v8 Mathematica ( ) [ ], { } Expand[(a+b)^2] Plot[Sin[x], {x, 0, 2Pi}] Windows Mathematica Mathematica 2.2 v8 Mathematica = ( ) = s
|
|
|
- えつま たかぎ
- 9 years ago
- Views:
Transcription
1 Bulletin of JSSAC(2012) Vol. 18, No. 2, pp : Mathematica v8 Wolfram Research Asia Limited 1 Mathematica R v v8 12 v v6 Mathematica v6 v7 v8 v6 OpenGL R Direct3D R Mathematica v8 Mathematica Mathematica v8 v8 Mathematica [email protected] c 2012 Japan Society for Symbolic and Algebraic Computation
2 v8 Mathematica ( ) [ ], { } Expand[(a+b)^2] Plot[Sin[x], {x, 0, 2Pi}] Windows Mathematica Mathematica 2.2 v8 Mathematica = ( ) = solve the equation x2+2x+1=0 Mathematica Wolfram R Mathematica Mathematica x==-1 x2 x^2 OK = plot sinx with red dashing sin(x) Mathematica = plot sinxy
3 Bulletin of JSSACVol. 18, No. 2, sin(x y) 2 3D Mathematica Mathematica 3 Mathematica typeset MathML Mathematica Mathematica GUI Mathematica Textbook PDF 3.2 TraditionalForm Mathematica TraditionalForm 3.3 CDF TM Computable Document Format Mathematica Mathematica
4 Mathematica Player v8 Mathematica 1. Mathematica NB :.nb CDF :.cdf 2. CDF Player 3. CDF CDF Player CDF Player Mathematica CDF Mathematica 1 Mathematica 4 Mathematica v2 Manipulate v6 4.1 GUI sin(x) sin(x) Manipulate[ Plot[ *Sin[ *x- *t], {x,-2*pi,2*pi}, PlotRange -> {-5,5}], {, 1, 5}, {, 1, 10}, {, 1, 10}, {t, 0, 10 Pi}] 1 2 {, 1, 5} [1.0, 5.0]
5 Bulletin of JSSACVol. 18, No. 2, : Manipulate 2: 3 t 3: 4: 4
6 n = 1, 2, 3,... (a + b) n func=sin, Cos, Tan, Cot func[x] Cos cos(x) 5 5: 4.2 GUI Manipulate NB CDF CDF Player Mathematica Mathematica Wolfram 5 v6 OpenGL Direc3D v D 3D 6 SphericalPlot3D[ 1, {u,0,pi}, {v,0,2pi}, Mesh->None, TextureCoordinateFunction->({#5, 1-#4}&), PlotStyle->Directive[Specularity[ White, 10], Texture[ ]], Lighting->"Neutral", Axes->False, RotationAction->"Clip"] 2D &
7 Bulletin of JSSACVol. 18, No. 2, & Mathematica GUI 3D Manipulate 2D Mathematica 6: 5.2 myspheres = Table[{RGBColor[Random[], Random[], Random[]], Manipulate[ Graphics3D[ Specularity[White, 128], Sphere[{x, y, z}, 1]}, {x, 0, 10, 4}, {y, 0, 10, 4}, {z, 0, 10, 4}]; {White, PointSize[.02], Point[{t[[1]], t[[2]], 5}], myspheres}, Background -> Black, Boxed -> False, Lighting -> {RGBColor[.3,.3,.3], {White, {{{t[[1]], t[[2]], 5}, {0, 0, 0}}, 2}}}, PlotRange -> {{-1, 10}, {-1, 10}, {-1, 10}}, ImageSize -> 500], {t, {-15, -15}, {20, 20}}, SaveDefinitions -> True] Mathematica C OpenGL+GLUT GUI Mathematica 6 Mathematica Manipulate 6.1 Manipulate
8 Manipulate Manipulate Manipulate 4.1 NDSolve (Numerical Differential equation Solve) NDSolve ss[a_] := NDSolve[{y [x]==y[x]*cos[x+a*y[x]], y[0]==1}, y, {x, 0, 30}]; ss Manipulate[ Plot[Evaluate[y[x] /. ss[a]], {x, 0, 30}, PlotRange -> {0, 3.0}], {a, 0, 2}] 7 a Rapid Proto Typing 7: 6.2 GPU v7 Parallelize v8 v8 GPU GPU CUDA OpenCL Mathematica GPU Mathematica GPU
9 Bulletin of JSSACVol. 18, No. 2, GPU CPU GPU GPU CPU CPU GPU 7 v6 Wolfram Mathematica 7.1 Wolfram Mathematica Wolfram Mathematica GDP GDP Mathematica 7.2 Mathematica Mathematica Mathematica Mathematica 100
10 TEX CAD 8 v8 Mathematica v8 CurrentImage Dynamic Dynamic[CurrentImage[ ]] Dynamic[EdgeDetect[CurrentImage[ ]]] Mathematica USB 9 Wolfram Alpha R Wolfram Alpha Wolfram Wolfram Alpha ( ) Mathematica ==integrate 1/(x^3-1)
11 Bulletin of JSSACVol. 18, No. 2, Show Steps 2 ==A glass of beer + a bigmac Wolfram Alpha 10 CDF CDF GUI CDF 11 Mathematica Mathematica mathematics mathematics Mathematica Mathematica Wolfram Mathematica Mathematica Wolfram
GraphicsWithPlotFull.nb Plot[{( 1), ( ),...}, {( ), ( ), ( )}] Plot Plot Cos x Sin x, x, 5 Π, 5 Π, AxesLabel x, y x 1 Plot AxesLabel
http://yktlab.cis.k.hosei.ac.jp/wiki/ 1(Plot) f x x x 1 1 x x ( )[( 1)_, ( )_, ( 3)_,...]=( ) Plot Plot f x, x, 5, 3 15 10 5 Plot[( ), {( ), ( ), ( )}] D g x x 3 x 3 Plot f x, g x, x, 10, 8 00 100 10 5
: Shift-Return evaluate 2.3 Sage? Shift-Return abs 2 abs? 2: abs 3: fac
Bulletin of JSSAC(2012) Vol. 18, No. 2, pp. 161-171 : Sage 1 Sage Mathematica Sage (William Stein) 2005 2 2006 2 UCSD Sage Days 1 Sage 1.0 4.7.2 1) Sage Maxima, R 2 Sage Firefox Internet Explorer Sage
OK (S) vncviewer UNIX EDS vncviewer : VNC server: eds.efc.sec.eng.shizuoka.ac.jp:51 OK 2
Mathematica I (2001 5 31, 6 7 ) UNIX EDS vncviewer Internet Exploler http://www.efc.sec.eng.shizuoka.ac.jp/admin/pubsoft/ vncviewer.exe : 1 OK (S) vncviewer UNIX EDS vncviewer : VNC server: eds.efc.sec.eng.shizuoka.ac.jp:51
/Users/yamada/Documents/webPage/public_html/kkk/ 8 プロット
8 8 Mathematica y = f(x) Plot Plot[f, {x, xmin, xmax}] f x x xmin ~ xmax In[]:= Plot@Sin@xD, 8x,, Pi
- 1 - - 2 - 320 421 928 1115 12 8 116 124 2 7 4 5 428 515 530 624 921 1115 1-3 - 100 250-4 - - 5 - - 6 - - 7 - - 8 - - 9 - & & - 11 - - 12 - GT GT - 13 - GT - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - -
1 P2 P P3P4 P5P8 P9P10 P11 P12
1 P2 P14 2 3 4 5 1 P3P4 P5P8 P9P10 P11 P12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 & 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1! 3 2 3! 4 4 3 5 6 I 7 8 P7 P7I P5 9 P5! 10 4!! 11 5 03-5220-8520
-1-1 1 1 1 1 12 31 2 2 3 4
2007 -1-1 1 1 1 1 12 31 2 2 3 4 -2-5 6 CPU 3 Windows98 1 -3-2. 3. -4-4 2 5 1 1 1 -5- 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000-6- -7-1 Windows 2 -8-1 2 3 4 - - 100,000 200,000 500,000
2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa
I 2017 11 1 SageMath SageMath( Sage ) Sage Python Sage Python Sage Maxima Maxima Sage Sage Sage Linux, Mac, Windows *1 2 Sage Sage 4 1. ( sage CUI) 2. Sage ( sage.sage ) 3. Sage ( notebook() ) 4. Sage
sin x
Mathematica 1998 7, 2001 3 Mathematica Mathematica 1 Mathematica 2 2 Mathematica 3 3 4 4 7 5 8 6 10 7 13 8 17 9 18 10 20 11 21 12 23 1 13 23 13.1............................ 24 13.2..........................
iphone GPGPU GPU OpenCL Mac OS X Snow LeopardOpenCL iphone OpenCL OpenCL NVIDIA GPU CUDA GPU GPU GPU 15 GPU GPU CPU GPU iii OpenMP MPI CPU OpenCL CUDA OpenCL CPU OpenCL GPU NVIDIA Fermi GPU Fermi GPU GPU
, : GUI Web Java 2.1 GUI GUI GUI 2 y = x y = x y = x
J.JSSAC (2005) Vol. 11, No. 3,4, pp. 77-88 Noda2005 MathBlackBoard MathBlackBoard is a Java program based on the blackboard applet. We can use the blackboard applet with GUI operations. The blackboard
2 1 Mathematica Mathematica Mathematica Mathematica Windows Mac *1 1.1 1.1 Mathematica 9-1 Expand[(x + y)^7] (x + y) 7 x y Shift *1 Mathematica 1.12
Chapter 1 Mathematica Mathematica Mathematica 1.1 Mathematica Mathematica (Wolfram Research) Windows, Mac OS X, Linux OS Mathematica 88 2012 11 9 2 Mathematica 2 1.2 Mathematica Mathematica 2 1 Mathematica
204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047
9 π 046 Vol.69-1 January 2016 204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 β γ α / α / 048 Vol.69-1 January 2016 π π π / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 049 β 050 Vol.69-1
untitled
1 1 1. 2. 3. 2 2 1 (5/6) 4 =0.517... 5/6 (5/6) 4 1 (5/6) 4 1 (35/36) 24 =0.491... 0.5 2.7 3 1 n =rand() 0 1 = rand() () rand 6 0,1,2,3,4,5 1 1 6 6 *6 int() integer 1 6 = int(rand()*6)+1 1 4 3 500 260 52%
1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ
1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c
P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22
1 14 28 16 00 17 30 P-1 P-2 P-3 P-4 P-5 2 24 29 17 00 18 30 P-6 P-7 P-8 P-9 P-10 P-11 P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 5 24 28 16 00 17 30 P-23
2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)
1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a
E MathML W3C MathJax 1.3 MathJax MathJax[5] TEX MathML JavaScript TEX MathML [8] [9] MathSciNet[10] MathJax MathJax MathJax MathJax MathJax MathJax We
MathML TEX 1,a) 1,b) MathML TEX JavaScript MathJax TEX GUI MathML TEX MathJax Prototype of e-learning and Communication Systems to Support Displaying Math Equations with MathML and TEX Nobuo Yamashita
Mathematica を活用する数学教材とその検証 (数式処理と教育)
$\bullet$ $\bullet$ 1735 2011 115-126 115 Mathematica (Shuichi Yamamoto) College of Science and Technology, Nihon University 1 21 ( ) 1 3 (1) ( ) (2 ) ( ) 10 Mathematica ( ) 21 22 2 Mathematica $?$ 10
Research into the child rearing behavior of mothers I Correlation with methods of their mothers Hiroko HARADA Kaiser-Meyer-Olkin α α α α Kaiser-Meyer-Olkin α α α α P P P P P P P P P P P P P P P P
PowerPoint プレゼンテーション
0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)
としてもよいし,* を省略し, その代わりにスペースを空けてもよい. In[5]:= 2 3 Out[5]= 6 数値計算 厳密な代数計算 整数および有理数については, 厳密な計算がなされます. In[6]:= Out[6]= In[7]:= Out[7]= 2^
Mathematica 入門 はじめに Mathematica は極めて高度かつ有用な機能を有する研究支援統合ソフトウェアです. 理工系学生にとって ( それどころか研究者にとっても ) 非常に便利なツールですから, 基本的な操作方法に慣れておくと, いざというときにとても重宝します. 入力方法 キーボードからの入力 Mathematica では, 数式はすべてキーボードから入力できるようになっています.
II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y
EPSON
B K L & & & & & & & & L & & & & & & & K & & & & & L L L & & & K L L L & & L L L & & & & & & & & & & & & & & & & & & & & & & & & & & & L & K L K & & & & & & & L L & & L & & L L & & & & &
™…
2/10 15 2010. No1362 1 1 216315 91430 Q A & 0.23% 1 1.4% 04-7120-2020 050-5540-2023 Q A & 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 1 2 3 4 5 6 7 8 9 10
bumon_pro.indd
q w e r t y u i o!0 !1!2!3 !4!5!6 !7!8!9 @0 @1 @2 @3 @4 @5 @6 @7 @8 @9 #0 #1 #2 #3 #4 #5 #6 #7 #8 #0 $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 %0 %1 %2 %3 %4 %5 %6 %7 %8 %9 ^0 ^1 ^2 ^3 ^4 ^5 ^6 ^7 ^8 ^9 &0 &1 &2
2012_05_GLK_cover.indd
c %& r Z \ W W n q & F % % & & % & & % % % & % & % & % & % & % & F F % % % & & & & % & A
2.8% 2.0% 2.4% 2.4% 0.4% 0.1% 0.3% 0.5% 3.8% 5.6% 25.6% 29.3% 64.6% 60.0% 1
2.8% 2.0% 2.4% 2.4% 0.4% 0.1% 0.3% 0.5% 3.8% 5.6% 25.6% 29.3% 64.6% 60.0% 1 16 24 21 20 20 23 10 11 9 10 3 3 3 2 3 1 3 4 6 8 2 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 3 4 Q & A Q1 A1 Q2 A2 Q3 A3 7
‡o‡P†C‡P‡Q”R„û†^‡P†C‡P‡Q
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Q & A ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
untitled
No. 1 2 3 1 4 310 1 5 311 7 1 6 311 1 7 2 8 2 9 1 10 2 11 2 12 2 13 3 14 3 15 3 16 3 17 2 18 2 19 3 1 No. 20 4 21 4 22 4 23 4 25 4 26 4 27 4 28 4 29 2760 4 30 32 6364 4 36 4 37 4 39 4 42 4 43 4 44 4 46
2 Bulletin 2008 4
Bulletin 2008 208 4 C O L O N N A D E F O R U M B A C K Y A R D The Japan Institute of Architects Tel: 03-3408-8291 Fax: 03-3408-8294 http://www.jia-kanto.org/members 2 Bulletin 2008 4 Bulletin 2008 4
1.3 2 gnuplot> set samples gnuplot> plot sin(x) sin gnuplot> plot [0:6.28] [-1.5:1.5] sin(x) gnuplot> plot [-6.28:6.28] [-1.5:1.5] sin(x),co
gnuplot 8 gnuplot 1 1.1 gnuplot gnuplot 2D 3D gnuplot ( ) gnuplot UNIX Windows Machintosh Excel gnuplot C 1.2 web gnuplot $ gnuplot gnuplot gnuplot> exit 1 1.3 2 gnuplot> set samples 1024 1024 gnuplot>
, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f
,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)
4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X
4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0
Wolfram Alpha と CDF の教育活用 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究)
1780 2012 119-129 119 Wolfram Alpha CDF (Shinya OHASHI) Chiba prefectural Funabashi-Keimei Highschool 1 RIMS Wolfram Alpha Wolfram Alpha Wolfram Alpha Wolfram Alpha CDF 2 Wolfram Alpha 21 Wolfram Alpha
●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb
" # $ % & ' ( ) * +, -. / 0 1 2 3 4 5 6 7 8 9 : ; < = >? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y " # $ % & ' ( ) * + , -. / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B
gnuplot gnuplot 1 3 y = x 3 + 3x 2 2 y = sin x sin(x) x*x*x+3*x*x
gnuplot gnuplot y = x + x y = sin x.8 sin(x) 8 7 6 x*x*x+*x*x.6.. -. -. -.6 -.8 - - - - - - - -. - -. - -.. gnuplot gnuplot> set xrange[-.:.] gnuplot> plot x**+*x** y = x x gnuolot> reset gnuplot> plot
