|
|
|
- なつき しろみず
- 9 years ago
- Views:
Transcription
1 2012 STUDIES ON RANKING DOCUMENTS WITH QUERY-INTENT SENSITIVITY 11R3129 Shota HATAKENAKA
2 PageRank PageRank PageRank Topic Sensitive PageRank
3 Rocchio
4 1 1.1,,,,, Web, Wiki, blog, twitters,, (query),, (term-matching) (term frequency), (inverse document frequency), TF*IDF,,,,,,,,,,.,,,,,. 3
5 1.2, ,,, Web (theme) (authoritative) (distributive),, Web PageRank [1] ,, Web PageRank HITS,??,,, Topic Sensitive PageRank 10 4 Topic Sensitive PageRank [2] 4
6 1.1: 1.2.3?? Bhattacharyya.[3] 1.2:
7 , Rocchio 5 3 Rocchio [4] PageRank , : 3 (DEIM ), PageRank 2., : Ranking Documents using Similarity-based PageRanks, IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PacRim), PageRank 6
8 3., : PageRank, 4 (DEIM ), 2012., 2, 4., : Ranking Documents with Query and Topic Sensitivity, 7th International Conference on Digital Information Management (ICDIM ), 2012., 2, 5., : Query and Topic Sensitive PageRank for General Documents, 14th IEEE International Symposium on Web Systems Evolution (WSE), 2012., 2, 6.,, :, 11 FIT, 2012.,,, Bhattacharyya.,Bhattacharyya,. 7.,, : Ranking Documents with Query-Topic Sensitivity, International Workshop on Web Information Retrieval Support Systems in IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology(WIRSS), , 7
9 . 8.,, :, 5 (DEIM ), Web 8
10 2 PageRank 2.1,,, Web, Wiki, blog, twitters,, (query),, (term-matching) (term frequency) (inverse document frequency) TF*IDF,, ( ) 9
11 , Web (theme) (authoritative) (distributive),,,,,,,,,,, Web PageRank HITS, Web PageRank d d =< v 1,..., v n > i = 1,..., n w i v i 2 TF*IDF q d i 10
12 cos(d i q) cos(d i q) cos(d i, q) = d i q d i q q d 1, d 2 d n PageRank PageRank Web Web Web PageRank Web PageRank A B PageRank 11
13 P i PageRank P R i P j PageRank P R j P R i = P j B Pi P R j P R j B Pi P i P R j P j PageRank 1 n PageRank H 1 n t t = t+1 H H 2 PageRank H Web Web PageRank 1 Web Web 2 Web Web 2 H H H = (1 d)h + d N N Web d Web Web PageRank Web PageRank Web 12
14 d i d j cos(d i, d j ) = d i d j d i d j 0 PageRank 2 d 0 d 1 d n N ( ) d 1 d 0 r 01 r 01 = 1 N r 01 d 1 d n d 0 d 0 d 1 d n d 1 d 0 rw 01 rw 01 = w 01 ni=1 w 0i w 01 d 0 d 1 d 0 d PageRank 2 1/N N M M = (1 d)m + d d 0.15 M PageRank 13
15 A B B C A C ( ) PageRank PageRank r 1 r 2 10 Sim(r 1, r 2 ) = (A B) k A B r 1 r 2 k PageRank PageRank PageRank 2 3 PageRank
16 (PageRank) Web PageRank 2.5 Web 15
17 2.1: PageRank Top10 PR
18 2.2: TOP : k Sim (PageRank, )
19 3 PageRank, 2, 3.1,,,,, Web, Wiki, blog, twitters,,, (query),, (term-matching) (term frequency), (inverse document frequency), TF*IDF,,,,,,,,,, ( ),, 18
20 ,,, (Topic Driftting), Web PageRank HITS,,,, Web PageRank
21 2 3.3 d d =< v 1,..., v n > i = 1,..., n w i v i 2 TF*IDF q d i cos(d i q) cos(d i q) cos(d i, q) = d i q d i q q d 1, d 2 d n 3.4 PageRank PageRank PageRank PageRank A B PageRank 20
22 d i PageRank P R i d j PageRank P R j P R i = d j B di P R j P R j B di d i P R j d j PageRank 1 n PageRank H 1 n t t = t+1 H H 2 PageRank H Web PageRank H H H = (1 d)h + d N N Web d Topic Sensitive PageRank Topic Sensitive PageRank [7] Web ODP ODP PageRank 2 PageRank ODP c j PageRank d PageRank rank jd q PageRank c j q P (c j q ) P (c j q ) = P (c j) P (q c j ) P (q ) P (c j ) P (q c j ) 21
23 s qd s qd = n P (c j q ) rank jd j ODP [?] PageRank 2 d i t j T ji T ji = d i t j d i t j t j t j s j t j s j d i d j w ij w ij = d i d j d i d j 0 22
24 PageRank 2 d 0 d 1 d n N ( ) d 1 d 0 r 01 r 01 = 1 N r 01 d 1 d n d 0 d 0 d 1 d n d 1 d 0 r 01 r 01 = w 01 ni=1 w 0i d 0 d PageRank PageRank 2 1/N N t j M M = (1 d)m + d d PageRank 0.15 M PageRank s j PageRank PageRank s j d i PageRank P R ji P R ji = s j nk=1 s k P R ji s j d i PageRank P R ji 23
25 3.5.3 t j t j q m s j Q mj s j w j Q jm = q m w j q m w j Q jm q m d i n v mi = T ji P R ji Q jm j=1 q m d i v mi PageRank [?]
26 8 ( ) PageRank Topic Sensitive PageRank Topic Sensitive PageRank PageRank 2 ODP 8 PageRank : TSPR MYPR TSPR MYPR ,3,5 3,4, Topic Sensitive PageRank
27 10 4 Topic Sensitive PageRank 4 2 Topic Sensitive PageRank Topic Sensitive PageRank Topic Sensitive PageRank Topic Sensitive PageRank Topic Sensitive PageRank Topic Sensitive PageRank Topic Sensitive PageRank Topic Sensitive PageRank
28 3.2: (TSPR) 4.56E E E-08 0 (MYPR) (TSPR) E E-08 (MYPR) Topic Sensitive PageRank 1 Topic Sensitive PageRank ODP Web
29 3.3: Topic Sensitive PageRank PageRank ( ) : PageRank * ( ) : Topic Sensitive PageRank PageRank ( )
30 3.6: PageRank * ( ) : TD
31 3.8: TD
32 4 4.1 Blog twitter 31
33 4.2 ( ) ( ) Bhattacharyya [6] Bhattacharyya Bhattacharyya 1 L = m u=1 P u Q u p q m u=1 P u = m u=1 Q u = 1 blog twitter Bhattacharyya Bhattacharyya 2 d q = N n=1 tf i Bha i N q d d q tf i d i Bha q i q i Bhattacharyya N d q q q Bhattacharyya q Bhattacharyya 0 Bhattacharyya 32
34 q Bhattacharyya q Bhattacharyya Bhattacharyya Bhattacharyya q q Bhattacharyya Bhattacharyya 0 Bhattacharyya Bhattacharyya q q d , ,000 6, Bhattacharyya 4.1 Bhattacharyya 4.2 Bhattacharyya ID
35 4.1: Bhattacharyya Bhattacharyya ID : Bhattacharyya ( ) Bhattacharyya ID Bhattacharyya 4.3 Bhattacharyya Bhattacharyya Bhattacharyya 34
36 4.3: Bhattacharyya ( ) Bhattacharyya ID Bhattacharyya Bhattacharyya Bhattacharyya 4.6 Bhattacharyya Bhattacharyya 35
37 4.4: 5 ID: : : : : : 28 36
38 5 5.1 Blog twitter,,,, ( ) ( ) 37
39 3 Rocchio 5.2 Rocchio d d =< v 1,..., v n > i = 1,..., n w i v i 2 TF*IDF q d i cos(d i q) cos(d i q) 38
40 cos(d i, q) = d i q d i q q d 1, d 2 d n Rocchio [15] q D r D n TF*IDF q q q = q + D R d i D R d i D N d j D N d j D R D N Bhattacharyya [?] Bhattacharyya Bha = m u=1 P u Q u (0 Bha 1) p q ( m u=1 P u = m u=1 Q u = 1) blog twitter 39
41 Bhattacharyya Bhattacharyya q q i BC iq 1 BC iq = Bha iq log( ) CO iq Bha iq q i Bhattacharyya CO iq q i 2 Bha CO Bha Bha Bha CO iq CO iq = c a + b c a i b q c i q q q BC dr N BC iq,n+1 = BC iq,n (1 + w i,d + N + w i,d N ) BC i,n n q i N N + n w i,d + w i,d i i n+1 j dr j,n+1 Nn=1 tf i,j BC iq,n+1 dr j,n+1 = N tf i,j j i N j j CO j CO j = Nn=1 tf i,j CO iq N 40
42 q i BC iq 2. N BC i,n , ,000 6, Rocchio 3 =1.0 =0.8 =
43 Rocchio 3 top10 R) Rocchio Rocchio Rocchio 5 ( ), 1, 4 5 Rocchio
44 5.1: Rocchio FB[0] FB[1] FB[2] FB[3] R) R) R) R) ( ) R) ( ) ( ) ( )
45 5.2: Rocchio SMAP SMAP , 44
46 5.3: ??NY, , ASEM ASEM
47 5.4: Rocchio ?? PT ?? , 18 PT
48 5.5: ?? , NHK
49 5.6: ?? ,
50 6,. Web,,,,,,,,, 49
51 50
52 [1] Hatakenaka, S. and Miura, T.: Ranking Documents using Similarity-based Page- Ranks, IEEE Pacific Rim Conference on Communications, Computers and Signal Processing(PacRim), [2] Hatakenaka, S. and Miura, T.: Query and Topic Sensitive PageRank for General Documents, 14th IEEE International Symposium on Web Systems Evolution(WSE), [3] :, 11 FIT, [4] :, 5 (DEIM), [5] S. Brin and L. Page The anatomy of a large scale hypertextual Web search engine. ComputerNetworks and ISDN Systems, 30, , [6] Oren. Kurland and Lillian Lee PageRank without hyperlinks: Structural reranking using links induced by language models. Proceedings of the 28th annual international ACM SIGIR, [7] T. H. Haveliwala Topic-sensitive PageRank. Proceedings of the 11th international conference on World Wide Web, [8] Amy N. Langville, Carl D. Meyer,,, Google PageRank 2009 [9] J. Kleinberg Bursty and hierarchical structure in streams. Proc. 8th SIGKDD,2002, [10] Masaya Murata, Hiroyuki Toda, Yumiko Matsuura and Ryoji Kataoka, A Query Expansion Method Using Access Concentration Sites in Search Result Proceedings of the DataBase and Web symposium,
53 [11] Hang Cui, Ji-RongWen, Jian-Yun Nie andwei-yingma, Probabilistic Query Expansion Using Quer Logs Proceedingsof the 11th international conference on World Wide Web 2002, [12] Georges E. Dupret and Benjamin Piwowarski. A user browsing model to predict search engine click data from past observations ACM SIGIR , [13] KMamoru Komachi, Shimpei Makimoto, Kei Uchiumi, and Manabu Sassano. Learning semanticcategories from clickthrough logs ACLIJCNLP , [14] Qingshan LIU and Dimitris N METAXAS Unifying Subspace and Distance Metric Learning with Bhattacharyya Coefficient for Image Classification Lecture Notes in Computer Science 2009 Volume 5416/ , [15] Rocchio, J.J Relevance fssdback in information retrieval. The SMART Retrieval Systems, pp , Prentice-Hall,
,, WIX. 3. Web Index 3. 1 WIX WIX XML URL, 1., keyword, URL target., WIX, header,, WIX. 1 entry keyword 1 target 1 keyword target., entry, 1 1. WIX [2
DEIM Forum 2013 B10-4 Web Index 223-8522 3-14-1 E-mail: [email protected], [email protected], URL WIX, Web Web Index(WIX). WIX, WIX.,,. Web Index, Web, Web,, Related Contents Recommendation
2 3, 4, 5 6 2. [1] [2] [3]., [4], () [3], [5]. Mel Frequency Cepstral Coefficients (MFCC) [9] Logan [4] MFCC MFCC Flexer [10] Bogdanov2010 [3] [14],,,
DEIM Forum 2016 E1-4 525-8577 1 1-1 E-mail: [email protected], [email protected], [email protected] 373 1.,, itunes Store 1, Web,., 4,300., [1], [2] [3],,, [4], ( ) [3], [5].,,.,,,,
Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m
Vol.55 No.1 2 15 (Jan. 2014) 1,a) 2,3,b) 4,3,c) 3,d) 2013 3 18, 2013 10 9 saccess 1 1 saccess saccess Design and Implementation of an Online Tool for Database Education Hiroyuki Nagataki 1,a) Yoshiaki
IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info
1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Information Science and Technology, Osaka University a) [email protected] 1 1 Bucket R*-tree[5] [4] 2 3 4 5 6 2. 2.1 2.2 2.3
IPSJ SIG Technical Report Vol.2013-HCI-152 No /3/13 1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a)
1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a) [email protected] b) [email protected] c) [email protected] / 2. Apple iphoto Google Picasa GPS GPS GPS [1][2]
DEIM Forum 2012 E Web Extracting Modification of Objec
DEIM Forum 2012 E4-2 670 0092 1 1 12 E-mail: [email protected], {dkitayama,sumiya}@shse.u-hyogo.ac.jp Web Extracting Modification of Objects for Supporting Map Browsing Junki MATSUO, Daisuke
[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So
1,a) 2 2 1 2,b) 3,c) A choreographic authoring system reflecting a user s preference Ryo Kakitsuka 1,a) Kosetsu Tsukuda 2 Satoru Fukayama 2 Naoya Iwamoto 1 Masataka Goto 2,b) Shigeo Morishima 3,c) Abstract:
main.dvi
DEIM Forum 2018 J7-3 305-8573 1-1-1 305-8573 1-1-1 305-8573 1-1-1 () 151-0053 1-3-15 6F URL SVM Identifying Know-How Sites basedonatopicmodelandclassifierlearning Jiaqi LI,ChenZHAO, Youchao LIN, Ding YI,ShutoKAWABATA,
([ ]!) name1 name2 : [Name]! name10 2. 3 SuperSQL,,,,,,, (@) < >@{ < > } =,,., 200,., TFE,, 1 2.,, 4, 3.,,,, Web EGG [5] SSVisual [6], Java SSedit( ss
DEIM Forum 2016 H6-3 SuperSQL CSS 223 8522 3-14-1 E-mail: {ryosuke,goto}@db.ics.keio.ac.jp, [email protected] SuperSQL, SQL. SuperSQL HTML, PHP,,,, SuperSQL Web, CSS 1. SQL, SuperSQL, CSS SuperSQL,
main.dvi
305 8550 1 2 CREST [email protected] 1 7% 2 2 3 PRIME Multi-lingual Information Retrieval 2 2.1 Cross-Language Information Retrieval CLIR 1990 CD-ROM a. b. c. d. b CLIR b 70% CLIR CLIR 2.2 (b) 2
3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)
(MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost
WISS 2018 [2 4] [5,6] Query-by-Dancing Query-by- Dancing Cao [1] OpenPose 2 Ghias [7] Query by humming Chen [8] Query by rhythm Jang [9] Query-by-tapp
Query-by-Dancing: WISS 2018. Query-by-Dancing Query-by-Dancing 1 OpenPose [1] Copyright is held by the author(s). DJ DJ DJ WISS 2018 [2 4] [5,6] Query-by-Dancing Query-by- Dancing Cao [1] OpenPose 2 Ghias
2
2 485 1300 1 6 17 18 3 18 18 3 17 () 6 1 2 3 4 1 18 11 27 10001200 705 2 18 12 27 10001230 705 3 19 2 5 10001140 302 5 () 6 280 2 7 ACCESS WEB 8 9 10 11 12 13 14 3 A B C D E 1 Data 13 12 Data 15 9 18 2
1. [5] Wikipedia 4. ( ) Wikipedia 5. 3 ( ) ( ) ( ) Wikipedia ( ) ( ) 2.2 Global Database of Events, Language and Tone (GDELT) Global Datab
GDELT Multifacet comparative analysis of newspaper articles from different conutries - Analysis based on Global Database of Events, Language and Tone (GDELT) - 1 2 Masaharu Yoshioka 1 Noriko Kando 2 1
AHPを用いた大相撲の新しい番付編成
5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i
27 28 2 15 14350922 1 4 1.1.................................... 4 1.2........................... 5 1.3......................... 6 1.4...................................... 7 2 9 2.1..........................
Microsoft Word - deim2011_new-ichinose-20110325.doc
DEIM Forum 2011 B7-4 252-0882 5322 E-mail: {t08099ai, kurabaya, kiyoki}@sfc.keio.ac.jp A Music Search Database System with a Selector for Impressive-Sections of Continuous Data Aya ICHINOSE Shuichi KURABAYASHI
. Yahoo! 1!goo 2 QA..... QA Web Web 2 3 4 5 6 7 8 2. [1]Web Web Yin [2] Web Web Web. [3] Web Wikipedia 1 2
DEIM Forum 211 F6-3 Web 35 855 1 2 35 855 1 2 11 843 2 1 2 E-mail: [email protected], {yohei,satoh}@slis.tsukuba.ac.jp, [email protected] QA Web Web Web QA Diversified-query Generating System Using
WII-D 2017 (1) (2) (1) (2) [Tanaka 07] [ 04] [ 10] [ 13, 13], [ 08] [ 13] (1) (2) 2 2 e.g., Wikipedia [ 14] Wikipedia [ 14] Linked Open
Web 2017 Original Paper Supporting Exploratory Information Access Based on Comic Content Information 1 Ryo Yamashita Byeongseon Park Mitsunori Matsushita Nomura Research Institute, LTD. [email protected]
IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe
1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Speech Visualization System Based on Augmented Reality Yuichiro Nagano 1 and Takashi Yoshino 2 As the spread of the Augmented Reality(AR) technology and service,
IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-
1 3 5 4 1 2 1,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-View Video Contents Kosuke Niwa, 1 Shogo Tokai, 3 Tetsuya Kawamoto, 5 Toshiaki Fujii, 4 Marutani Takafumi,
1: 2: 3: 4: 2. 1 Exploratory Search [4] Exploratory Search 2. 1 [7] [8] [9] [10] Exploratory Search
DEIM Forum 2013 D2-1 112 8610 2-1-1 E-mail: {aco,itot}@itolab.is.ocha.ac.jp, [email protected] Exploratory Search A product Search System for women adjusting amount of browsed items Abstract Eriko KOIKE,
1 IDC Wo rldwide Business Analytics Technology and Services 2013-2017 Forecast 2 24 http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h24/pdf/n2010000.pdf 3 Manyika, J., Chui, M., Brown, B., Bughin,
& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro
TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato
main.dvi
DEIM Forum 2012 E2-4 1 2 2 2 3 4 5 6 7 1 305-8573 1-1-1 2 305-8573 1-1-1 3 305-8573 1-1-1 4 ( ) 141-0031 8-3-6 5 060-0808 8 5 6 101-8430 2-1-2 7 135-0064. 2-3-26 113-0033 7-3-1 305-8550 1-2 Analyzing Correlation
<> <name> </name> <body> <></> <> <title> </title> <item> </item> <item> 11 </item> </>... </body> </> 1 XML Web XML HTML 1 name item 2 item item HTML
DEWS2008 C6-4 XML 606-8501 E-mail: [email protected], {iwaihara,yoshikawa}@i.kyoto-u.ac.jp XML XML XML, Abstract Person Retrieval on XML Documents by Coreference that Uses Structural Features
Lyra 2 2 2 X Y X Y ivis Designer Lyra ivisdesigner Lyra ivisdesigner 2 ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) (1) (2) (3) (4) (5) Iv Studio [8] 3 (5) (4) (1) (
1,a) 2,b) 2,c) 1. Web [1][2][3][4] [5] 1 2 a) [email protected] b) [email protected] c) [email protected] [6] Lyra[5] ivisdesigner[6] [7] 2 Lyra ivisdesigner c 2012 Information Processing
189 2015 1 80
189 2015 1 A Design and Implementation of the Digital Annotation Basis on an Image Resource for a Touch Operation TSUDA Mitsuhiro 79 189 2015 1 80 81 189 2015 1 82 83 189 2015 1 84 85 189 2015 1 86 87
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15. 1. 2. 3. 16 17 18 ( ) ( 19 ( ) CG PC 20 ) I want some rice. I want some lice. 21 22 23 24 2001 9 18 3 2000 4 21 3,. 13,. Science/Technology, Design, Experiments,
HASC2012corpus HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus
HASC2012corpus 1 1 1 1 1 1 2 2 3 4 5 6 7 HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus: Human Activity Corpus and Its Application Nobuo KAWAGUCHI,
GUI(Graphical User Interface) GUI CLI(Command Line Interface) GUI
24 GUI(Graphical User Interface) GUI CLI(Command Line Interface) GUI 1 1 1.1 GUI................................... 1 1.2 GUI.................... 1 1.2.1.......................... 1 1.2.2...........................
