情報の構造とデータ処理
|
|
|
- このか いせき
- 9 years ago
- Views:
Transcription
1 2014
2 SQL
3 information system input process output
4 (information) (symbols) (information structure) (data) ton/kg m/feet km 2 /m 2
5 (data structure) (integer) (real) (boolean) (character) Pascal person const size = 64; // size type word = array[1..size] of character; // word person = record name: word; // person word; height: real; gender: char; age: ; student: boolean; end;
6 person Pascal var he, she : person; // person he she // he.name = "taro"; he. = "[email protected]"; he.height = 175.3; he.gender = "M"; he.age = 20; he.student = true; she.name = "umeko"; she. = "[email protected]"; she.height = 170.0; she.gender = "F"; she.age = 24; she.student = false;
7 (information structure) (property) (value) (property) hasa S Q S has a property Q) S hasa (,Q) (S) = Q S (, ) hasa (, ) (, ) (, ) (, ) (,[email protected]) (, )
8 hasa (table) (cm) field record Table: 1 5
9 (hierarchy) (upper concept) (lower concept) isa (tree) isa S P S is a P ) S isa P S P is isa isa 49 7
10 data set (set) a A A a A a A A a 1, a 2,..., a n {}, A = {a 1, a 2,..., a n } σ : 1, 2,..., n = {a σ(1), a σ(2),..., a σ(n) } A = {x x }
11 set operation A B U (union) (intersection) (difference) (complement) A B = {x x A x B} A B = {x x A x B} A B = {x x A x B} A c = {x x U A} 1 2 U = {x x }, A = {y y U 7 } = {z z U 6 } A B, A B, A B, B A, A c A, B A ( a A) B A B (subset) A B A A A
12 = {,, } hasa (, ) = { } { } = {,, } = {} {} {} (empty set) ϕ A A ϕ = A, A ϕ = ϕ, A ϕ = A, ϕ A = ϕ, ϕ c = U ϕ 0
13 (direct product) (relation) A B a A b B (a, b) 2 ( binary relation) (a, b) (b, a) (a, b) = (c, d) a = c, b = d. A B = {(x, y) x A, y B} A B a A, b B 2 (a, b) A B. A = {a, b}, B = {x, y, z} A B = {(a, x), (a, y), (a, z), (b, x), (b, y), (b, z)}, B A = {(x, a), (x, b), (y, a), (y, b), (z, a), (z, b)}. A B R 2 (a, b) R arb arb bra A 1 A n = {(a 1,..., a n ) a i A i, i = 1,... n} (a 1,..., a n ) n (n-ary relation) R
14 a b 2 (a, b) A = {, }, B = {,, } R L = {(, ),(, )} A B R L, R L R l = {(, ),(, ),(, ),(, )} B A R l, R l, R l, R l 1 ap b a b A = {,, }, B = {,,, } P 2 aw b a b A = {,, }, B = {,,, } W
15 ( 1 1=( ) 2=( ) 3=( ) 4= 5=( ) 1 ( 2 2
16 [ ]
17 :
18 case grammar 1968 Charles Fillmore
19 Table:
20 1. RDBMS (parallel computing) (Concurrent Computing) (distributed computing) (grid) (cloud computing)
21 (structured data) hasa (unstructured data) (metadata) (schema)
22 (database) (Database Management System) DBMS
23 Apple, Amazon Google
24 (data mining) 1 2 Web PageRank
25 RDBMS (table) (, ) RDBMS(Relational Database Management System) SQL(Structured Query Language) RDBMS RDBMS Microsoft Access( )/SQL Server, Oracle Database, IBM DB2/Infomix MySQL, PostgresSQL : Amazon RDB, Google Cloud SQL
26 (column) (row) (table) record i n- (, ) field 1 field 2 field 3 field 4 field 5 record [email protected] record [email protected] record [email protected] record [email protected].... (1 ) n- field 1 =, field 2 =, field 3 = cm, field 4 =, field 5 =..
27 SQL
2
2 485 1300 1 6 17 18 3 18 18 3 17 () 6 1 2 3 4 1 18 11 27 10001200 705 2 18 12 27 10001230 705 3 19 2 5 10001140 302 5 () 6 280 2 7 ACCESS WEB 8 9 10 11 12 13 14 3 A B C D E 1 Data 13 12 Data 15 9 18 2
2 1,384,000 2,000,000 1,296,211 1,793,925 38,000 54,500 27,804 43,187 41,000 60,000 31,776 49,017 8,781 18,663 25,000 35,300 3 4 5 6 1,296,211 1,793,925 27,804 43,187 1,275,648 1,753,306 29,387 43,025
すぐに使える!Essbase キューブ開発テクニック集
Oracle Direct Seminar Essbase Fusion Middleware EPM/BI SC 2009 11 18 Essbase Oracle Direct Concierge SQL Server MySQL PostgreSQL Access Oracle Database Oracle Developer/2000 Web Oracle
hands_on_4.PDF
PHPMySQL 4 PC LAN 2 () () SQLDBMS DBMS DataBase Management System mysql DBMS SQL Structured Query Language SQL DBMS 3 DBMS DataBase Management System B Table 3 Table 2 Table 1 a 1 a 2 a 3 A SQLStructured
CAC
VOL.24NO.1 61 IMS Transaction 3270 DataBase Transaction OS/370 IMS Traditional Transaction Web Browser Transaction Internet WWW AP IIS APache WebLogic Websphere DataBase Oracle DB2 SQL Server Web Browser
Whitepaper - Why CM7
WHITEPAPER WHY CM7 ONYX CRM WHITEPAPER ONYX CRM 2 ONYX CRM Silverlight UI UI ONYX CRM 7 CTI SNS UCW SQLGen WHITEPAPER ONYX CRM 3 iphone ipad Android Onyx Mobile for iphone WHITEPAPER ONYX CRM 4 ONYX CRM
文書情報標準化ガイドライン.PDF
2002 3 CALS/EC CALS/EC 1 2 2-1 2 2-2 3 2-3 4 2-4 5 2-5 8 12 3-1 12 3-2 16 3-3 Web 19 22 4-1 22 4-2 25 4-3 31 35 36 CALS/EC CALS/EC ( ) () CALS/EC () (1) - 1 - CALS/EC CALS/EC CALS/EC ( ) () () A () - 2
Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m
Vol.55 No.1 2 15 (Jan. 2014) 1,a) 2,3,b) 4,3,c) 3,d) 2013 3 18, 2013 10 9 saccess 1 1 saccess saccess Design and Implementation of an Online Tool for Database Education Hiroyuki Nagataki 1,a) Yoshiaki
Gray [6] cross tabulation CUBE, ROLL UP Johnson [7] pivoting SQL 3. SuperSQL SuperSQL SuperSQL SQL [1] [2] SQL SELECT GENERATE <media> <TFE> GENER- AT
DEIM Forum 2017 E3-1 SuperSQL 223 8522 3 14 1 E-mail: {tabata,goto}@db.ics.keio.ac.jp, [email protected],,,, SuperSQL SuperSQL, SuperSQL. SuperSQL 1. SuperSQL, Cross table, SQL,. 1 1 2 4. 1 SuperSQL
_02-5.ppt
CONNECT EVERYTHING. ACHIEVE ANYTHING. Sonic XML Server 2005 3 14 Agenda 2 2005 Sonic Software Corporation Sonic Software Corporation 1998 1999 12 SonicMQ 2002 3 Sonic ESB ESB
Pascal Pascal Free Pascal CPad for Pascal Microsoft Windows OS Pascal
Pascal Pascal Pascal Free Pascal CPad for Pascal Microsoft Windows OS 2010 10 1 Pascal 2 1.1.......................... 2 1.2.................. 2 1.3........................ 3 2 4 2.1................................
JEE 上の Adobe Experience Manager forms のインストールおよびデプロイ(WebLogic 版)
JEE ADOBE EXPERIENCE MANAGER FORMS WEBLOGIC http://help.adobe.com/ja_jp/legalnotices/index.html iii 1 AEM forms 2 AEM Forms 3 4 - WebLogic Server 4.1............................................................................
MATLAB® における並列・分散コンピューティング ~ Parallel Computing Toolbox™ & MATLAB Distributed Computing Server™ ~
MATLAB における並列 分散コンピューティング ~ Parallel Computing Toolbox & MATLAB Distributed Computing Server ~ MathWorks Japan Application Engineering Group Takashi Yoshida 2016 The MathWorks, Inc. 1 System Configuration
16soukatsu_p1_40.ai
2 2016 DATA. 01 3 DATA. 02 4 DATA. 03 5 DATA. 04 6 DATA. 05 7 DATA. 06 8 DATA. 07 9 DATA. 08 DATA. 09 DATA. 10 DATA. 11 DATA. 12 DATA. 13 DATA. 14 10 11 12 13 COLUMN 1416 17 18 19 DATA. 15 20 DATA. 16
PowerPoint プレゼンテーション
iconnector, imaker, Zelkova --- --- iconnector imaker Zelkova XML XML ipex,, ixslt 100% W3C XSLTXSLT XML XML iconnector XML imessenger XML imaker ExcelXML XML imaker for Excel XML iconnector RDB XML imessenger
IBM PureData
IBM Software Information Management IBM PureData System for Analytics 2 IBM PureData System for Analytics 2 2 3 2 5 - S-Blade 6 S-Blade - IBM FAST 7 7 8 10 11 11 IBM PureData System for Analytics 11 IBM
…l…b…g…‘†[…N…v…“…O…›…~…fi…OfiÁŸ_
13 : Web : RDB (MySQL ) DB (memcached ) 1: MySQL ( ) 2: : /, 3: : Google, 1 / 23 testmysql.rb: mysql ruby testmem.rb: memcached ruby 2 / 23 ? Web / 3 ( ) Web s ( ) MySQL PostgreSQL SQLite MariaDB (MySQL
1,.,,,., RDBM, SQL. OSS,, SQL,,.
1,.,,,., RDBM, SQL. OSS,, SQL,,. 3 10 10 OSS RDBMS SQL 11 10.1 OSS RDBMS............................ 11 10.1.1 PostgreSQL................................. 11 10.1.2 MySQL...................................
set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..
12 -- 2 1 2009 5,,.,.,.. 1, 2, 3,., 4),, 4, 5),. 4, 6, 7).,, R A B, 8, (a) A, B 9), (b) {a (a, b) R b B }, {b (a, b) R a A } 10, 11, 12) 2. (a). 11, 13, R S {(a, c) (a, b) R, (b, c) S } (c) R S 14), 1,
ストラドプロシージャの呼び出し方
Release10.5 Oracle DataServer Informix MS SQL NXJ SQL JDBC Java JDBC NXJ : NXJ JDBC / NXJ EXEC SQL [USING CONNECTION ] CALL [.][.] ([])
キャラクタ・セットの移行に関するベスト・プラクティス
2003 9 ... 3 Oracle Database 10g... 3... 3... 4 Unicode... 6 Unicode... 6... 7... 8... 8... 9... 9... 10... 10... 10... 11... 11 US7ASCII... 13... 14... 14 Export/Import... 14 CSALTER... 15 Export Import
内容 Visual Studio サーバーエクスプローラで学ぶ SQL とデータベース操作... 1 サーバーエクスプローラ... 4 データ接続... 4 データベース操作のサブメニューコンテキスト... 5 データベースのプロパティ... 6 SQL Server... 6 Microsoft
Visual Studio サーバーエクスプローラで学ぶ SQL とデータベース操作 Access 2007 と SQL Server Express を使用 SQL 文は SQL Server 主体で解説 Access 版ノースウィンドウデータベースを使用 DBMS プログラム サーバーエクスプローラ SQL 文 実行結果 データベース エンジン データベース SQL 文とは 1 度のコマンドで必要なデータを効率よく取得するための技術といえます
SAP Solution in Detail SAP Business One SAP Business One 1 SAP Business One 5 SAP Business One 5 1 5 5 5 6 6 SAP Business One 6 / 6 / 6 / 7 / 7 / 7 / 7 SAP Business One 8 8 9 9 CRM 9 CRM 10 10 SAP Business
III Web Database ver.2.1.1 1 Web Database 1 1.1...................... 1 1.2 WebDB............................... 2 2 RDBMS 5 2.1 RDBMS.............................. 5 2.2 RDB..............................
意外と簡単!? Oracle Database 11g -バックアップ・リカバリ編-
Oracle Direct Seminar !?Oracle Database 11g -- Agenda Oracle Direct Concierge SQL Server MySQL PostgreSQL Access Oracle Database Oracle Developer/2000 Web Oracle Database Oracle Database
1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f
関係データベース
データベース動的コンテンツ 2011 年 5 月 19 日 4 班宇賀一登尾形勇磨田口龍一藤森夏輝藤原祐太 目次 データベースシステム データベース データベース管理システム SQL 動的コンテンツ 今回の課題について データベースシステム DBS (Data Base System) 各種アプリケーションが取り扱うデータを効率的に管理 共有 利用 ユーザ アプリケーション データベース管理システム
Oracle Web Conferencing Oracle Collaboration Suite 2 (9.0.4) Creation Date: May 14, 2003 Last Update: Jan 21, 2005 Version: 1.21
Oracle Web Conferencing Oracle Collaboration Suite 2 (9.0.4) Creation Date: May 14, 2003 Last Update: Jan 21, 2005 Version: 1.21 ... 2... 3...3...4...5 Oracle9i Platform...10 Oracle Collaboration Suite...12...15...23
[1] Excel Excel... [3]. CSV RDF. [4] LinkedData. [5] LinkedData 1 RDF. OLAP. OLAP. [6] RDBMS. Excel CSV. CSV JSON RDF. Excel RDF. RDF RDF..
DEIM Forum 2017 B4-4 Recognition and semantics interpretation of header hierarchies in statistical tables with complicated structures 603 8047 603 8047 E-mail: [email protected], [email protected]..
Oracle Rdb: PowerPoint Presentation
Day2-3 Itanium: T S Oracle Rdb 2006 4 4 2006 4 6 2005-2006, Oracle Corporation VAX/Alpha IEEE Rdb IEEE SQL SQL SQL 2 : 12340000 = 1.234 x 10 7 ( ) -1.234 x 10 7-1.234 x 10 7-1.234 x 10 7 (10-2 = 1/100)
PostgreSQL の XML 機能解説と将来拡張への提言
2009 11 21 11 00 11 50 B 1 PostgreSQL "Let's Postgres" 2 PostgreSQL XML URL http://lets.postgresql.jp/documents/technical/tutorial/xml 3 4 Storage Query Language XML Schemas Programming Interface 5 XML
Oracle Database 10g Release 2を使用したデータベース・パフォーマンス
Oracle Database 10g Release 2 2005 9 Oracle Database 10g Release 2... 3... 3... 3 Automatic Workload Repository AWR... 3 Automatic Database Diagnostic Monitor ADDM... 4 Automatic SQL Tuning SQL... 4 SQL
untitled
1 211022 2 11150 211022384 3 1000 23% 77% 10% 10% 5% 20% 15% 40% 5% 3% 8% 16% 15% 42% 5% 6% 4 =1000 = 66 5 =1000 = 59 6 52%(42% 1000 7 56% 41% 40% 97% 3% 11%, 2% 3%, 41 7% 49% 30%, 18%, 40%, 83% =1000
ESA_UI_1110.PDF
ESA SAP SAP SAP Web AS SAP SAP : ESA ESA : CAF ESA SAP SAP SAP : ESA ESA : CAF ESA SAP SAP SAP Office???? SAP Japan Co., Ltd. 2004, Title of Presentation / Speaker Name / 4 SAP SAP : ESA ESA : CAF ESA
SAP のプラットフォームとして IBM Cloudを選択すべき理由徹底解説 :SAPをクラウドで活用する 3つのパターン 最善の選択肢は? ERP をクラウド化したいと考える場合 企業システムの中心を担うだけにその実現方法は慎重に検 討したい IBM が SAP システム向けに用意する 3 つのサ
SAP のプラットフォームとして IBM Cloudを選択すべき理由徹底解説 :SAPをクラウドで活用する 3つのパターン 最善の選択肢は? ERP をクラウド化したいと考える場合 企業システムの中心を担うだけにその実現方法は慎重に検 討したい IBM が SAP システム向けに用意する 3 つのサービスラインアップから ニーズに合わせた選 択肢を探る ERP ERP SAP IBM IBM 40
Windows Oracle -Web - Copyright Oracle Corporation Japan, All rights reserved.
Windows Oracle -Web - Copyright Oracle Corporation Japan, 2004. All rights reserved. Agenda Oracle Windows Windows Oracle 1 / Active Directory/Enterprise User Security 1-1 Windows 1-2 Kerberos 1-3 Enterprise
3 4 SAP HANA 5 6 SAP HANA Xeon E7 v3 SAP HANA 6 8 OLTP OLAP 1 9 SAP S/4HANA SAP HANA Studio 13 14
SAP HANA SAP HANA SAP HANA SPS10 2015.07 3 4 SAP HANA 5 6 SAP HANA Xeon E7 v3 SAP HANA 6 8 OLTP OLAP 1 9 SAP S/4HANA 10 11 12 SAP HANA Studio 13 14 SAP Hasso Plattner SAP SAP HANA SAP HANASAP SAP HANA
2013.10.22 Facebook twitter mixi GREE Facebook twitter mixi GREE Facebook Facebook Facebook SNS 201 1 8 Facebook Facebook Facebook Facebook 1,960 7 2012 400 Facebook SNS mixi Google Facebook Facebook
# let st1 = {name = "Taro Yamada"; id = };; val st1 : student = {name="taro Yamada"; id=123456} { 1 = 1 ;...; n = n } # let string_of_student {n
II 6 / : 2001 11 21 (OCaml ) 1 (field) name id type # type student = {name : string; id : int};; type student = { name : string; id : int; } student {} type = { 1 : 1 ;...; n : n } { 1 = 1 ;...; n = n
レジャー産業と顧客満足の課題
1 1983 1983 2 3700 4800 5500 3300 15 3 100 1000 JR 4 14 2000 55% 72% 1878 2000 5 ( ) 22 1,040 5 946 42 15 25 30 30 4 14 39 1 24 8 6 390 33 800 34 34 3 35 () 37 40 1 50 40 46 47 2 55 4.43 4 16.98 40 55
