) 9 81
|
|
- なおみ いんそん
- 3 years ago
- Views:
Transcription
1 ) 9 81
2 natural numbers 1, 2, 3, 4, 4.2, 3, 2, 1, 0, 1, 2, 3, integral numbers integers 1, 2, 3,, 3, 2, ( ) m, n m 0 n m 82
3 rational numbers m 1 ( ) 3 = = =
4 ( ) c a, b a 2 + b 2 = c 2 a = 1, b = 1 c c 2 =
5 c 2 = 2 c 2 = irrational numbers real numbers x = 3 c 2 = 2 4 I p
6 x = x = 3 x = x = 3 3x = x = 5 yes ax + b = 0 5 a, b x = b a 5 2x + 3 x = 5 86
7 ax + b = 0 a 0 a, b ax 2 + bx + c = 0 ( a 0) c 2 = 2 x 2 2 = 0 x = ax + b = 0 ax + b = 0 ( a 0) 87
8 x = = = = = (1) (2) 1 7 (3)
9 < = r < b 7 10 x = x = x = 9 x = 1 1 =
10 ( ) ( ) ( ) a > = 0, b > = 0 a < b a < b 1 < 2 <
11 = 1. 0, 1, 2, 3, 4, 5, 6, 7, 8, , 1.1, 1.2,, 1.9 (1.0) 2 = 1, (1.1) 2 = 1.21,, (1.4) 2 = 1.96, (1.5) 2 = < 2 < = =
12 2 = 3 = 5 = ( ) 1, 2, 3, 0 { 1, 2, 3, 2 3 2, π 1 2 = = = = =
13 1 3 1 = = = 1. 1 ( ) ( ) 46 7 a a + 1 a (01 ( )) ( ) 0 ( a 0 86 ax + b = 0, (a 0) a 0 93
14 a b = x b x = a a b x b x a 0 0 x = a x 0 x = 0 a 0 x a = 0 0 x = a b = x b + x = a a b a + ( b) a b = a + ( b) b b a b = a 1 b
15 ( ) 1 a, b a + b = b + a, ab = ba 2 a, b, c (a + b) + c = a + (b + c), (ab)c = a(bc) 3 a a + 0 = a, a 1 = a 11 4 a a + ( a) = 0, a 1 a = 1 ( a 0 ) 12 5 a, b, c a(b + c) = ab + ac a = a 0 + a = a, 1 a = a 0 + a = a + 0 = a a + 0 = a 12 a + ( b) = a b a + ( a) = a a 13 (a + b)c = ac + bc 24 a(b + c) = ab + ac (a + b)c = ac + bc 95
16 15 a 0 a = 0 a = b = a c = b c = 0 (0 + 0) a = 0 a 0 a + 0 a = 0 a 0 a 96
17 0 + 0 = 0 (0 + 0) a = 0 a 0 a + 0 a = 0 a 0 a 0 a = 0 14 ( ) 25 ( 1)a = a 1 + ( 1) = 0 26 ( 1) ( 1) = ( 1) = 0 ( ) (1) ab = 0 a = 0 b = 0 (2) a 0 b 0 ab 0 (1) 2 (2) 2 1 (3) ( ) 97
18 4.8.2 ( ) a a > 0, a = 0, a < 0 ( ) a > 0 a a < 0 a ( ) 0 a b 0 ( ) a b > 0, a b = 0, a b < 0 a > b, a = b, a < b a > b a = b a > = b a < b a = b a < = b 17 ( ) 14 0 a 15 a > b a b b a 16 a = b = a c = b c (a c) (b c) = a c b + c = a b a b = 0 (a c) (b c) = 0 a c = b c 17 a > = b a b a < = b a b 98
19 ( ) a > 0, b > 0 a + b > 0, ab > 0 ( ) 1 a > b, b > c a > c 2 a > b a + c > b + c, a c > b c 3 a > b, c > 0 ac > bc, a c > b c 4 a > b, c < 0 ac < bc, a c < b c 5 a > b, c > d a + c > b + d 6 a > = b a < = b a = b a > b, b > c a b > 0, b c > 0 (a b) + (b c) > 0 a c > 0 a > c 3 a > b a b > 0 (a b)c > ac bc > 0 ac > bc 1 c 0 1 c = 0 c 1 = 1 0 c < 0 c 1 < 0 c > 0 1 c > 0 18 a c = a 1 c 19 a c > b c ( ) 27 a > 0 a < A A A 1 c = 0 B 1 c < 0 C 1 > 0 c 19 99
20 ( ) a a O E O E E O O E O 0 E 1 OE 21 O OE OE 1cm OE 1cm cm m cm m 100
21 ( ) P x P P(x) O ( ) 47 A, B, C D(2.5), E( 2) D, E C B A ( ) a { a ( a > a = = 0 ) a ( a < 0) a ( ) (1) 1 (2) O a A a
22 (3)? a 2 { a ( a > a 2 = = 0 ) a ( a ) ( ) a a = a 2 a 2 = a 2 ( ) 3 = 3, 4 = 4, 0 = 0 ( ) 48 (1) 5 (2) 2.4 (3) 3 4 x = 2 x x2 = 2 x 2 = 4 x = ±2 x = 2 x ( ) 102
23 ( x = a ) a > = 0 x = a x ±a x = a x x = a x = ±a 0 a < 0 ( ) 16 x 2 = 3 x 2 = ±3 x 2 = 3 x 2 = 3 x 2 = ±3 x = 5, 1 ( ) ( ) 49 (1) x + 3 = 5 (2) 3x 1 = 6 ( ) 1 a > = 0 1 a = 0 a = 0 2 ab = a b, a = a b b b 0 3 a = a 4 a + b < = a + b 2 ab = (ab) 2 = a 2 b 2 = a 2 b 2 = a b 103
24 ( ) ( ) ( ) 2 A(a) B(b) d d = b a ( ) AB b a a b 3 a b = (a b) = a + b = b a ( ) A(2) B(5) d C(3) D( 1) d d = 5 3 = 2 = 2 d = 1 3 = 4 = 4 ( ) 50 A(3) B(9) C( 3) AB BC CA
25 ) (
26
A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6
1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67
> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3
13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >
04年度LS民法Ⅰ教材改訂版.PDF
?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B
48 * *2
374-1- 17 2 1 1 B A C A C 48 *2 49-2- 2 176 176 *2 -3- B A A B B C A B A C 1 B C B C 2 B C 94 2 B C 3 1 6 2 8 1 177 C B C C C A D A A B A 7 B C C A 3 C A 187 187 C B 10 AC 187-4- 10 C C B B B B A B 2 BC
140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11
2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l
ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE
7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6
26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7
行列代数2010A
a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a
PSCHG000.PS
a b c a ac bc ab bc a b c a c a b bc a b c a ac bc ab bc a b c a ac bc ab bc a b c a ac bc ab bc de df d d d d df d d d d d d d a a b c a b b a b c a b c b a a a a b a b a
koji07-01.dvi
2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?
漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト
https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,
5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P
p P 1 n n n 1 φ(n) φ φ(1) = 1 1 n φ(n), n φ(n) = φ()φ(n) [ ] n 1 n 1 1 n 1 φ(n) φ() φ(n) 1 3 4 5 6 7 8 9 1 3 4 5 6 7 8 9 1 4 5 7 8 1 4 5 7 8 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 19 0 1 3 4 5 6 7
1
005 11 http://www.hyuki.com/girl/ http://www.hyuki.com/story/tetora.html http://www.hyuki.com/ Hiroshi Yuki c 005, All rights reserved. 1 1 3 (a + b)(a b) = a b (x + y)(x y) = x y a b x y a b x y 4 5 6
, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 =
x n 1 1.,,.,. 2..... 4 = 2 2 12 = 2 2 3 6 = 2 3 14 = 2 7 8 = 2 2 2 15 = 3 5 9 = 3 3 16 = 2 2 2 2 10 = 2 5 18 = 2 3 3 2, 3, 5, 7, 11, 13, 17, 19.,, 2,.,.,.,?.,,. 1 , 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x
1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +
( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n
O E ( ) A a A A(a) O ( ) (1) O O () 467
1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,
行列代数2010A
(,) A (,) B C = AB a 11 a 1 a 1 b 11 b 1 b 1 c 11 c 1 c a A = 1 a a, B = b 1 b b, C = AB = c 1 c c a 1 a a b 1 b b c 1 c c i j ij a i1 a i a i b 1j b j b j c ij = a ik b kj b 1j b j AB = a i1 a i a ik
2002.N.x.h.L.......g9/20
1 2 3 4 5 6 1 2 3 4 5 8 9 1 11 11 12 13 k 14 l 16 m 17 n 18 o 19 k 2 l 2 m 21 n 21 o 22 p 23 q 23 r 24 24 25 26 27 28 k 28 l 29 m 29 3 31 34 42 44 1, 8, 6, 4, 2, 1,2 1, 8 6 4 2 1, 8, 6, 4, 2, 1,2 1, 8
76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(
3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(
ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(
I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A
さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n
1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1
(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37
4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin
70 : 20 : A B (20 ) (30 ) 50 1
70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................
1 (1) vs. (2) (2) (a)(c) (a) (b) (c) 31 2 (a) (b) (c) LENCHAR
() 601 1 () 265 OK 36.11.16 20 604 266 601 30.4.5 (1) 91621 3037 (2) 20-12.2 20-13 (3) ex. 2540-64 - LENCHAR 1 (1) vs. (2) (2) 605 50.2.13 41.4.27 10 10 40.3.17 (a)(c) 2 1 10 (a) (b) (c) 31 2 (a) (b) (c)
untitled
yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/
0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,
[ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =
さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1
... 0 60 Q,, = QR PQ = = PR PQ = = QR PR = P 0 0 R 5 6 θ r xy r y y r, x r, y x θ x θ θ (sine) (cosine) (tangent) sin θ, cos θ, tan θ. θ sin θ = = 5 cos θ = = 4 5 tan θ = = 4 θ 5 4 sin θ = y r cos θ =
1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :
9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log
H27 28 4 1 11,353 45 14 10 120 27 90 26 78 323 401 27 11,120 D A BC 11,120 H27 33 H26 38 H27 35 40 126,154 129,125 130,000 150,000 5,961 11,996 6,000 15,000 688,684 708,924 700,000 750,000 1300 H28
学習の手順
NAVI 2 MAP 3 m 17 13 19 12 17 24 1 20 18 23 18 12 1 12 17 11 14 16 19 22 m 12 16 A 16 20 B 20 24 24 28 C 20 AC 40 cm AD A 0.20 12 0.300 B 0.200 0.12 12 C D 40 1.000 20 2 2 0 20 30 cm 14 1 1 160 160 16
68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1
67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10
A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π
4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan
.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +
.1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π
EPSON VP-1200 取扱説明書
4020178-01 w p s 2 p 3 4 5 6 7 8 p s s s p 9 p A B p C 10 D p E 11 F G H H 12 p G I s 13 p s A D p B 14 C D E 15 F s p G 16 A B p 17 18 s p s 19 p 20 21 22 A B 23 A B C 24 A B 25 26 p s p s 27 28 p s p
II
II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +
B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:
B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O
6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P
6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P
Taro13-第6章(まとめ).PDF
% % % % % % % % 31 NO 1 52,422 10,431 19.9 10,431 19.9 1,380 2.6 1,039 2.0 33,859 64.6 5,713 10.9 2 8,292 1,591 19.2 1,591 19.2 1,827 22.0 1,782 21.5 1,431 17.3 1,661 20.0 3 1,948 1,541 79.1 1,541 79.1
17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,
17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ
1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2
θ i ) AB θ ) A = B = sin θ = sin θ A B sin θ) ) < = θ < = Ax Bx = θ = sin θ ) abc θ sin 5θ = sin θ fsin θ) fx) = ax bx c ) cos 5 i sin 5 ) 5 ) αβ α iβ) 5 α 4 β α β β 5 ) a = b = c = ) fx) = 0 x x = x =
1 2 3 4 5 6 X Y ABC A ABC B 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 13 18 30 P331 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 ( ) 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
26 2 3 4 5 8 9 6 7 2 3 4 5 2 6 7 3 8 9 3 0 4 2 4 3 4 4 5 6 5 7 6 2 2 A B C ABC 8 9 6 3 3 4 4 20 2 6 2 2 3 3 4 4 5 5 22 6 6 7 7 23 6 2 2 3 3 4 4 24 2 2 3 3 4 4 25 6 2 2 3 3 4 4 26 2 2 3 3 27 6 4 4 5 5
mogiJugyo_slide_full.dvi
a 2 + b 2 = c 2 (a, b, c) a 2 a 2 = a a a 1/ 78 2/ 78 3/ 78 4/ 78 180 5/ 78 http://www.kaijo.ed.jp/ 6/ 78 a, b, c ABC C a b B c A C 90 a 2 + b 2 = c 2 7/ 78 C a b a 2 +b 2 = c 2 B c A a 2 a a 2 = a a 8/
EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編
K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D
ありがとうございました
- 1 - - 2 - - 3 - - 4 - - 5 - 1 2 AB C A B C - 6 - - 7 - - 8 - 10 1 3 1 10 400 8 9-9 - 2600 1 119 26.44 63 50 15 325.37 131.99 457.36-10 - 5 977 1688 1805 200 7 80-11 - - 12 - - 13 - - 14 - 2-1 - 15 -
EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編
K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D
公務員人件費のシミュレーション分析
47 50 (a) (b) (c) (7) 11 10 2018 20 2028 16 17 18 19 20 21 22 20 90.1 9.9 20 87.2 12.8 2018 10 17 6.916.0 7.87.4 40.511.6 23 0.0% 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2.0% 4.0% 6.0% 8.0%
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 A B (A/B) 1 1,185 17,801 6.66% 2 943 26,598 3.55% 3 3,779 112,231 3.37% 4 8,174 246,350 3.32% 5 671 22,775 2.95% 6 2,606 89,705 2.91% 7 738 25,700 2.87% 8 1,134
橡hashik-f.PDF
1 1 1 11 12 13 2 2 21 22 3 3 3 4 4 8 22 10 23 10 11 11 24 12 12 13 25 14 15 16 18 19 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 144 142 140 140 29.7 70.0 0.7 22.1 16.4 13.6 9.3 5.0 2.9 0.0
198
197 198 199 200 201 202 A B C D E F G H I J K L 203 204 205 A B 206 A B C D E F 207 208 209 210 211 212 213 214 215 A B 216 217 218 219 220 221 222 223 224 225 226 227 228 229 A B C D 230 231 232 233 A
1
1 2 3 4 5 (2,433 ) 4,026 2710 243.3 2728 402.6 6 402.6 402.6 243.3 7 8 20.5 11.5 1.51 0.50.5 1.5 9 10 11 12 13 100 99 4 97 14 A AB A 12 14.615/100 1.096/1000 B B 1.096/1000 300 A1.5 B1.25 24 4,182,500
05[ ]戸田(責)村.indd
147 2 62 4 3.2.1.16 3.2.1.17 148 63 1 3.2.1.F 3.2.1.H 3.1.1.77 1.5.13 1 3.1.1.05 2 3 4 3.2.1.20 3.2.1.22 3.2.1.24 3.2.1.D 3.2.1.E 3.2.1.18 3.2.1.19 2 149 3.2.1.23 3.2.1.G 3.1.1.77 3.2.1.16 570 565 1 2
/9/ ) 1) 1 2 2) 4) ) ) 2x + y 42x + y + 1) 4) : 6 = x 5) : x 2) x ) x 2 8x + 10 = 0
1. 2018/9/ ) 1) 8 9) 2) 6 14) + 14 ) 1 4 8a 8b) 2 a + b) 4) 2 : 7 = x 8) : x ) x ) + 1 2 ) + 2 6) x + 1)x + ) 15 2. 2018/9/ ) 1) 1 2 2) 4) 2 + 6 5) ) 2x + y 42x + y + 1) 4) : 6 = x 5) : x 2) x 2 15 12
ネットショップ・オーナー2 ユーザーマニュアル
1 1-1 1-2 1-3 1-4 1 1-5 2 2-1 A C 2-2 A 2 C D E F G H I 2-3 2-4 2 C D E E A 3 3-1 A 3 A A 3 3 3 3-2 3-3 3-4 3 C 4 4-1 A A 4 B B C D C D E F G 4 H I J K L 4-2 4 C D E B D C A C B D 4 E F B E C 4-3 4
2003 10 2003.10.21 70.400 YES NO NO YES YES NO YES NO YES NO YES NO NO 20 20 50m 12m 12m 0.1 ha 4.0m 6.0m 0.3 ha 4.0m 6.0m 6.0m 0.3 0.6ha 4.5m 6.0m 6.0m 0.6 1.0ha 5.5m 6.5m 6.0m 50m 18 OK a a a a b a
1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C
0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,
新たな基礎年金制度の構築に向けて
[ ] 1 1 4 60 1 ( 1 ) 1 1 1 4 1 1 1 1 1 4 1 2 1 1 1 ( ) 2 1 1 1 1 1 1 1996 1 3 4.3(2) 1997 1 65 1 1 2 1/3 ( )2/3 1 1/3 ( ) 1 1 2 3 2 4 6 2.1 1 2 1 ( ) 13 1 1 1 1 2 2 ( ) ( ) 1 ( ) 60 1 1 2.2 (1) (3) ( 9
高等学校学習指導要領解説 数学編
5 10 15 20 25 30 35 5 1 1 10 1 1 2 4 16 15 18 18 18 19 19 20 19 19 20 1 20 2 22 25 3 23 4 24 5 26 28 28 30 28 28 1 28 2 30 3 31 35 4 33 5 34 36 36 36 40 36 1 36 2 39 3 41 4 42 45 45 45 46 5 1 46 2 48 3
0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4
0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)
エンジョイ北スポーツ
28 3 20 85132 http://www.kita-city-taikyo.or.jp 85 63 27 27 85132 http://www.kita-city-taikyo.or.jp 2 2 3 4 4 3 6 78 27, http://www.kita-city-taikyo.or.jp 85132 3 35 11 8 52 11 8 2 3 4 1 2 4 4 5 4 6 8
AC-2
AC-1 AC-2 AC-3 AC-4 AC-5 AC-6 AC-7 AC-8 AC-9 * * * AC-10 AC-11 AC-12 AC-13 AC-14 AC-15 AC-16 AC-17 AC-18 AC-19 AC-20 AC-21 AC-22 AC-23 AC-24 AC-25 AC-26 AC-27 AC-28 AC-29 AC-30 AC-31 AC-32 * * * * AC-33
Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n
Part2 47 Example 161 93 1 T a a 2 M 1 a 1 T a 2 a Point 1 T L L L T T L L T L L L T T L L T detm a 1 aa 2 a 1 2 + 1 > 0 11 T T x x M λ 12 y y x y λ 2 a + 1λ + a 2 2a + 2 0 13 D D a + 1 2 4a 2 2a + 2 a
繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7
30キ36ヲ0 7 7 ュ6 70キ3 ョ6ァ8056 50キ300 縺6 5 ッ05 7 07 ッ 7 ュ ッ04 ュ03 ー 0キ36ヲ06 7 繖 70キ306 6 5 0 タ0503070060 08 ョ0303 縺0 ァ090609 0403 閨0303 003 ァ 0060503 陦ァ 06 タ09 ァ タ04 縺06 閨06-0006003 ァ ァ 04 罍ァ006 縺03 0403
さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a
φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )
all.dvi
5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0
熊本県数学問題正解
00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (
広報さっぽろ 2016年8月号 厚別区
8/119/10 P 2016 8 11 12 P4 P6 P6 P7 13 P4 14 15 P8 16 P6 17 18 19 20 P4 21 P4 22 P7 23 P6 P7 24 25 26 P4 P4 P6 27 P4 P7 28 P6 29 30 P4 P5 31 P5 P6 2016 9 1 2 3 P4 4 P4 5 P5 6 7 8 P4 9 10 P4 1 b 2 b 3 b
untitled
351 351 351 351 13.0 0.0 25.8 1.0 0.0 6.3 92.9 0.0 80.5 0.0 1.5 15.9 0.0 3.5 13.1 0.0 30.0 54.8 18.0 0.0 27.5 1.0 0.0 2.5 94.7 0.0 91.7 0.0 1.3 14.7 0.0 3.8 14.4 0.0 25.0 50.5 16.0 0.0 27.5 2.0 0.0 2.5
untitled
2010824 1 2 1031 5251020 101 3 0.04 % 2010.8.18 0.05 % 1 0.06 % 5 0.12 % 3 0.14 % 2010.8.16 5 0.42 % 2010.7.15 25 5 0.42 % 0.426% 2010.6.29 5 0.496 % 2010.8.12 4 0.85 % 2010.8.6 10 0.900 % 2010.8.18 2.340
DVIOUT-HYOU
() P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.
R R 16 ( 3 )
(017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017
18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C
8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,
高校生の就職への数学II
II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................
x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)
2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................
......1201-P1.`5
2009. No356 2/ 5 6 a b b 7 d d 6 ca b dd a c b b d d c c a c b - a b G A bb - c a - d b c b c c d b F F G & 7 B C C E D B C F C B E B a ca b b c c d d c c d b c c d b c c d b d d d d - d d d b b c c b
linearal1.dvi
19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352
ab c d 6 12 1:25,000 28 3 2-1-3 18 2-1-10 25000 3120 10 14 15 16 7 2-1-4 1000ha 10100ha 110ha ha ha km 200ha 100m 0.3 ha 100m 1m 2-1-11 2-1-5 20cm 2-1-12 20cm 2003 1 05 12 2-1-13 1968 10 7 1968 7 1897
ii-03.dvi
2005 II 3 I 18, 19 1. A, B AB BA 0 1 0 0 0 0 (1) A = 0 0 1,B= 1 0 0 0 0 0 0 1 0 (2) A = 3 1 1 2 6 4 1 2 5,B= 12 11 12 22 46 46 12 23 34 5 25 2. 3 A AB = BA 3 B 2 0 1 A = 0 3 0 1 0 2 3. 2 A (1) A 2 = O,