Q-Learning Support-Vector-Machine NIKKEI NET Infoseek MSN i

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Q-Learning Support-Vector-Machine NIKKEI NET Infoseek MSN 10 1 12 22 170 121 10 9 15 12 22 85 2 85 10 i"

Transcription

1 21 Stock price forecast using text mining

2 Q-Learning Support-Vector-Machine NIKKEI NET Infoseek MSN i

3 Abstract Stock price forecast using text mining Koji Nakaya The stock prices forecast was done by the numeric character data.. However, Fund manager is having dealings over the stocks by using information in not only the numeric character data but also a qualitative news article. Then, text mining was used aiming to forecast stock price that used the quantitative data and qualitative data in this research. Qualitative data extracts the word with the possibility of influencing stock prices by using the article that relates to the economy of NIKKEI NET, Infoseek, and MSN Sankei news from October 1st to December 22nd by 170 articles and makes word vector of 121 words. The quantitative data uses the longitudinal data of Nikkei average closing share price from September 15th to December 22nd the tenth ago from the article announcement. Text mining by the Neural Network is used for the stock prices forecast. The learning technique of Neural Network uses Back Propagation. Verification data uses the longitudinal data of word vector and stock prices of 85 sets. Whether the teacher data is a rise of next day s stock prices is assumed to be binary of the descent. Data for the verification uses the longitudinal data of word vector and stock prices of the remainder of 85 sets. Only using together and word vector of word vector and stock prices compared the recognition rates of the longitudinal data of stock prices. The results show that using of word vector and stock prices together became the highest result. key words Neural Network, stock prices forecast, word vector ii

4 A 24 iii

5 A A A A A A A A A A iv

6 A A A A A A A A v

7 vi

8 1 90 [1] [2] ICT [2]

9 1.1 2

10 2 MeCab

11 [3] 4

12 [3] [4] 5

13 ( 2.4) ( 2.5)

14 [5]

15 purelin(n) = n logsig(n) = - 1 (1 + exp( n)) 8

16 n = 2 (1 + exp( 2n)) 1-9

17

18

19

20

21 3 3.1 NIKKEI NET Infoseek MSN NIKKEI NET Infoseek MSN

22 [1] e-10 : 1 : : 2 :

23

24

25

26 e

27 4.2 20

28 2 1 21

29

30 [1] : [2] UFJ : [3] George Chang Marcus J. Healey James A. M. Mchugh Jason T. L. Wang Web 2005 [4] / 2006 [5],

31 A A

32 A

33 A

34 A

35 A

36 A

37 A

38 A

39 A

40 A

41 A

42 A

43 A

44 A

45 A

46 A

47 A

48 A

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i 25 Feature Selection for Prediction of Stock Price Time Series 1140357 2014 2 28 ..,,,,. 2013 1 1 12 31, ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i Abstract Feature Selection for Prediction of Stock Price Time

More information

Takens / / 1989/1/1 2009/9/ /1/1 2009/9/ /1/1 2009/9/30,,, i

Takens / / 1989/1/1 2009/9/ /1/1 2009/9/ /1/1 2009/9/30,,, i 21 Market forecast using chaos theory 1100334 2010 3 1 Takens / / 1989/1/1 2009/9/30 1997/1/1 2009/9/30 1999/1/1 2009/9/30,,, i Abstract Market forecast using chaos theory Hiroki Hara The longitudinal

More information

29 jjencode JavaScript

29 jjencode JavaScript Kochi University of Technology Aca Title jjencode で難読化された JavaScript の検知 Author(s) 中村, 弘亮 Citation Date of 2018-03 issue URL http://hdl.handle.net/10173/1975 Rights Text version author Kochi, JAPAN http://kutarr.lib.kochi-tech.ac.jp/dspa

More information

johnny-paper2nd.dvi

johnny-paper2nd.dvi 13 The Rational Trading by Using Economic Fundamentals AOSHIMA Kentaro 14 2 26 ( ) : : : The Rational Trading by Using Economic Fundamentals AOSHIMA Kentaro abstract: Recently Artificial Markets on which

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

22 Google Trends Estimation of Stock Dealing Timing using Google Trends

22 Google Trends Estimation of Stock Dealing Timing using Google Trends 22 Google Trends Estimation of Stock Dealing Timing using Google Trends 1135064 3 1 Google Trends Google Trends Google Google Google Trends Google Trends 2006 Google Google Trend i Abstract Estimation

More information

25 Removal of the fricative sounds that occur in the electronic stethoscope

25 Removal of the fricative sounds that occur in the electronic stethoscope 25 Removal of the fricative sounds that occur in the electronic stethoscope 1140311 2014 3 7 ,.,.,.,.,.,.,.,,.,.,.,.,,. i Abstract Removal of the fricative sounds that occur in the electronic stethoscope

More information

Web Web Web Web Web, i

Web Web Web Web Web, i 22 Web Research of a Web search support system based on individual sensitivity 1135117 2011 2 14 Web Web Web Web Web, i Abstract Research of a Web search support system based on individual sensitivity

More information

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun 10 1-14 2014 1 2 3 4 2 1 2 3 4 Web PubMed elbow pain baseball elbow little leaguer s elbow acupuncture electric acupuncture 2003 2012 10 39 32 Web PubMed Key words growth stage elbow pain baseball elbow

More information

第122号.indd

第122号.indd -1- -2- -3- 0852-36-5150 0852-36-5163-4- -5- -6- -7- 1st 1-1 1-2 1-3 1-4 1-5 -8- 2nd M2 E2 D2 J2 C2-9- 3rd M3 E3 D3 J3 C3-10- 4th M4 E4 D4 J4 C4-11- -12- M5 E5 J5 D5 C5 5th -13- -14- NEWS NEWS -15- NEWS

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信

NEXT FUNDS NASDAQ-100 連動型上場投信 NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

NEXT FUNDS NASDAQ-100 連動型上場投信

NEXT FUNDS NASDAQ-100 連動型上場投信 NEXT FUNDS NASDAQ-100 連動型上場投信 TOPIX Exchange Traded Fund Year Index Value Daily NAV Daily Return Unit NAV -Month Day Return (per Unit) Return Differential Outstanding (i) The TOPIX Index Value and the

More information

SOM SOM(Self-Organizing Maps) SOM SOM SOM SOM SOM SOM i

SOM SOM(Self-Organizing Maps) SOM SOM SOM SOM SOM SOM i 20 SOM Development of Syllabus Vsualization System using Spherical Self-Organizing Maps 1090366 2009 3 5 SOM SOM(Self-Organizing Maps) SOM SOM SOM SOM SOM SOM i Abstract Development of Syllabus Vsualization

More information

i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13

More information

262014 3 1 1 6 3 2 198810 2/ 198810 2 1 3 4 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1... 1... 2... 2... 4... 5... 9... 9... 10... 10... 10... 10... 13 2... 13 3... 15... 15... 15... 16 4...

More information

1 1 tf-idf tf-idf i

1 1 tf-idf tf-idf i 14 A Method of Article Retrieval Utilizing Characteristics in Newspaper Articles 1055104 2003 1 31 1 1 tf-idf tf-idf i Abstract A Method of Article Retrieval Utilizing Characteristics in Newspaper Articles

More information

7,, i

7,, i 23 Research of the authentication method on the two dimensional code 1145111 2012 2 13 7,, i Abstract Research of the authentication method on the two dimensional code Karita Koichiro Recently, the two

More information

14 CRT Color Constancy in the Conditions of Dierent Cone Adaptation in a CRT Display

14 CRT Color Constancy in the Conditions of Dierent Cone Adaptation in a CRT Display 14 CRT Color Constancy in the Conditions of Dierent Cone Adaptation in a CRT Display 1030281 2003 2 12 CRT [1] CRT. CRT von Kries PC CRT CRT 9300K CRT 6500K CRT CRT 9300K x y S L-2M x y von Kries S L-2M

More information

Web Web Web Web i

Web Web Web Web i 28 Research of password manager using pattern lock and user certificate 1170369 2017 2 28 Web Web Web Web i Abstract Research of password manager using pattern lock and user certificate Takuya Mimoto In

More information

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 I 178 II 180 III ( ) 181 IV 183 V 185 VI 186 178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 4 10 (

More information

,,.,.,,.,.,.,.,,.,..,,,, i

,,.,.,,.,.,.,.,,.,..,,,, i 22 A person recognition using color information 1110372 2011 2 13 ,,.,.,,.,.,.,.,,.,..,,,, i Abstract A person recognition using color information Tatsumo HOJI Recently, for the purpose of collection of

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

2 ( ) i

2 ( ) i 25 Study on Rating System in Multi-player Games with Imperfect Information 1165069 2014 2 28 2 ( ) i ii Abstract Study on Rating System in Multi-player Games with Imperfect Information Shigehiko MORITA

More information

kut-paper-template2.dvi

kut-paper-template2.dvi 19 A Proposal of Text Classification using Formal Concept Analysis 1080418 2008 3 7 ( ) Hasse Web Reuters 21578 Concept Explorer 2 4 said i Abstract A Proposal of Text Classification using Formal Concept

More information

IT,, i

IT,, i 22 Retrieval support system using bookmarks that are shared in an organization 1110250 2011 3 17 IT,, i Abstract Retrieval support system using bookmarks that are shared in an organization Yoshihiko Komaki

More information

kut-paper-template.dvi

kut-paper-template.dvi 14 Application of Automatic Text Summarization for Question Answering System 1030260 2003 2 12 Prassie Posum Prassie Prassie i Abstract Application of Automatic Text Summarization for Question Answering

More information

(2003)

(2003) A discussion of research with questionnaires as psychological study through a comparison with clinical interview MOTONAGA, Takuro This study discusses underlying issues and viewpoints to administrate researches

More information

Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Social Networking

Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Social Networking 23 An attribute expression of the virtual window system communicators 1120265 2012 3 1 Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual

More information

B_01田中.indd

B_01田中.indd A Study on the Image of the City in Contemporary Korea: Democracy and Busan Satoru Tanaka Abstract Busan has been the biggest harbor city in Korea, and ranked as one of the centers in democratization history

More information

soturon.dvi

soturon.dvi 12 Exploration Method of Various Routes with Genetic Algorithm 1010369 2001 2 5 ( Genetic Algorithm: GA ) GA 2 3 Dijkstra Dijkstra i Abstract Exploration Method of Various Routes with Genetic Algorithm

More information

2 1 ( ) 2 ( ) i

2 1 ( ) 2 ( ) i 21 Perceptual relation bettween shadow, reflectance and luminance under aambiguous illuminations. 1100302 2010 3 1 2 1 ( ) 2 ( ) i Abstract Perceptual relation bettween shadow, reflectance and luminance

More information

II

II No. 19 January 19 2013 19 Regionalism at the 19 th National Assembly Elections Focusing on the Yeongnam and Honam Region Yasurou Mori As the biggest issue of contemporary politics at South Korea, there

More information

The research,consciousness of the mother who used temporary child care at the day nursery MATSUOKA Tomoko, SAKURADANI Mariko Research for the mother who has the experience which temporary child care was

More information

,,,,., C Java,,.,,.,., ,,.,, i

,,,,., C Java,,.,,.,., ,,.,, i 24 Development of the programming s learning tool for children be derived from maze 1130353 2013 3 1 ,,,,., C Java,,.,,.,., 1 6 1 2.,,.,, i Abstract Development of the programming s learning tool for children

More information

Web Basic Web SAS-2 Web SAS-2 i

Web Basic Web SAS-2 Web SAS-2 i 19 Development of moving image delivery system for elementary school 1080337 2008 3 10 Web Basic Web SAS-2 Web SAS-2 i Abstract Development of moving image delivery system for elementary school Ayuko INOUE

More information

untitled

untitled i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51

More information

AccessflÌfl—−ÇŠš1

AccessflÌfl—−ÇŠš1 ACCESS ACCESS i ii ACCESS iii iv ACCESS v vi ACCESS CONTENTS ACCESS CONTENTS ACCESS 1 ACCESS 1 2 ACCESS 3 1 4 ACCESS 5 1 6 ACCESS 7 1 8 9 ACCESS 10 1 ACCESS 11 1 12 ACCESS 13 1 14 ACCESS 15 1 v 16 ACCESS

More information

2

2 1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59

More information

SURF,,., 55%,.,., SURF(Speeded Up Robust Features), 4 (,,, ), SURF.,, 84%, 96%, 28%, 32%.,,,. SURF, i

SURF,,., 55%,.,., SURF(Speeded Up Robust Features), 4 (,,, ), SURF.,, 84%, 96%, 28%, 32%.,,,. SURF, i 24 SURF Recognition of Facial Expression Based on SURF 1130402 2013 3 1 SURF,,., 55%,.,., SURF(Speeded Up Robust Features), 4 (,,, ), SURF.,, 84%, 96%, 28%, 32%.,,,. SURF, i Abstract Recognition of Facial

More information

PC PDA SMTP/POP3 1 POP3 SMTP MUA MUA MUA i

PC PDA SMTP/POP3 1 POP3 SMTP MUA MUA MUA i 21 The private mailers synchronization operation for plural terminals 1125083 2010 3 1 PC PDA SMTP/POP3 1 POP3 SMTP MUA MUA MUA i Abstract The private mailers synchronization operation for plural terminals

More information

SNS ( ) SNS(Social Networking Service) SNS SNS i

SNS ( ) SNS(Social Networking Service) SNS SNS i 22 SNS Job-Hunting Activities situation Understanding Support System Using SNS 1110252 2011 03 01 SNS ( ) SNS(Social Networking Service) SNS SNS i Abstract Job-Hunting Activities situation Understanding

More information

(VKIR) VKIR VKIR DCT (R) (G) (B) Ward DCT i

(VKIR) VKIR VKIR DCT (R) (G) (B) Ward DCT i 24 Region-Based Image Retrieval using Color Histogram Feature 1130340 2013 3 1 (VKIR) VKIR VKIR DCT (R) (G) (B) 64 64 Ward 20 1 20 1 20. 5 10 2 DCT i Abstract Region-Based Image Retrieval using Color Histogram

More information

評論・社会科学 84号(よこ)(P)/3.金子

評論・社会科学 84号(よこ)(P)/3.金子 1 1 1 23 2 3 3 4 3 5 CP 1 CP 3 1 1 6 2 CP OS Windows Mac Mac Windows SafariWindows Internet Explorer 3 1 1 CP 2 2. 1 1CP MacProMacOS 10.4.7. 9177 J/A 20 2 Epson GT X 900 Canon ip 4300 Fujifilm FinePix

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information

CONTENTS 3 8 10 12 14 15 16 17 18 19 28 29 30 Public relations brochure of Higashikawa 9 2016 September No.755 2

CONTENTS 3 8 10 12 14 15 16 17 18 19 28 29 30 Public relations brochure of Higashikawa 9 2016 September No.755 2 9 2016 September No.755 CONTENTS 3 8 10 12 14 15 16 17 18 19 28 29 30 Public relations brochure of Higashikawa 9 2016 September No.755 2 3 5 4 6 7 9 8 11 10 HIGASHIKAWA TOWN NEWS 12 13 DVD 14 Nature Column

More information

社会学部紀要 117号☆/1.野瀬

社会学部紀要 117号☆/1.野瀬 October 2013 A 13 2 c 1 1979 A 13 2 b c 1 2012 9 160 2 33 2 OECD 1 2 35.3 OECD 34 29 70.0 50.426 64.7 OECD 30.0 2.2 OECD GDP 2 0.5 31 31 OECD 1.1 45 3 3 1 1 2 200 400 2 1 2 400 600 600 800 13 2 c 2013

More information

2015 ( 27 ) RFID RF RFID, 2., 3., 4. i

2015 ( 27 ) RFID RF RFID, 2., 3., 4. i 2015 ( 27 ) 71143204 2015 ( 27 ) RFID RF 1 100 98 20 20 1 19 1. RFID, 2., 3., 4. i Abstract of Bachelor s Thesis Academic Year 2015 Smart Management System of Rechargeable Batteries with Automatic Identification

More information

TF-IDF TDF-IDF TDF-IDF Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Sat

TF-IDF TDF-IDF TDF-IDF Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Sat 1 1 2 1. TF-IDF TDF-IDF TDF-IDF. 3 18 6 Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Satoshi Date, 1 Teruaki Kitasuka, 1 Tsuyoshi Itokawa 2

More information

*.....J.....S.q..2013B_....

*.....J.....S.q..2013B_.... 1 1 2 2 3 3 4 4 5 6 5 7 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

More information

ron.dvi

ron.dvi 12 Effect of occlusion and perception of shadow in depth perception caused by moving shadow. 1010361 2001 2 5 (Occlusion), i Abstract Effect of occlusion and perception of shadow in depth perception caused

More information

% 95% 2002, 2004, Dunkel 1986, p.100 1

% 95% 2002, 2004, Dunkel 1986, p.100 1 Blended Learning 要 旨 / Moodle Blended Learning Moodle キーワード:Blended Learning Moodle 1 2008 Moodle e Blended Learning 2009.. 1994 2005 1 2 93% 95% 2002, 2004, 2011 2011 1 Dunkel 1986, p.100 1 Blended Learning

More information

<4D6963726F736F667420576F7264202D20955D985F81458ED089EF89C88A77313036816989BA816A32303133944E82568C8E825093FA8C8E88B18DE28FE396EC92E78ADB8E5289FC>

<4D6963726F736F667420576F7264202D20955D985F81458ED089EF89C88A77313036816989BA816A32303133944E82568C8E825093FA8C8E88B18DE28FE396EC92E78ADB8E5289FC> QDA 1 2 2 1 2 2 3 3 1 3 2 4 4 1 4 2 1 EBP Evidence Based Practice EBP 1 2013 6 27 2013 7 1 Agency for Health Care Policy and Research : AHCPR Gambrill 2006 McNeece & Thyer 2004 AHCPR Ia ba b 2006 KJ 2

More information

86 7 I ( 13 ) II ( )

86 7 I ( 13 ) II ( ) 10 I 86 II 86 III 89 IV 92 V 2001 93 VI 95 86 7 I 2001 6 12 10 2001 ( 13 ) 10 66 2000 2001 4 100 1 3000 II 1988 1990 1991 ( ) 500 1994 2 87 1 1994 2 1000 1000 1000 2 1994 12 21 1000 700 5 800 ( 97 ) 1000

More information

社会学部紀要 119号☆/表紙(119)

社会学部紀要 119号☆/表紙(119) October 2014 2 2014 SSM SSM 1 1 1.1 1909 2002 2002 : 114 1965 SSM 20101965 40 1917 26 50 1907 1916 1917 26 1907 16 SSM 1 1 1886 1896 1906 1916 1926 95 05 15 25 35 31.6 47.4 10.5 5.3 5.3 32.4 51.4 13.5

More information

29 28 39 1936 Acquiring technique and forming character in physical education after 1936 Analysis of articles of Kenji Shinozaki FUJIKAWA Kazutoshi The United Graduate School of Education Tokyo Gakugei

More information

A Contrastive Study of Japanese and Korean by Analyzing Mistranslation from Japanese into Korean Yukitoshi YUTANI Japanese, Korean, contrastive study, mistranslation, Japanese-Korean dictionary It is already

More information

立命館21_松本先生.indd

立命館21_松本先生.indd 2143-552010 1 2 () 1 2 3 456 78- Key Words 1 3 12007 2 3 508 19992008 1 23 4 43 2120107 4 2008 1992 2003 2005 1989 2008 4 2 2-1 10 4 4 6 5 4 5 2946 1 155 11 41 44 45 4 2-2 2003 1 21 2 1 3 4 5 6 7 3 2120107

More information

立命館20_服部先生.indd

立命館20_服部先生.indd 20 93-105 2010 2 () ' - 1 ( ) ( ' 2005) Key Words 2 1967 93 20 2010 1 94 1 ' 2002 2 2 1996 1996 1999 2 2 2 1993 1999 4 1 2 1985 1989 1986 1994 4 1 2 1 1 4 2 4 4 1 4 1966 4 10-1970 20 1993-1972 95 20 2010

More information

1996 2000 2004 1984 2005 7150 000 9 500 9 4 13 10 95 11 11 12 20002004 9 70

1996 2000 2004 1984 2005 7150 000 9 500 9 4 13 10 95 11 11 12 20002004 9 70 14 2006 1 Key Words 2002 3 1 2 3 3 1 2 3 1969 1987 69 1996 2000 2004 1984 2005 7150 000 9 500 9 4 13 10 95 11 11 12 20002004 9 70 14 2006 1 15 71 72 1 22 6 32 9 200 6 3 1 2 2000 10 1 2003 10 2005 6 5 4

More information

立命館16_坂下.indd

立命館16_坂下.indd 1669-792008 1 - ' 85- -108 ' Key words 1 2 2003 69 1620082 5 3 1990 1997 4 5 2001 1307 6 7 1 1 1 1996 100 2 1997 71 3 1998 71 4 1999 96 5 2000 95 6 2001 145 7 2002 191 8 2003 174 9 2004 120 10 2005 122

More information

立命館人間科学研究No.10

立命館人間科学研究No.10 1 77 5 Key words 1 23 3 11417 14310045 20022004 2 2003 20022005 20022004 2 10200511 3 2003 1152003 59 1995 3 32003 19932002 20032003 2005 20052005 4 1997 2000521986 2001 42001 3 1981 6 1 7 5 1000248 1632647

More information

立命館21_川端先生.indd

立命館21_川端先生.indd 21 119-132 2010 ( ) ' Key Words 119 21 2010 7 1962 2001 2001 2007 1982 1988 1997 2007 1997 1998 1863 1880 1 1998 1998 2001 1599 120 121 1599 1695 8 1695 1714 4 1714 1715 5 1715 100 1812 9 1812 1864 2001

More information