linearal1.dvi
|
|
- けいざぶろう あさま
- 4 years ago
- Views:
Transcription
1
2 I
3
4
5 1 11 m, n a ij (1 i m, 1 j n) a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = a 31 a 32 a m1 a m2 a mn m n (m, n) a 11,a 12,a 13,,a 1n a 11 a 21 a 31 a ij A a 11 a 12 a ij a m1 (1, 1) (1, 2) (i, j) A =(a ij ) i=1,,m; j=1,,n A =(a ij ) 11 (1) (4, 2) (2) ( A = ) 1
6 (2, 3) (3) a ij = 2j i + j A =(a ij ) i=1,2,3; j=1, A, B A =(a ij ) i=1,,m; j=1,,n, B =(b ij ) i=1,,m; j=1,,n A + B A + B := (a ij + b ij ) i=1,,m; j=1,,n = c ca := (ca ij ) 12 ( ) 11 A B ( ) A B = A +( B) 1 m, n 2
7 11 ( ) A, B, C (m, n) c, d (1) A + B = B + A (2) (A + B)+C = A +(B + C), c(da) =(cd)a (3) c(a + B) =ca + cb, (c + d)a = ca + da ( ) 0 O 0( ) (2, 2) ( )( ) ( ) a b α β aα + bγ aβ + bδ := c d γ δ cα + dγ cβ + dδ (m, n) A (n, l) B AB A B 13 ( )
8 13 (1) (m, n) A (n, l) B AB (m, l) (2) AB BA 14 AB BA AB, BA = n = j n=1 j= = (2m 1) = m=1 5 (2l +1) l= = (4n +2) n=0 n n a 1 + a a n = a k = a j k=1 k=1 k=1 j=1 n n c( a k )= ca k m m m a k + b j = (a k + b k ) k=1 j=1 k=1 m a 11 + a a 1m = a 1j j=1 4
9 a 11 + a a 1n +a 21 + a a 2n + = = m ( i=1 +a m1 + a m2 + + a mn n a ij ) (i j ) j=1 n m ( a ij ) j=1 i=1 (j i ) 133 A =(a ij ) (m, n) B =(b ij ) (n, l) a 11 a 12 a 1n b 11 b 12 b 1l a 21 a 22 a 2n b 21 b 22 b 2l AB = a m1 a m2 a mn b n1 b n2 b nl AB (1, 1) c 11 c 11 = a 11 b 11 + a 12 b a 1n b n1 = n a 1k b k1 k=1 AB (2, 1) c 21 c 21 = a 21 b 11 + a 22 b a 2n b n1 = n a 2k b k1 k=1 AB (1, 2) c 12 c 12 = a 11 b 12 + a 12 b a 1n b n2 = n a 1k b k2 k=1 AB (i, j) c ij c ij = n a ik b kj k=1 5
10 2 ( n ) AB = a ik b kj k=1 i=1,,m; j=1,,l A, B (m, n) C (n, l) D (r, m) c R (1) (A + B)C = AC + BC ( ) (2) D(A + B) =DA + DB ( ) (3) c (AB) = (ca)b = A (cb) ( ) (4) (AB)C = A(BC) ( ) (5) AB BA (1) A =(a ij ), B =(b ij ), C =(c ij ) A + B =(a ij + b ij ) ( n (A + B)C = = = k=1 (a ik + b ik )c kj ) ( n ) (a ik c kj + b ik c kj ) k=1 ( n a ik c kj + k=1 = AC + BC ) n b ik c kj ( ) k=1 (2) (1) (3) c R n c a ik b kj = k=1 n (ca ik )b kj = k=1 n a ik (cb kj ) k=1 2 AB (m, l) 6
11 (4) A =(a ij ) (m, n) B =(b ij ) (n, l) C =(c ij ) (l, p) AB (i, j) (AB) ij (AB) ij = n a ik b kj k=1 (AB)C (i, j) ((AB)C) ij = = = = = l (AB) ir c rj r=1 l n ( a ik b kr )c rj r=1 l k=1 r=1 k=1 n k=1 r=1 n a ik b kr c rj l a ik b kr c rj n a ik ( k=1 r=1 ( ) ( ) l b kr c rj ) ( ) l r=1 b krc rj BC (k, j) A(BC) 14 (n, n) n A, B n AB, BA n AB BA 17 2 AB = BA AB BA n 1 0 E n E n 1( ) 11 n B E n B = BE n = B 7
12 E =(e ij ) e ij = δ ij (E n B) ij = n e ik b kj = e ii b ij = b ij k=1 BE n 1 1 A n AX = XA = E n n X A X A A 1 18 X 19 (A 1 ) 1 = A 13 A, B n AB (AB) 1 = B 1 A 1 X = B 1 A 1 (AB)X =(AB)(B 1 A 1 )=A(BB 1 )A 1 = E n X(AB) =E n 11 A j 110 (A 1 A 2 A k ) 1 = A 1 k A 1 k 1 A 1 2 A 1 1 8
13 (1) 0 c eg ( ) ( ) (2) c eg ( ) ( ( 2) ) (3) eg ( ) ( ) (1)-(3) 21 n E n 21 E n A E n 9
14 ( 3) ( 2) (1, 1) / and ( 3) ( 1) ( 2) and ( 2) E 3 22 E
15 22 ( )( ) ( ) = = ( )( ) ( ) = = ( 0 1 ) ( 3 0 ) 1 0, 0 1 E n E 3 (1) 1 c (c 0) c =: M(1; c) = (2) c c =: A(2, 1; c) = (3) =: P (1, 2) 11
16 = 22 M(i; c) E n M(1; 1/c)M(1; c)e n = M(1; c)m(1; 1/c)E n = E n c 0 A(i, j; c) A(2, 1; c) A(2, 1; c)e n = A(2, 1; c) A(2, 1; c)e n = E n P (i, j) P (2, 1)P (1, 2)E n = E n A E n 23 n A A E n B k (k =1, 2,m) B m B m 1 B 2 B 1 A = E n B k P := B m B 1 PA = E n AP = P 1 P (AP )=P 1 (PA)P = E n A
17 ( ) n A 1 (1) E n = 1 (2) ( Er O O ), E r r 21 (1) E r r A rank ( ) r = rank A (2) E n rank A = n (3) rank (4) E n A E n (4) E n A A 1 E n (2) A 3 13
18 (2) ( Er ) A = O O AX = E n n A ( Er ) A O O 24 n P j,q j ( Er ) P k P 1 AQ 1 Q l = O O ) ) ( )( = ( B := P k P 1 AQ 1 Q l A A E n ( ) PA = E n (P ) P E n E n X PE n = P X = P 14
19 26 n A (n, 2n) (A E n ) A E n (A E n ) (E n P ) P A 1 A E n A (1) (2) ( ) (m, n) A 1 (1) 1 (2) ( Er O O ) (3) ( E m ) 15
20 (4) ( En O ) x +2y +3z =1 4x +5y +6z = 1 7x +8y +9z = 3 (21) a 11 x a 1n x n = b 1 a m1 x a mn x n = b m n (22) (21) A = A =(Ab) = (22) A =
21 24 x + y =1 2x 3y =1 2x +2y =2 5y =1 y =1/5 x =4/5 28 ( ) A B B A 211 (21) 22 (A b) A = (A b ) A (A b ) ( b) x +2z =2 4x y +5z =1 2x + y +3z =
22 (A b) x +3z =1 y + z =1 0=3 29 ranka = rank(a b) b = 0 0 (i) (1) (A b) x =1 y = 1 z =3 (ii) (2) (A b) z = t x = t +4 y = 2t +1 18
23 x y z = t +4 2t +1 t = t t (iii) (2) (A b) z = t, w = s x = t +3s +1 y =4t + s 1 x y z w = t +3s +1 4t + s 1 t s = t s (1) (2) ( ) (3) (4)
24 214 x + y z = 2 (1) 2x +3y 4z = 9 x +2y 3z = 7 x +2y +3z =1 (2) 2x 2y +3z = 1 x 2y +5z =2 3x 3y z =1 (3) 2x + y + bz = 1 2x +5y 3z = a (a, b) 224 (A b) Ax = b b = 0 b 0 ranka = rank(a 0) x = 0 0 x (A b) x x = x 0 + x 1, x
25 3 31 n n =2 ( ) a b A = c d A = ad bc A 0 A ( ) A 1 = 1 d b A c a n 3 n n =2 n n (1, 2,,n) n (1, 2, 3) (1, 3, 2) (2, 3, 1) (1, 2, 3) (1, 2, 3) (2, 3, 1) (1, 3, 2) (1, 2, 3) n σ (1, 2,,n) sign σ =1 21
26 sign σ = 1 k (1, 2,,n) sign σ =( 1) k 31 sign (2, 3, 1) = (1) (2, 1) (2) (3, 2, 1) (3) (2, 4, 1, 3) (4) (5, 1, 2, 3, 4) n S n 32 S 3 = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} 32 S 2,S 4 S n n! (n ) 33 n A =(a ij ) i,j=1,,n A ( det A) A = sign (p 1,,p n )a p1 1a p2 2 a pnn (p 1,,p n) S n 22
27 33 n =2 A = (p 1,p 2 ) S 2 sign (p 1,p 2 )a p1 1a p2 2 = sign (1, 2)a 11 a 22 + sign (2, 1)a 21 a 12 = a 11 a 22 a 21 a n =3 4 A n! n! n B O a nn = a nn B n =3 a 11 a 12 0 a 21 a 22 0 a 31 a 32 a 33 = a 33 a 11 a 12 a 21 a 22 (n =3) A = sign (p 1,p 2,p 3 )a p1 1a p2 2a p3 3 (p 1,p 2,p 3 ) S 3 a 13 = a 23 =0 p 3 p 3 =3 a
28 a 11 a 12 0 a 21 a 22 0 = sign (p 1,p 2, 3)a p1 1a p2 2a 33 a 31 a 32 a 33 (p 1,p 2,3) S 3 = a 33 sign (p 1,p 2, 3)a p1 1a p2 2 (p 1,p 2,3) S 3 sign (p 1,p 2, 3) = sign (p 1,p 2 ) (p 1,p 2, 3) (p 1,p 2 ) a 11 a 12 0 a 21 a 22 0 = a 33 sign (p 1,p 2 )a p1 1a p2 2 a 31 a 32 a 33 (p 1,p 2 ) S = = 9(5 8) = (m, n) A =(a ij ) B =(b ij ) A B (n, m) b ij = a ji t A 35 t = ( ) 1 4 t =
29 32 (1) t ( t A)=A (2) t (A + B) = t A + t B (3) t (ca) =c t A, c R (4) t (AB) = t B t A (5) A t A ( t A) 1 = t (A 1 ) (1) (3) (4) A =(a ij ) (m, n) B =(b ij ) (n, l) AB (i, j) (AB) ij n (AB) ij = a ik b kj k=1 ( t (AB)) ij = n a jk b ki k=1 ( t A) ij = a ji, ( t B) ij = b ji ( t B t A) ij = n ( t B) ik ( t A) kj = n b ki a jk k=1 k=1 34 (5) 33 ( ) A =(a ij ) t A = A 25
30 t A (i, j) ( t A) ij ( t A) ij = a ji t A = sign(p 1,p 2,p 3 )( t A) p1 1( t A) p2 2( t A) p3 3 (p 1,p 2,p 3 ) S 3 = sign(p 1,p 2,p 3 )a 1p1 a 2p2 a 3p3 (p 1,p 2,p 3 ) S 3 a 1p1 a 2p2 a 3p3 a q1 1a q2 2a q3 3 a 1p1 a 2p2 a 3p3 = a q1 1a q2 2a q3 3 (p 1,p 2,p 3 ) (1, 2, 3) k (q 1,q 2,q 3 ) k (1, 2, 3) sign(p 1,p 2,p 3 ) = sign(q 1,q 2,q 3 ) (p 1,p 2,p 3 ) (q 1,q 2,q 3 ) (p 1,p 2,p 3 ) S 3 (q 1,q 2,q 3 ) S 3 sign(p 1,p 2,p 3 )a 1p1 a 2p2 a 3p3 = sign(q 1,q 2,q 3 )a q1 1a q2 2a q3 3 = A (p 1,p 2,p 3 ) S 3 (q 1,q 2,q 3 ) S 3 31 B O a nn = a nn B =( 3) = ( ) 33 26
31 343 n A =(a ij ) A =(a 1, a 2,,a n ) 1 a 1 = A = , a 2 = 2 5 8, a 3 = a 1, a 2,, a n = sign (p 1,,p n )a p1 1a p2 2 a pnn (p 1,,p n) S n 31 (1) a 1,,λa j + µb,,a n = λ a 1,,a j,,a n + µ a 1,,b,,a n (2) a 1,,a j,,a k,,a n = a 1,,a k,,a j,,a n (1) n =3 a 1, a 2 + b, a 3 = sign (p 1,p 2,p 3 ) a p1 1(a p2 2 + b p2 )a p3 3 (p 1,p 2,p 3 ) S 3 + α R a 1,αa 2, a 3 (2) a 1, a 3, a 2 = (p 1,p 2,p 3 ) S 3 sign (p 1,p 2,p 3 ) a p1 1a p2 3a p3 2 27
32 a p1 1a p2 3a p3 2 a p1 1a p2 3a p3 2 = a p1 1a p3 2a p2 3 (p 1,p 2,p 3 ) (p 1,p 3,p 2 ) sign (p 1,p 2,p 3 )= sign (p 1,p 3,p 2 ) (p 1,p 2,p 3 ) S 3 (p 1,p 3,p 2 ) S 3 34 (1) 31 (2) 0 a 1,,a j,,a j,,a n =0 (2) 31 (1) a 1,,a j + λa k,,a n = a 1,,a j,,a n (3) = (1, 4) = =
33 = (3, 2) = = ( ) = A =(a 1, a 2, a 3 ) A =3 (1) a 3, 5a 2, a 1 (2) a 2, a 1 + a 3, a 2 a 1 (3) 2a 2 + a 3, 3a 3 + a 1, 4a 1 + a 2 (1), (2) (3) index choice (2, 3, 1) (3, 1, 2) n A, B AB = A B 35 (1) (2) A A 0 A AX = E n ( ) X AX = E n =1 AX = A X A 0 29
34 n =3 AB = a 11 a 12 a 13 a 21 a 22 a 23 b 11 b 12 b 13 b 21 b 22 b 23 a 31 a 32 a 33 b 31 b 32 b 33 = A(b 1, b 2, b 3 ) = (Ab 1,Ab 2,Ab 3 ) AB b Ab 1 = A 0 + A b 21 A b = b 11 A 0 + b 21A 1 + b 31A = b 11 a 1 + b 21 a 2 + b 31 a 3, A =(a 1, a 2, a 3 ) Ab j = b 1j a 1 + b 2j a 2 + b 3j a 3 AB = b 11 a 1 + b 21 a 2 + b 31 a 3,b 12 a 1 + b 22 a 2 + b 32 a 3,b 13 a 1 + b 23 a 2 + b 33 a 3 AB = b p1 1a p1,b p2 2a p2,b p3 3a p3 (p 1,p 2,p 3 ) S 3 AB = b p1 1b p2 2b p3 3 a p1, a p2, a p3 (p 1,p 2,p 3 ) S 3 a p1, a p2, a p3 a 1, a 2, a 3 k a p1, a p2, a p3 =( 1) k a 1, a 2, a 3 (p 1,p 2,p 3 ) (p 1,p 2,p 3 ) (1, 2, 3) k 30
35 sgn(p 1,p 2,p 3 )=( 1) k AB = b p1 1b p2 2b p3 3 sgn(p 1,p 2,p 3 ) a 1, a 2, a 3 (p 1,p 2,p 3 ) S 3 = a 1, a 2, a 3 sgn(p 1,p 2,p 3 )b p1 1b p2 2b p3 3 (p 1,p 2,p 3 ) S 3 36 A =5, B =3 (1) A 2 (2) A 1 (3) (AB) 1 (4) B 1 AB n =3 n 3 A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 3 A (1, 1) a 11 ã 11 ã 11 =( 1) 1+1 a 22 a 23 a 32 a 33 A (1, 1) a 11 31
36 a 23 ã 23 5 ã 23 =( 1) 2+3 a 11 a 12 a 31 a A 36 n 38 (1) (2) ( ) 3 A =(a ij ) A = a 11 ã 11 + a 21 ã 21 + a 31 ã 31 A = a 11 ã 11 + a 12 ã 12 + a 13 ã 13 ( ) ( ) 38 ( ) = 2( 1) = 2( 6 20) = 52 ( ) 5 a 23 32
37 ( ) A n A = a 11 1 a 12 a 1n 0 0 a n2 a nn + a 21 0 a 12 a 1n 1 0 a n2 a nn + + a n1 0 a 12 a 1n 0 1 a n2 a nn ã 11,,ã n1 1 (n, n) ã ij 0 B 11 B B 21 B 22 0 =( 1) n j ( 1) n i B 11 B 12 B 21 B 22 =( 1) 2n (i+j) B 11 B 12 B 21 B 22 =( 1) i+j B 11 B 12 B 21 B 22 =ã ij resp resp 0=a 12 ã 11 + a 22 ã 21 + a 32 ã 31 ( ) 33
38 0=a 11 ã 31 + a 12 ã 32 + a 13 ã 33 ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = a 11 ã 11 + a 21 ã 21 + a 31 ã 31 a 11,a 21,a 31 a 12 a 12 a 13 a 22 a 22 a 23 = a 12 ã 11 + a 22 ã 21 + a 32 ã 31 a 32 a 32 a A 3 A =(a ij ) ã 11 ã 12 ã 13 t ã 21 ã 22 ã 23 ã 31 ã 32 ã 33 = ã 11 ã 21 ã 31 ã 12 ã 22 ã 32 ã 13 ã 23 ã 33 = Ã A Ã A 32 ã 11 ã 21 ã 31 a 11 a 12 a 13 A 0 0 ÃA = ã 12 ã 22 ã 32 a 21 a 22 a 23 = 0 A 0 ã 13 ã 23 ã 33 a 31 a 32 a A AÃ ÃA = AÃ = A E 3 A 0 1/ A ( 1 1 = A( A Ã)A A Ã) =E 3 34
39 36 ( ) n A A A 0 A 0 A A 1 A 1 = 1 A Ã, Ã A 38 n =2 A =(a ij ) ( A 1 1 a22 a 12 = a 11 a 22 a 12 a 21 a 21 a 11 ) a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 11 a 12 a 13 A = a 21 a 22 a 23 a 31 a 32 a 33 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3, x = x 1 x 2 x 3, b = b 1 b 2 b 3 Ax = b 37 A n A 0 A 35
40 Ax = b n =3 b 1 a 12 a 13 b 2 a 22 a 23 b 3 a 32 a 33 x 1 = b A a 11 b 1 a 13 a 21 b 2 a 23 a 31 b 3 a 33 x 2 = b A a 11 a 12 b 1 a 21 a 22 b 2 a 31 a 32 b 3 x 3 = b A A (x =)A 1 Ax = A 1 b Ãb A 1 = 1 Ã A A Ã, Ãb = x = 1 A Ãb ã 11 ã 21 ã 31 ã 12 ã 22 ã 32 ã 13 ã 23 ã 33 b 1 ã 11 + b 2 ã 21 + b 3 ã 31 b A b 1 a 12 a 13 b 1 ã 11 + b 2 ã 21 + b 3 ã 31 = b 2 a 22 a 23 b 3 a 32 a 33 x 2,x 3 36 b 1 b 2 b 3
41 39 4x +8y = 13 3x +11y = x = y =
42 URL
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
ver Web
ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(
I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A
1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x
. P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y
II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K
II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F
行列代数2010A
a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a
x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R
V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x
A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6
1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67
all.dvi
5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0
行列代数2010A
(,) A (,) B C = AB a 11 a 1 a 1 b 11 b 1 b 1 c 11 c 1 c a A = 1 a a, B = b 1 b b, C = AB = c 1 c c a 1 a a b 1 b b c 1 c c i j ij a i1 a i a i b 1j b j b j c ij = a ik b kj b 1j b j AB = a i1 a i a ik
i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................
v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i
1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [
20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33
数学Ⅱ演習(足助・09夏)
II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w
R R 16 ( 3 )
(017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017
さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n
1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1
DVIOUT-HYOU
() P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.
2001 年度 『数学基礎 IV』 講義録
4 A 95 96 4 1 n {1, 2,,n} n n σ ( ) 1 2 n σ(1) σ(2) σ(n) σ σ 2 1 n 1 2 {1, 2,,n} n n! n S n σ, τ S n {1, 2,,n} τ σ {1, 2,,n} n τ σ σ, τ τσ σ n σ 1 n σ 1 ( σ σ ) 1 σ = σσ 1 = ι 1 2 n ι 1 2 n 4.1. 4 σ =
n ( (
1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128
.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,
[ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b
SO(2)
TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6
漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト
https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,
+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....
+ http://krishnathphysaitama-uacjp/joe/matrix/matrixpdf 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm (1) n m () (n, m) ( ) n m B = ( ) 3 2 4 1 (2) 2 2 ( ) (2, 2) ( ) C = ( 46
untitled
0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.
加速度センサを用いた図形入力
( ) 2/Sep 09 1 2 1. : ( ) 2. : 2 1. 2. 2 t a 0, a 1,..., a ( ) v 0 t v 0, v 1,..., v n ( ) p 0 t p 0, p 1,..., p n+1 3 Kentaro Yamaguchi@bandainamcogames.co.jp 1 ( ) a i g a i g v 1,..., v n v 0 v i+1
弾性定数の対称性について
() by T. oyama () ij C ij = () () C, C, C () ij ji ij ijlk ij ij () C C C C C C * C C C C C * * C C C C = * * * C C C * * * * C C * * * * * C () * P (,, ) P (,, ) lij = () P (,, ) P(,, ) (,, ) P (, 00,
O E ( ) A a A A(a) O ( ) (1) O O () 467
1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,
2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i
[ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk
A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18
2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1
6 19,,,
6 19,,, 15 6 19 4-2 à A si A s n + a n s n 1 + + a 2 s + a 1 à 0 1 0 0 1 0 0 0 1 a 1 a 2 a n 1 a n à ( 1, λ i, λ i 2,, λ i n 1 ) T ( λ i, λ 2 i,, λ n 1 i, a 1 a 2 λ i a n λ ) n 1 T i ( ) λ i 1, λ i,, λ
1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +
( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n
all.dvi
29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th
1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2
熊本県数学問題正解
00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (
1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C
0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,
n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz
1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x
all.dvi
38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t
: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =
1 1980 1) 1 2 3 19721960 1965 2) 1999 1 69 1980 1972: 55 1999: 179 2041999: 210 211 1999: 211 3 2003 1987 92 97 3) 1960 1965 1970 1985 1990 1995 4) 1. d ij f i e i x i v j m a ij m f ij n x i = n d ij
newmain.dvi
数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published
04年度LS民法Ⅰ教材改訂版.PDF
?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B
> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3
13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >
2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l
ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE
1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =
1 8, : 8.1 1, z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = a ii x i + i
koji07-01.dvi
2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?
20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................
January 27, 2015
e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6
) 9 81
4 4.0 2000 ) 9 81 10 4.1 natural numbers 1, 2, 3, 4, 4.2, 3, 2, 1, 0, 1, 2, 3, integral numbers integers 1, 2, 3,, 3, 2, 1 1 4.3 4.3.1 ( ) m, n m 0 n m 82 rational numbers m 1 ( ) 3 = 3 1 4.3.2 3 5 = 2
4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t
1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1
: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =
72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(
2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a
高校生の就職への数学II
II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................
IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a
1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =
[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s
[ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =
さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a
φ + 5 2 φ : φ [ ] a [ ] a : b a b b(a + b) b a 2 a 2 b(a + b). b 2 ( a b ) 2 a b + a/b X 2 X 0 a/b > 0 2 a b + 5 2 φ φ : 2 5 5 [ ] [ ] x x x : x : x x : x x : x x 2 x 2 x 0 x ± 5 2 x x φ : φ 2 : φ ( )
直交座標系の回転
b T.Koama x l x, Lx i ij j j xi i i i, x L T L L, L ± x L T xax axx, ( a a ) i, j ij i j ij ji λ λ + λ + + λ i i i x L T T T x ( L) L T xax T ( T L T ) A( L) T ( LAL T ) T ( L AL) λ ii L AL Λ λi i axx
X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2
d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )
23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ
.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +
.1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π
D 24 D D D
5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6
1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1
2005 1 1991 1996 5 i 1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1 2 13 *3 *4 200 1 14 2 250m :64.3km 457mm :76.4km 200 1 548mm 16 9 12 589 13 8 50m
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy
u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1
5 K K Q R C 5.1 5.1.1 V V K K- 1) u, v V u + v V (a) u, v V u + v = v + u (b) u, v, w V (u + v)+w = u +(v + w) (c) u V u + o = u o V (d) u V u + u = o u V 2) α K u V u α αv V (a) α, β K u V (αβ)u = α(βv)
( )
18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................
ii
ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %
A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office
II 1 II 2012 II Gauss-Bonnet II
II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................
( )
7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................
25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3
zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {
04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory
17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,
17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ
HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】
B A C E D 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 H G I F J M N L K Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01
研修コーナー
l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l
取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ
B A C D E F K I M L J H G N O Q P Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01 00 00 60 01 00 BE EF 03 06 00 19 D3 02 00
76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(
3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(
A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa
1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33
内科96巻3号★/NAI3‐1(第22回試験問題)
µ µ α µ µ µ µ µ µ β β α γ µ Enterococcus faecalis Escherichia coli Legionella pneumophila Pseudomonas aeruginosa Streptococcus viridans α β 正解表正解記号問題 No. 正解記号問題 No. e(4.5) 26 e 1 a(1.2) 27 a 2
(, Goo Ishikawa, Go-o Ishikawa) ( ) 1
(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2
OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P
4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.
A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c
, = = 7 6 = 42, =
http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
6 ( ) 1 / 53
6 / 6 (2014 11 05 ) / 53 6 (2014 11 05 ) 1 / 53 nodeedge 2 u v u v (u, v) 6 (2014 11 05 ) 2 / 53 Twitter 6 (2014 11 05 ) 3 / 53 Facebook 6 (2014 11 05 ) 4 / 53 N N N 1,2,..., N (i, j )i j 10 i j 2(i, j
18 5 10 1 1 1.1 1.1.1 P Q P Q, P, Q P Q P Q P Q, P, Q 2 1 1.1.2 P.Q T F Z R 0 1 x, y x + y x y x y = y x x (y z) = (x y) z x + y = y + x x + (y + z) = (x + y) + z P.Q V = {T, F } V P.Q P.Q T F T F 1.1.3
1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :
9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log
iii 1 1 1 1................................ 1 2.......................... 3 3.............................. 5 4................................ 7 5................................ 9 6............................
HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語
A B C D E F G H I 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 K L J Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C RS-232C RS-232C Cable (cross) LAN cable (CAT-5 or greater) LAN LAN LAN LAN RS-232C BE
(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n
. 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n
II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )
II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11