45 k F m tan 45 k 45 k F m tan S S F m tan( 6.8k tan k F m ( + k tan 373 S S + Σ Σ 3 + Σ os( sin( + Σ sin( os( + sin( os( p z ( γ z + K pzdz γ + K γ K + γ + 9 ( 9 (+ sin( sin { 9 ( } 4
bc0710_010_015.indd
Case Study.01 Case Study.02 30 Case Study.05 Case Study.03 Case Study.04 Case Study.06 Case Study.07 Case Study.08 Case Study.21 Case Study.22 Case Study.24 Case Study.23 Case Study.25 Case Study.26
01.indd
2 Vol. 27 1 1 2 2 4 Vol. 27 Contents 3 Vol. 27 2 01 02 03 04 14 24 28 37 38 4 Vol. 27.01 5 Vol. 27.01 6 Vol. 27 7 Vol. 27.01 8 Vol. 27.02 9 Vol. 27.02 10 Vol. 27 11 Vol. 27.02 12 Vol. 27 13 Vol. 27.02
CONTENTS 2012 2 Vol.65 No.2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
2 2012 CONTENTS 2012 2 Vol.65 No.2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
