Size: px
Start display at page:

Download "1 3 1.1................................. 3 1.2................................... 4 1.2.1................... 4 1.2.2..................... 4 1.2.3....."

Transcription

1 2012 STUDIES ON RANKING DOCUMENTS WITH QUERY-INTENT SENSITIVITY 11R3129 Shota HATAKENAKA

2 PageRank PageRank PageRank Topic Sensitive PageRank

3 Rocchio

4 1 1.1,,,,, Web, Wiki, blog, twitters,, (query),, (term-matching) (term frequency), (inverse document frequency), TF*IDF,,,,,,,,,,.,,,,,. 3

5 1.2, ,,, Web (theme) (authoritative) (distributive),, Web PageRank [1] ,, Web PageRank HITS,??,,, Topic Sensitive PageRank 10 4 Topic Sensitive PageRank [2] 4

6 1.1: 1.2.3?? Bhattacharyya.[3] 1.2:

7 , Rocchio 5 3 Rocchio [4] PageRank , : 3 (DEIM ), PageRank 2., : Ranking Documents using Similarity-based PageRanks, IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PacRim), PageRank 6

8 3., : PageRank, 4 (DEIM ), 2012., 2, 4., : Ranking Documents with Query and Topic Sensitivity, 7th International Conference on Digital Information Management (ICDIM ), 2012., 2, 5., : Query and Topic Sensitive PageRank for General Documents, 14th IEEE International Symposium on Web Systems Evolution (WSE), 2012., 2, 6.,, :, 11 FIT, 2012.,,, Bhattacharyya.,Bhattacharyya,. 7.,, : Ranking Documents with Query-Topic Sensitivity, International Workshop on Web Information Retrieval Support Systems in IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology(WIRSS), , 7

9 . 8.,, :, 5 (DEIM ), Web 8

10 2 PageRank 2.1,,, Web, Wiki, blog, twitters,, (query),, (term-matching) (term frequency) (inverse document frequency) TF*IDF,, ( ) 9

11 , Web (theme) (authoritative) (distributive),,,,,,,,,,, Web PageRank HITS, Web PageRank d d =< v 1,..., v n > i = 1,..., n w i v i 2 TF*IDF q d i 10

12 cos(d i q) cos(d i q) cos(d i, q) = d i q d i q q d 1, d 2 d n PageRank PageRank Web Web Web PageRank Web PageRank A B PageRank 11

13 P i PageRank P R i P j PageRank P R j P R i = P j B Pi P R j P R j B Pi P i P R j P j PageRank 1 n PageRank H 1 n t t = t+1 H H 2 PageRank H Web Web PageRank 1 Web Web 2 Web Web 2 H H H = (1 d)h + d N N Web d Web Web PageRank Web PageRank Web 12

14 d i d j cos(d i, d j ) = d i d j d i d j 0 PageRank 2 d 0 d 1 d n N ( ) d 1 d 0 r 01 r 01 = 1 N r 01 d 1 d n d 0 d 0 d 1 d n d 1 d 0 rw 01 rw 01 = w 01 ni=1 w 0i w 01 d 0 d 1 d 0 d PageRank 2 1/N N M M = (1 d)m + d d 0.15 M PageRank 13

15 A B B C A C ( ) PageRank PageRank r 1 r 2 10 Sim(r 1, r 2 ) = (A B) k A B r 1 r 2 k PageRank PageRank PageRank 2 3 PageRank

16 (PageRank) Web PageRank 2.5 Web 15

17 2.1: PageRank Top10 PR

18 2.2: TOP : k Sim (PageRank, )

19 3 PageRank, 2, 3.1,,,,, Web, Wiki, blog, twitters,,, (query),, (term-matching) (term frequency), (inverse document frequency), TF*IDF,,,,,,,,,, ( ),, 18

20 ,,, (Topic Driftting), Web PageRank HITS,,,, Web PageRank

21 2 3.3 d d =< v 1,..., v n > i = 1,..., n w i v i 2 TF*IDF q d i cos(d i q) cos(d i q) cos(d i, q) = d i q d i q q d 1, d 2 d n 3.4 PageRank PageRank PageRank PageRank A B PageRank 20

22 d i PageRank P R i d j PageRank P R j P R i = d j B di P R j P R j B di d i P R j d j PageRank 1 n PageRank H 1 n t t = t+1 H H 2 PageRank H Web PageRank H H H = (1 d)h + d N N Web d Topic Sensitive PageRank Topic Sensitive PageRank [7] Web ODP ODP PageRank 2 PageRank ODP c j PageRank d PageRank rank jd q PageRank c j q P (c j q ) P (c j q ) = P (c j) P (q c j ) P (q ) P (c j ) P (q c j ) 21

23 s qd s qd = n P (c j q ) rank jd j ODP [?] PageRank 2 d i t j T ji T ji = d i t j d i t j t j t j s j t j s j d i d j w ij w ij = d i d j d i d j 0 22

24 PageRank 2 d 0 d 1 d n N ( ) d 1 d 0 r 01 r 01 = 1 N r 01 d 1 d n d 0 d 0 d 1 d n d 1 d 0 r 01 r 01 = w 01 ni=1 w 0i d 0 d PageRank PageRank 2 1/N N t j M M = (1 d)m + d d PageRank 0.15 M PageRank s j PageRank PageRank s j d i PageRank P R ji P R ji = s j nk=1 s k P R ji s j d i PageRank P R ji 23

25 3.5.3 t j t j q m s j Q mj s j w j Q jm = q m w j q m w j Q jm q m d i n v mi = T ji P R ji Q jm j=1 q m d i v mi PageRank [?]

26 8 ( ) PageRank Topic Sensitive PageRank Topic Sensitive PageRank PageRank 2 ODP 8 PageRank : TSPR MYPR TSPR MYPR ,3,5 3,4, Topic Sensitive PageRank

27 10 4 Topic Sensitive PageRank 4 2 Topic Sensitive PageRank Topic Sensitive PageRank Topic Sensitive PageRank Topic Sensitive PageRank Topic Sensitive PageRank Topic Sensitive PageRank Topic Sensitive PageRank Topic Sensitive PageRank

28 3.2: (TSPR) 4.56E E E-08 0 (MYPR) (TSPR) E E-08 (MYPR) Topic Sensitive PageRank 1 Topic Sensitive PageRank ODP Web

29 3.3: Topic Sensitive PageRank PageRank ( ) : PageRank * ( ) : Topic Sensitive PageRank PageRank ( )

30 3.6: PageRank * ( ) : TD

31 3.8: TD

32 4 4.1 Blog twitter 31

33 4.2 ( ) ( ) Bhattacharyya [6] Bhattacharyya Bhattacharyya 1 L = m u=1 P u Q u p q m u=1 P u = m u=1 Q u = 1 blog twitter Bhattacharyya Bhattacharyya 2 d q = N n=1 tf i Bha i N q d d q tf i d i Bha q i q i Bhattacharyya N d q q q Bhattacharyya q Bhattacharyya 0 Bhattacharyya 32

34 q Bhattacharyya q Bhattacharyya Bhattacharyya Bhattacharyya q q Bhattacharyya Bhattacharyya 0 Bhattacharyya Bhattacharyya q q d , ,000 6, Bhattacharyya 4.1 Bhattacharyya 4.2 Bhattacharyya ID

35 4.1: Bhattacharyya Bhattacharyya ID : Bhattacharyya ( ) Bhattacharyya ID Bhattacharyya 4.3 Bhattacharyya Bhattacharyya Bhattacharyya 34

36 4.3: Bhattacharyya ( ) Bhattacharyya ID Bhattacharyya Bhattacharyya Bhattacharyya 4.6 Bhattacharyya Bhattacharyya 35

37 4.4: 5 ID: : : : : : 28 36

38 5 5.1 Blog twitter,,,, ( ) ( ) 37

39 3 Rocchio 5.2 Rocchio d d =< v 1,..., v n > i = 1,..., n w i v i 2 TF*IDF q d i cos(d i q) cos(d i q) 38

40 cos(d i, q) = d i q d i q q d 1, d 2 d n Rocchio [15] q D r D n TF*IDF q q q = q + D R d i D R d i D N d j D N d j D R D N Bhattacharyya [?] Bhattacharyya Bha = m u=1 P u Q u (0 Bha 1) p q ( m u=1 P u = m u=1 Q u = 1) blog twitter 39

41 Bhattacharyya Bhattacharyya q q i BC iq 1 BC iq = Bha iq log( ) CO iq Bha iq q i Bhattacharyya CO iq q i 2 Bha CO Bha Bha Bha CO iq CO iq = c a + b c a i b q c i q q q BC dr N BC iq,n+1 = BC iq,n (1 + w i,d + N + w i,d N ) BC i,n n q i N N + n w i,d + w i,d i i n+1 j dr j,n+1 Nn=1 tf i,j BC iq,n+1 dr j,n+1 = N tf i,j j i N j j CO j CO j = Nn=1 tf i,j CO iq N 40

42 q i BC iq 2. N BC i,n , ,000 6, Rocchio 3 =1.0 =0.8 =

43 Rocchio 3 top10 R) Rocchio Rocchio Rocchio 5 ( ), 1, 4 5 Rocchio

44 5.1: Rocchio FB[0] FB[1] FB[2] FB[3] R) R) R) R) ( ) R) ( ) ( ) ( )

45 5.2: Rocchio SMAP SMAP , 44

46 5.3: ??NY, , ASEM ASEM

47 5.4: Rocchio ?? PT ?? , 18 PT

48 5.5: ?? , NHK

49 5.6: ?? ,

50 6,. Web,,,,,,,,, 49

51 50

52 [1] Hatakenaka, S. and Miura, T.: Ranking Documents using Similarity-based Page- Ranks, IEEE Pacific Rim Conference on Communications, Computers and Signal Processing(PacRim), [2] Hatakenaka, S. and Miura, T.: Query and Topic Sensitive PageRank for General Documents, 14th IEEE International Symposium on Web Systems Evolution(WSE), [3] :, 11 FIT, [4] :, 5 (DEIM), [5] S. Brin and L. Page The anatomy of a large scale hypertextual Web search engine. ComputerNetworks and ISDN Systems, 30, , [6] Oren. Kurland and Lillian Lee PageRank without hyperlinks: Structural reranking using links induced by language models. Proceedings of the 28th annual international ACM SIGIR, [7] T. H. Haveliwala Topic-sensitive PageRank. Proceedings of the 11th international conference on World Wide Web, [8] Amy N. Langville, Carl D. Meyer,,, Google PageRank 2009 [9] J. Kleinberg Bursty and hierarchical structure in streams. Proc. 8th SIGKDD,2002, [10] Masaya Murata, Hiroyuki Toda, Yumiko Matsuura and Ryoji Kataoka, A Query Expansion Method Using Access Concentration Sites in Search Result Proceedings of the DataBase and Web symposium,

53 [11] Hang Cui, Ji-RongWen, Jian-Yun Nie andwei-yingma, Probabilistic Query Expansion Using Quer Logs Proceedingsof the 11th international conference on World Wide Web 2002, [12] Georges E. Dupret and Benjamin Piwowarski. A user browsing model to predict search engine click data from past observations ACM SIGIR , [13] KMamoru Komachi, Shimpei Makimoto, Kei Uchiumi, and Manabu Sassano. Learning semanticcategories from clickthrough logs ACLIJCNLP , [14] Qingshan LIU and Dimitris N METAXAS Unifying Subspace and Distance Metric Learning with Bhattacharyya Coefficient for Image Classification Lecture Notes in Computer Science 2009 Volume 5416/ , [15] Rocchio, J.J Relevance fssdback in information retrieval. The SMART Retrieval Systems, pp , Prentice-Hall,

,, WIX. 3. Web Index 3. 1 WIX WIX XML URL, 1., keyword, URL target., WIX, header,, WIX. 1 entry keyword 1 target 1 keyword target., entry, 1 1. WIX [2

,, WIX. 3. Web Index 3. 1 WIX WIX XML URL, 1., keyword, URL target., WIX, header,, WIX. 1 entry keyword 1 target 1 keyword target., entry, 1 1. WIX [2 DEIM Forum 2013 B10-4 Web Index 223-8522 3-14-1 E-mail: [email protected], [email protected], URL WIX, Web Web Index(WIX). WIX, WIX.,,. Web Index, Web, Web,, Related Contents Recommendation

More information

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF   a m Vol.55 No.1 2 15 (Jan. 2014) 1,a) 2,3,b) 4,3,c) 3,d) 2013 3 18, 2013 10 9 saccess 1 1 saccess saccess Design and Implementation of an Online Tool for Database Education Hiroyuki Nagataki 1,a) Yoshiaki

More information

IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info

IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Information Science and Technology, Osaka University a) [email protected] 1 1 Bucket R*-tree[5] [4] 2 3 4 5 6 2. 2.1 2.2 2.3

More information

IPSJ SIG Technical Report Vol.2013-HCI-152 No /3/13 1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a)

IPSJ SIG Technical Report Vol.2013-HCI-152 No /3/13 1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a) 1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a) [email protected] b) [email protected] c) [email protected] / 2. Apple iphoto Google Picasa GPS GPS GPS [1][2]

More information

DEIM Forum 2012 E Web Extracting Modification of Objec

DEIM Forum 2012 E Web Extracting Modification of Objec DEIM Forum 2012 E4-2 670 0092 1 1 12 E-mail: [email protected], {dkitayama,sumiya}@shse.u-hyogo.ac.jp Web Extracting Modification of Objects for Supporting Map Browsing Junki MATSUO, Daisuke

More information

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So 1,a) 2 2 1 2,b) 3,c) A choreographic authoring system reflecting a user s preference Ryo Kakitsuka 1,a) Kosetsu Tsukuda 2 Satoru Fukayama 2 Naoya Iwamoto 1 Masataka Goto 2,b) Shigeo Morishima 3,c) Abstract:

More information

main.dvi

main.dvi DEIM Forum 2018 J7-3 305-8573 1-1-1 305-8573 1-1-1 305-8573 1-1-1 () 151-0053 1-3-15 6F URL SVM Identifying Know-How Sites basedonatopicmodelandclassifierlearning Jiaqi LI,ChenZHAO, Youchao LIN, Ding YI,ShutoKAWABATA,

More information

([ ]!) name1 name2 : [Name]! name10 2. 3 SuperSQL,,,,,,, (@) < >@{ < > } =,,., 200,., TFE,, 1 2.,, 4, 3.,,,, Web EGG [5] SSVisual [6], Java SSedit( ss

([ ]!) name1 name2 : [Name]! name10 2. 3 SuperSQL,,,,,,, (@) < >@{ < > } =,,., 200,., TFE,, 1 2.,, 4, 3.,,,, Web EGG [5] SSVisual [6], Java SSedit( ss DEIM Forum 2016 H6-3 SuperSQL CSS 223 8522 3-14-1 E-mail: {ryosuke,goto}@db.ics.keio.ac.jp, [email protected] SuperSQL, SQL. SuperSQL HTML, PHP,,,, SuperSQL Web, CSS 1. SQL, SuperSQL, CSS SuperSQL,

More information

main.dvi

main.dvi 305 8550 1 2 CREST [email protected] 1 7% 2 2 3 PRIME Multi-lingual Information Retrieval 2 2.1 Cross-Language Information Retrieval CLIR 1990 CD-ROM a. b. c. d. b CLIR b 70% CLIR CLIR 2.2 (b) 2

More information

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3) (MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost

More information

WISS 2018 [2 4] [5,6] Query-by-Dancing Query-by- Dancing Cao [1] OpenPose 2 Ghias [7] Query by humming Chen [8] Query by rhythm Jang [9] Query-by-tapp

WISS 2018 [2 4] [5,6] Query-by-Dancing Query-by- Dancing Cao [1] OpenPose 2 Ghias [7] Query by humming Chen [8] Query by rhythm Jang [9] Query-by-tapp Query-by-Dancing: WISS 2018. Query-by-Dancing Query-by-Dancing 1 OpenPose [1] Copyright is held by the author(s). DJ DJ DJ WISS 2018 [2 4] [5,6] Query-by-Dancing Query-by- Dancing Cao [1] OpenPose 2 Ghias

More information

2

2 2 485 1300 1 6 17 18 3 18 18 3 17 () 6 1 2 3 4 1 18 11 27 10001200 705 2 18 12 27 10001230 705 3 19 2 5 10001140 302 5 () 6 280 2 7 ACCESS WEB 8 9 10 11 12 13 14 3 A B C D E 1 Data 13 12 Data 15 9 18 2

More information

1. [5] Wikipedia 4. ( ) Wikipedia 5. 3 ( ) ( ) ( ) Wikipedia ( ) ( ) 2.2 Global Database of Events, Language and Tone (GDELT) Global Datab

1. [5] Wikipedia 4. ( ) Wikipedia 5. 3 ( ) ( ) ( ) Wikipedia ( ) ( ) 2.2 Global Database of Events, Language and Tone (GDELT) Global Datab GDELT Multifacet comparative analysis of newspaper articles from different conutries - Analysis based on Global Database of Events, Language and Tone (GDELT) - 1 2 Masaharu Yoshioka 1 Noriko Kando 2 1

More information

AHPを用いた大相撲の新しい番付編成

AHPを用いた大相撲の新しい番付編成 5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i

More information

27 28 2 15 14350922 1 4 1.1.................................... 4 1.2........................... 5 1.3......................... 6 1.4...................................... 7 2 9 2.1..........................

More information

Microsoft Word - deim2011_new-ichinose-20110325.doc

Microsoft Word - deim2011_new-ichinose-20110325.doc DEIM Forum 2011 B7-4 252-0882 5322 E-mail: {t08099ai, kurabaya, kiyoki}@sfc.keio.ac.jp A Music Search Database System with a Selector for Impressive-Sections of Continuous Data Aya ICHINOSE Shuichi KURABAYASHI

More information

. Yahoo! 1!goo 2 QA..... QA Web Web 2 3 4 5 6 7 8 2. [1]Web Web Yin [2] Web Web Web. [3] Web Wikipedia 1 2

. Yahoo! 1!goo 2 QA..... QA Web Web 2 3 4 5 6 7 8 2. [1]Web Web Yin [2] Web Web Web. [3] Web Wikipedia 1  2 DEIM Forum 211 F6-3 Web 35 855 1 2 35 855 1 2 11 843 2 1 2 E-mail: [email protected], {yohei,satoh}@slis.tsukuba.ac.jp, [email protected] QA Web Web Web QA Diversified-query Generating System Using

More information

WII-D 2017 (1) (2) (1) (2) [Tanaka 07] [ 04] [ 10] [ 13, 13], [ 08] [ 13] (1) (2) 2 2 e.g., Wikipedia [ 14] Wikipedia [ 14] Linked Open

WII-D 2017 (1) (2) (1) (2) [Tanaka 07] [ 04] [ 10] [ 13, 13], [ 08] [ 13] (1) (2) 2 2 e.g., Wikipedia [ 14] Wikipedia [ 14] Linked Open Web 2017 Original Paper Supporting Exploratory Information Access Based on Comic Content Information 1 Ryo Yamashita Byeongseon Park Mitsunori Matsushita Nomura Research Institute, LTD. [email protected]

More information

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Speech Visualization System Based on Augmented Reality Yuichiro Nagano 1 and Takashi Yoshino 2 As the spread of the Augmented Reality(AR) technology and service,

More information

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi- 1 3 5 4 1 2 1,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-View Video Contents Kosuke Niwa, 1 Shogo Tokai, 3 Tetsuya Kawamoto, 5 Toshiaki Fujii, 4 Marutani Takafumi,

More information

1: 2: 3: 4: 2. 1 Exploratory Search [4] Exploratory Search 2. 1 [7] [8] [9] [10] Exploratory Search

1: 2: 3: 4: 2. 1 Exploratory Search [4] Exploratory Search 2. 1 [7] [8] [9] [10] Exploratory Search DEIM Forum 2013 D2-1 112 8610 2-1-1 E-mail: {aco,itot}@itolab.is.ocha.ac.jp, [email protected] Exploratory Search A product Search System for women adjusting amount of browsed items Abstract Eriko KOIKE,

More information

1 IDC Wo rldwide Business Analytics Technology and Services 2013-2017 Forecast 2 24 http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h24/pdf/n2010000.pdf 3 Manyika, J., Chui, M., Brown, B., Bughin,

More information

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato

More information

main.dvi

main.dvi DEIM Forum 2012 E2-4 1 2 2 2 3 4 5 6 7 1 305-8573 1-1-1 2 305-8573 1-1-1 3 305-8573 1-1-1 4 ( ) 141-0031 8-3-6 5 060-0808 8 5 6 101-8430 2-1-2 7 135-0064. 2-3-26 113-0033 7-3-1 305-8550 1-2 Analyzing Correlation

More information

<> <name> </name> <body> <></> <> <title> </title> <item> </item> <item> 11 </item> </>... </body> </> 1 XML Web XML HTML 1 name item 2 item item HTML

<> <name> </name> <body> <></> <> <title> </title> <item> </item> <item> 11 </item> </>... </body> </> 1 XML Web XML HTML 1 name item 2 item item HTML DEWS2008 C6-4 XML 606-8501 E-mail: [email protected], {iwaihara,yoshikawa}@i.kyoto-u.ac.jp XML XML XML, Abstract Person Retrieval on XML Documents by Coreference that Uses Structural Features

More information

189 2015 1 80

189 2015 1 80 189 2015 1 A Design and Implementation of the Digital Annotation Basis on an Image Resource for a Touch Operation TSUDA Mitsuhiro 79 189 2015 1 80 81 189 2015 1 82 83 189 2015 1 84 85 189 2015 1 86 87

More information

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15. 1. 2. 3. 16 17 18 ( ) ( 19 ( ) CG PC 20 ) I want some rice. I want some lice. 21 22 23 24 2001 9 18 3 2000 4 21 3,. 13,. Science/Technology, Design, Experiments,

More information

HASC2012corpus HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus

HASC2012corpus HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus HASC2012corpus 1 1 1 1 1 1 2 2 3 4 5 6 7 HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus: Human Activity Corpus and Its Application Nobuo KAWAGUCHI,

More information

GUI(Graphical User Interface) GUI CLI(Command Line Interface) GUI

GUI(Graphical User Interface) GUI CLI(Command Line Interface) GUI 24 GUI(Graphical User Interface) GUI CLI(Command Line Interface) GUI 1 1 1.1 GUI................................... 1 1.2 GUI.................... 1 1.2.1.......................... 1 1.2.2...........................

More information