2/ ERATO
|
|
|
- えりか うみのなか
- 9 years ago
- Views:
Transcription
1 , JST, ERATO,
2 2/ ERATO
3 Given n n A 1,..., A N Find P s.t. P A 1 P,..., P A N P A 1 A 2 A N simultaneously P A 1 P P A 2 P P A N P 3/ 36
4 4/ 36
5 5/ 36
6 6/ 36 [Wigner 1931 ]. [de Klerk-Dobre 2011] etc [Arima-Kim-Kojima 2012] etc [Burgdorf-Klep-Povh 2011] [Aiura-Kakimura-Murota 2011] [Gutch-Krumsiek-Theis 2011] [Irving-Sorrentino 2012].
7 7/ 36 [Wigner 1931 ] Hx = ϵx H = α 1 H α N H N H 1,..., H N
8 8/ 36 [Irving-Sorrentino 2012] x(t) = A 1 x(t 1) + + A N x(t N) x(t) t A k k A 1 A 2.
9 [Gatermann-Parrilo 2004], [Murota-Kanno-Kojima-Kojima 2010],... minimize C, X subject to A i, X = b i (i = 1,..., N) X O 7 days 7 mins [de Klerk-Dobre-Pasechnik 2009] 9/ 36
10 [Jutten-Herault 1985], [Cardoso-Soulomiac 1993],... Y 1 Y 2 Y l Given: Find: n X Y 1,..., Y l W P C P = X = W Y 10/ 36
11 11/ 36 [Wigner 1931 ]. [de Klerk-Dobre 2011] etc [Arima-Kim-Kojima 2012] etc [Burgdorf-Klep-Povh 2011] [Aiura-Kakimura-Murota 2011] [Gutch-Krumsiek-Theis 2011] [Irving-Sorrentino 2012].
12 12/ 36
13 13/ 36 SBD = SBD =
14 old new numerical linear algebra Jacobi-like [Bunse-Gerstner, Byers, Mehrmann 1990] JADE [Cardoso-Souloumiacc 1993] [Theis 2007] abstract algebra one-by-one [folklore -1820] The recipe [Schur 1905] MKKKM [Murota-Kanno-Kojima-Kojima MM [Maehara-Murota 2012] 14/ ]
15 old new numerical linear algebra Jacobi-like [Bunse-Gerstner, Byers, Mehrmann 1990] JADE [Cardoso-Souloumiacc 1993] [Theis 2007] abstract algebra one-by-one [folklore -1820] The recipe [Schur 1905] MKKKM [Murota-Kanno-Kojima-Kojima MM [Maehara-Murota 2012] 15/ ]
16 16/ 36 one-by-one method [ ]. A, X. wlog. X = diag(x 1,..., x n ), AX XA = [(x j x i )a ij ] = O x x y X A X A
17 17/ 36 Jacobi-like method [ ] (Bunse-Gerstner, Byers, Mehrmann 1990) one-by-one minimize [ off(p AP ) + off(p BP ) ] Givens 2 2 Jacobi
18 18/ 36 JADE [ ] (Cardoso, Souloumiac 1993) minimize [ off(p A 1 P ) + + off(p A N P ) ] Jacobi-like method 1 = by Cardoso
19 JADE [ ( )] (Theis 2007) minimize [ off(p A 1 P ) + + off(p A N P ) ] = [Maehara Gutch 2010] 19/ 36
20 old new numerical linear algebra Jacobi-like [Bunse-Gerstner, Byers, Mehrmann 1990] JADE [Cardoso-Souloumiacc 1993] [Theis 2007] abstract algebra one-by-one [folklore -1820] Schur lemma [Schur 1905] MKKKM [Murota-Kanno-Kojima-Kojima MM [Maehara-Murota 2012] 20/ ]
21 A 1,..., A N G Q A j Q = A j (Q G) G Schur - G A j - A j G G Schur lemma: MKKKM, MM: one-by-one 21/ 36
22 22/ 36 Schur lemma (Schur 1905) Q A j Q = A j (Q G) 1. A 1,..., A N G 2. G 3. A 1,..., A N 1930 Wigner cf. Heisenberg 1925
23 [Murota-Kanno-Kojima-Kojima 2010] 23/ 36 Q. 3V 3V (3i + j, 3k + l) k l i j A.
24 24/ 36 MKKKM [Murota-Kanno-Kojima-Kojima 2010, Maehara-Murota 2011] 1. A 1,..., A N cf: one-by-one
25 25/ 36 MKKKM [Murota-Kanno-Kojima-Kojima 2010, Maehara-Murota 2011] cf: one-by-one
26 26/ 36 MKKKM A 1,..., A N Artin-Wedderburn T := A 1,..., A N (M n1 I µ1 ) (M nl I µl ) T M n I µ one-by-one
27 MM [Maehara-Murota 2012] one-by-one X = diag(x 1,..., x n ), AX XA = [(x j x i )a ij ] = O x x X y A 1,..., A N X A 1,..., A N A 27/ 36
28 T := {X A i X X i A = O (i = 1,..., N)} 28/ 36 MM [Maehara-Murota 2012] 1. A i X XA i = O (i = 1,..., N) 2. X Artin-Wedderburn
29 29/ 36 MM [Maehara-Murota 2012] 1. A i X XA i ϵ (i = 1,..., N) 2. X ϵ ϵ
30 / maehara/commdec/ 30/ 36
31 31/ 36 A 1 A 2 A N simultaneously P A 1 P P A 2 P P A N P state of the art: [MM 2012]
32 32/ 36
33 33/ 36 preconditioning
34 A i X XA i = O (i = 1,..., N) X λ i λ j [Dyson index] n n exp( n λ 2 i /4) i<j λ i λ j i.e., λ i λ j cf. λ i λ j 2 34/ 36
35 35/ 36 T T = T 1 T l X T with n 2 k Dyson index ToDo:
36 A 1 A 2 A N simultaneously P A 1 P P A 2 P P A N P state of the art: [MM 2012] ( ) 36/ 36
a a b a b c d e R c d e A a b e a b a b c d a b c d e f a M a b f d a M b a b a M b a M b M M M R M a M b M c a M a R b A a b b a CF a b c a b a M b a b M a M b c a A b a b M b a A b a M b C a M C a M
index calculus
index calculus 2008 3 8 1 generalized Weil descent p :, E/F p 3 : Y 2 = f(x), where f(x) = X 3 + AX + B, A F p, B F p 3 E(F p 3) 3 : Generalized Weil descent E(F p 4) 2 Index calculus Plain version Double-large-prime
第85 回日本感染症学会総会学術集会後抄録(III)
β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ
P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22
1 14 28 16 00 17 30 P-1 P-2 P-3 P-4 P-5 2 24 29 17 00 18 30 P-6 P-7 P-8 P-9 P-10 P-11 P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 5 24 28 16 00 17 30 P-23
Micro-D 小型高密度角型コネクタ
Micro- 1 2 0.64 1.27 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 1.09 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 4 J J
131314 131314 100 16712 1 1 16624 63 4 89 27 3 2 2 1 8 38418 23203 132 252710129 134 24 30201320 136 30 144 30146-18239 23 2 132144 132 64 1322132113261 13413412 1348134212 134622 63013626 1441330 3 11520
1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030
1 913 9001030 A B C D E F G H J K L M 9:00 1A0900 9:15 1A0915 9:30 1A0930 9:45 1A0945 10 : 00 1A1000 10 : 15 1B0900 1B0915 1B0930 1B0945 1B1000 1C0900 1C0915 1D0915 1C0930 1C0945 1C1000 1D0930 1D0945 1D1000
136 pp p µl µl µl
135 2006 PCB C 12 H 10-n Cl n n 1 10 CAS No. 42 PCB: 53469-21-9, 54 PCB: 11097-69-1 0.01 mg/m 3 PCB PCB 25 µg/l 136 pp p µl µl µl 137 1 γ 138 1 γ γ γ µl µl µl µl µl µl µl l µl µl µl µl µl l 139 µl µl µl
A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18
2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1
O157 6/23 7/4 6 25 1000 117,050 6 14:00~15:30 1 2 22 22 14:30~15:30 8 12 1 5 20 6 20 10 11 30 9 10 6 1 30 6 6 0 30 6 19 0 3 27 6 20 0 50 1 2 6 4 61 1 6 5 1 2 1 2 6 19 6 4 15 6 1 6 30 6 24 30 59
1 C 2 C 3 C 4 C 1 C 2 C 3 C
1 e N >. C 40 41 2 >. C 3 >.. C 26 >.. C .mm 4 C 106 e A 107 1 C 2 C 3 C 4 C 1 C 2 C 3 C 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
平成24年財政投融資計画PDF出後8/016‐030
24 23 28,707,866 2,317,737 26,390,129 29,289,794 2,899,665 24 23 19,084,525 21,036,598 1952,073 24 23 8,603,613 8,393,427 967,631 925,404 202,440 179,834 217,469 219,963 66,716 64,877 3,160,423 2,951,165
1 2 http://www.japan-shop.jp/ 3 4 http://www.japan-shop.jp/ 5 6 http://www.japan-shop.jp/ 7 2,930mm 2,700 mm 2,950mm 2,930mm 2,950mm 2,700mm 2,930mm 2,950mm 2,700mm 8 http://www.japan-shop.jp/ 9 10 http://www.japan-shop.jp/
第18回海岸シンポジウム報告書
2011.6.25 2011.6.26 L1 2011.6.27 L2 2011.7.6 2011.12.7 2011.10-12 2011.9-10 2012.3.9 23 2012.4, 2013.8.30 2012.6.13 2013.9 2011.7-2011.12-2012.4 2011.12.27 2013.9 1m30 1 2 3 4 5 6 m 5.0m 2.0m -5.0m 1.0m
1 911 34/ 22 1012 2/ 20 69 3/ 22 69 1/ 22 69 3/ 22 69 1/ 22 68 3/ 22 68 1/ 3 8 D 0.0900.129mm 0.1300.179mm 0.1800.199mm 0.1000.139mm 0.1400.409mm 0.4101.199mm 0.0900.139mm 0.1400.269mm 0.2700.289mm
液晶ディスプレイ取説TD-E432/TD-E502/TD-E552/TD-E652/TD-E432D/TD-E502D
1 2 3 4 5 6 7 1 2 3 4 5 6 7 2 2 2 1 1 2 9 10 11 12 13 14 15 16 17 1 8 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 9 11 12 13 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 11 12
000-.\..
1 1 1 2 3 4 5 6 7 8 9 e e 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 10mm 150mm 60mm 25mm 40mm 30mm 25 26 27 1 28 29 30 31 32 e e e e e e 33 e 34 35 35 e e e e 36 37 38 38 e e 39 e 1 40 e 41 e 42 43
0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9
1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),
106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30 15 20 10 25 35 20 18 30 12 4.1 7 min. z = 602.5x 1 + 305.0x 2 + 2
105 4 0 1? 1 LP 0 1 4.1 4.1.1 (intger programming problem) 1 0.5 x 1 = 447.7 448 / / 2 1.1.2 1. 2. 1000 3. 40 4. 20 106 4 4.1 1 25.1 25.4 20.4 17.9 21.2 23.1 26.2 1 24 12 14 18 36 42 24 10 5 15 120 30
