set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..

Size: px
Start display at page:

Download "set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9.."

Transcription

1 ,,.,.,.. 1, 2, 3,., 4),, 4, 5),. 4, 6, 7).,, R A B, 8, (a) A, B 9), (b) {a (a, b) R b B }, {b (a, b) R a A } 10, 11, 12) 2. (a). 11, 13, R S {(a, c) (a, b) R, (b, c) S } (c) R S 14), 1, 15, (d) S R 16) 2. (d). f : X Y. 1, 6, 9,, (e) Y 17) 3, 4, 8, 10, 11, 12, 18, 19), (f) X f (X)., codomain range, (g) Y codomain 7, 9, 14, 16, 19, 20, 21) 3, 4, 8, 9, 10, 11, 12,, (h) f (X) range 15)., (e) (g), (f) (h)., (e) (g) ,.,, ,, 1-2, c /(14)

2 set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9... A A = {1, 2,..., 9} {1, 2, 3,...} intensional definition. : { }. x predicate P(x) {x P(x)} A = {2, 4, 6, 8, 10} A = {x x 2 10 } A = {2x x 1 5 } finite set infinite 1-5 A A #A 0 empty set {} 3 A B A B subset A B B A A B A B A B A B A = B A B A B A B A B A B proper subset A B A : A A. : A B B C A C. (1 1) (1 2) 4 family F S F 14, 19) c /(14)

3 A F A A F a A F a F order 5 N : N = {0, 1, 2,...} Z : Q : R : C : A, B 2 1 A, B {x x A x B} A B union A B A, B, C : A = A = A. (1 3) : A A = A. (1 4) : A B = B A. (1 5) : (A B) C = A (B C). (1 6) A 1,, A n A 1 A n I i A i I i A i A i I index set i I 2 A, B {x x A x B} A B intersection A B A, B, C : A = A =. (1 7) : A A = A. (1 8) : A B = B A. (1 9) : (A B) C = A (B C). (1 10) A 1,, A n A 1 A n c /(14)

4 I A i i I A B = A B disjoint A,B A B A + B A B direct sum A, B, C A (B C) = (A B) (A C). A (B C) = (A B) (A C). (1 11) (1 12) A (A B) = A. A (A B) = A. (1 13) (1 14) 3 A B {x x A x B} A B difference A B A B A\B 4 A B (A B) (B A) P Q symmetric difference P Q A B A B A U U A U A complement U U universal set U U A A A A A c U A U = U, U =. (1 15) : A A = U, A A =. (1 16) : A = A. (1 17) De Morgan's laws A, B A B = A B. A B = A B. (1 18) (1 19) U c /(14)

5 A A power set 2 A P(A) 2 A = {S S A} A = {1, 2, 3} 2 A = {, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} 2 A, A 2 A 2 A = 2 A. (1 20) c /(14)

6 A, B a A, b B (a, b) ordered pair A B {(a, b) a A b B} A B direct product Cartesian product A B A A = A =. (1 21) A, B A B = A B. (1 22) A,B A B R A B 2 binary relation 2 A R domain B codomain A R A A A (a, b) R R(a, b) arb R A B {(b, a) (a, b) R} B A R inverse relation R 1 R, S R = S A 2 1 a A (a, a) R R reflexive 2 (a, b) R (b, a) R R symmetric 3 (a, b) R a b (b, a) R R antisymmetric 4 (a, b) R, (b, c) R (a, c) R R transitive A B R A B B C S B C R S c /(14)

7 {(a, c) R(a, b) S (b, c)} A C R S composition S R R A B S B C T C D T (S R) = (T S ) R. (1 23) n 2 R n R n n = 1 R 1 = R n = 0 R 0 = {(a, a) a A} R 0 identity relation R A S R P A P S R S S S R P- P-closure R transitive closure reflexive transitive closure P P- R + R R + = R 1 R 2 R 3 = R = R 0 R 1 R 2 = i=1 i=0 R i R i (1 24) (1 25) equivalence relation a A, {b A a b} a equivalence class [a] a [a] representative A A F A partition S F S = A S, T F S T S T = A a, b A [a] = [b] [a] [b] = I A F = {[i] i I} A A = [i] F A quotient set A/ i I A F R = {(a, b) S F a S b S } partial order A A partially ordered set, poset, A, ) ( 14, 15, 17) c /(14)

8 1 (A, ) a, b A a b a b a b (A, ) Hasse diagram 1. A a b a b 2. a b a, b a c b c a, b 1 1 (2 {1,2,3}, ) {1, 2} {1} {1, 2, 3} {1, 3} {2} {2, 3} {3} a, b a b b a a b comparable incomparable A S S S chain S S S antichain 3 B A a 0 B a 0 a a B a 0 B maximal B a a 0 a B a 0 B minimal B a 0 B a 0 B a 0 a a B a 0 B maximum B a 0 B a a 0 a B a 0 B minimum B (A, ) total order linear order (A, ) totally ordered set (A, ) A quasi-order c /(14)

9 X Y X Y mapping function f : X Y X domain Y codomain X = dom( f ), Y = codom( f ) f, g dom( f ) = dom(g), codom( f ) = codom(g), x dom( f ) f (x) = g(x) f = g 1 f A dom( f ) f A restriction f A f f A extension 2 f : X Y x X y Y y x image y = f (x) f : x y A X, f (A) = {y x A y = f (x)} f A A = X f (X) f range( f ) f : X Y B Y X {x x X, f (x) B} B f inverse image preimage f 1 (B) f : X Y, g : Y Z x X g( f (x)) f g composition g f g f X Z g f : X Z f, g, h g f h g, h (g f ) = (h g) f, f : X Y x 1, x 2 X x 1 x 2 f (x 1 ) f (x 2 ) f injection 1 1 one-to-one f, g g f f, g g f f g 2 f : X Y y Y f (x) = y x X f (X) = Y f surjection onto f, g g f f, g g f g f c /(14)

10 3 bijection f, g g f f, g g f f g X f : X X X permutation f : X Y y Y y = f (x) x X y x f inverse mapping f 1 f 1 ( f 1 ) 1 ( f 1 ) 1 = f x dom( f ) a codom( f ) f (dom( f )) = {a} f constant function f : X Y x X f (x) = x f identity function c /(14)

11 P(n) n mathematical induction n N P(n) 1 n N P(n) 1. P(0) 2. n P(n) P(n + 1) P(n) 2 (1) n N P(n) 1. P(0) 2. k n P(k) P(n + 1) 3 m, n N P(m, n) 1. P(0, 0) 2. m, n P(m, n) P(m + 1, n) P(m, n + 1) Giuseppe Peano, N Peano axioms c /(14)

12 N 1. N 0 0 N 2. σ : N N σ(n) n (a) σ m n σ(m) σ(n) (b) σ(n) = 0 n N 0 (c) N S 0 n S σ(n) S S = N 2(c) n S 2(c) N recursive definition S, a S S 0 S (S 0 ) b S S c S inductive definition c /(14)

13 , 19) 1 A n {1, 2,..., n} A 2, 4, 9) 2 A A A A N N {0} f (n) = n + 1 N (1), N A B A B equipotent A B cardinality A n {1, 2,..., n} A = n N ℵ 0 ℵ 0 countable set countably infinite set at most countable set uncountable set R 1), Information & computing 61,, ) C.L. Liu,,,,, ),,, Information&Computing 21,, ),, E13,, J. W. R. Dedekind, , 20, 21) c /(14)

14 5),,, ),,, ) R. Garnier and J. Taylor, Discrete Mathematics for New Technology 2nd edition, Taylor & Francis, ),,,, ),,,,,, ) R. Johnsonbaugh, Discrete Mathematics The Jk Computer Science and Mathematics Series, 5th edition, Prentice Hall College Div., ),,, 15,, ), Information Science & Engineering F1,, ),,,, ) J.L. Hein, Discrete Mathematics 2nd edition, Jones & Bartlett Publishers, ) J.K. Truss, Discrete Mathematics for Computer Scientists International Computer Science Series, 2nd edition, Addison-Wesley, ) D.E. Ensley and J.W. Crawley, Discrete Mathematics, Textbook and Student Solutions Manual: Mathematical Reasoning and Proof with Puzzles, Patterns, and Games, Wiley, ) R.J. McEliece, R.B. Ash, and C. Ash, Introduction to Discrete Mathematics, International Edition, ),,, ),,,, 1,, ) R.P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction 4th edition, Addison-Wesley, ) K.A. Ross and C.R. Wright, Discrete Mathematics 5th edition, Prentice Hall, c /(14)

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

i 2013 0.1. 0.2. JR 0.1 0.2 ii A B B A 0.2 0.1 0.1 0.2 iii 1 1 1.1............................. 1 1.2........................... 10 1.3............................... 17 2 21 2.1...........................

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

2014 (2014/04/01)

2014 (2014/04/01) 2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................

More information

( ) ( ) Iverson

( ) ( ) Iverson ( ) ( ) 2012 1 2 1 2 1.1....................................... 2 1.2....................................... 2 1.3 Iverson........................................ 9 1.4.............................................

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

合併後の交付税について

合併後の交付税について (1) (2) 1 0.9 0.7 0.5 0.3 0.1 2 3 (1) (a), 4 (b) (a), (c) (a) 0.9 0.7 0.5 0.3 0.1 (b) (d),(e) (f) (g) (h) (a) (i) (g) (h) (j) (i) 5 (2) 6 (3) (A) (B) (A)+(B) n 1,000 1,000 2,000 n+1 970 970 1,940 3.0%

More information

i iii 1 ZFC Skolem

i iii 1 ZFC Skolem i iii 1 ZFC 1 1.1................... 2 1.2........................... 4 1.3 Skolem..................... 6 1.4...................... 8 11 2 13 2.1..................... 13 2.2........ 15 2.3.........................

More information

情報の構造とデータ処理

情報の構造とデータ処理 [email protected] 2014 SQL information system input process output (information) (symbols) (information structure) (data) 201411 ton/kg m/feet km 2 /m 2 (data structure) (integer) (real) (boolean)

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : [email protected] E-mail : [email protected] SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

Perturbation method for determining the group of invariance of hierarchical models

Perturbation method for determining the group of invariance of hierarchical models Perturbation method for determining the group of invariance of hierarchical models 1 2 1 1 2 2009/11/27 ( ) 2009/11/27 1 / 31 2 3 p 11 p 12 p 13 p 21 p 22 p 23 (p ij 0, i;j p ij = 1). p ij = a i b j log

More information

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, power-normal distribution, structured data, unstructured

More information

四変数基本対称式の解放

四変数基本対称式の解放 Solving the simultaneous equation of the symmetric tetravariate polynomials and The roots of a quartic equation Oomori, Yasuhiro in Himeji City, Japan Dec.1, 2011 Abstract 1. S 4 2. 1. {α, β, γ, δ} (1)

More information

[RP13]シリーズカタログ

[RP13]シリーズカタログ 131520 : : : 2AAWG#24 : 2AAWG#22 1315 : AC30VDC42V 20 : AC100VDC140V 1. 1315 : 15m 20 : 30m DC1A -10 ~ +60-10 ~ +60 2. 1000M DC250V 3. AC300V1 4. 10s 10~55Hz/0.75mm 32 5. 10s 490m/s 2 11ms33 6. 7. 1315

More information

26-横03-河村先生-三.indd

26-横03-河村先生-三.indd 26 2016 29 29 24 2012 2014 Meyers & Jones, 1993; Prince, 2004; 2010 2014 OECD Organisation for Economic Co-operation and Development PISA OECD/PISA 2012 30 Barr & Tagg, 1995 1960 358 1980 4 1,209 1994

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a Page 1 of 6 B (The World of Mathematics) November 0, 006 Final Exam 006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (a) (Decide whether the following holds by completing the truth

More information

2 ( 8 ) 7 14 10 16 4 Tachibana Alumni Association of Library and Information Science 10 80 10 12 10 80 20 1 80 21 2

2 ( 8 ) 7 14 10 16 4 Tachibana Alumni Association of Library and Information Science 10 80 10 12 10 80 20 1 80 21 2 ( ) 80 150 230 80 50 100 1 2 ( 8 ) 7 14 10 16 4 Tachibana Alumni Association of Library and Information Science 10 80 10 12 10 80 20 1 80 21 2 3 Power Power 1985 12 2 4 12 PDF 40 59 59 60 63 1 IT One for

More information

Taro13-第6章(まとめ).PDF

Taro13-第6章(まとめ).PDF % % % % % % % % 31 NO 1 52,422 10,431 19.9 10,431 19.9 1,380 2.6 1,039 2.0 33,859 64.6 5,713 10.9 2 8,292 1,591 19.2 1,591 19.2 1,827 22.0 1,782 21.5 1,431 17.3 1,661 20.0 3 1,948 1,541 79.1 1,541 79.1

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:[email protected] 0 0 1 1.1 G G1 G a, b,

More information

A pp CALL College Life CD-ROM Development of CD-ROM English Teaching Materials, College Life Series, for Improving English Communica

A pp CALL College Life CD-ROM Development of CD-ROM English Teaching Materials, College Life Series, for Improving English Communica A CALL College Life CD-ROM Development of CD-ROM English Teaching Materials, College Life Series, for Improving English Communicative Skills of Japanese College Students The purpose of the present study

More information

category.dvi

category.dvi 1 2 2 3 3 6 4 13 5 15 6 16 7 19 8 24 9 28 1 1 (1.1). [Ka76] [Mac98] (1.2). (1.3). EilenbergMac Lane K K V V = Hom(V K)V VV V V = Hom(Hom(V K) K) η : V V ; x (ϕ x : p p(x)) η : V V V : V W F() : V W ; ϕ

More information

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌 2016 9 27 RIMS 1 2 3 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin Y N Moschovakis, Descriptive Set Theory North

More information

untitled

untitled Quantitative Risk Assessment on the Public Health Impact of Pathogenic Vibrio parahaemolyticus in Raw Oyster 1 15 5 23 48 2 21 1 16 1 16 1 11 3 1 3 4 23 1 2 16 12 16 5 6 Hazard IdentificationExposure

More information

橡点検記録(集約).PDF

橡点検記録(集約).PDF 942.8.8.8.7 671 86 11 1 9 9 9 1 1,792 7,23 2,483 1,324 2,198 7,23 82 7,23 6,327 9,22 9,713 8,525 8,554 9,22. 8,554. 1,79 9,713 95 947 8,525.. 944 671 81 7 17 1,29 1,225 1,241 1,25 1,375 9.3 23,264 25,

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f

More information

出展者マニュアル 01章 事務局からのお知らせ

出展者マニュアル 01章 事務局からのお知らせ Manual 2015 Exhibition 01-1 01-1-1 01-1-2 01-2 01-2-1 01-2-2 01-2-3 01-2-4 01-2-5 01-3 01-3-1 01-4 01-5 01-4-1 01-4-2 01-5-1 01-5-2 01 01-1-1 Exhibition Manual 2015 Exhibition Manual 2015 01-1-2.1 Exhibition

More information

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier Fourier Fourier Fourier etc * 1 Fourier Fourier Fourier (DFT Fourier (FFT Heat Equation, Fourier Series, Fourier Transform, Discrete Fourier Transform, etc Yoshifumi TAKEDA 1 Abstract Suppose that u is

More information

A B A E

A B A E 10533-68-3955 10533-68-3955 10533-68-3804 RP A-6 10533-68-3804 10533-69-9615 10533-57-2161 B-2 10533-68-2274 10533-68-2221 10533-67-6282 A-6 10533-57-2161 E-3 10533-68-5161 10533-68-3553 D-2 D-2 10533-69-5258

More information

Microsoft PowerPoint - 201409_秀英体の取組み素材(予稿集).ppt

Microsoft PowerPoint - 201409_秀英体の取組み素材(予稿集).ppt 1 2 3 4 5 6 7 8 9 10 11 No Image No Image 12 13 14 15 16 17 18 19 20 21 22 23 No Image No Image No Image No Image 24 No Image No Image No Image No Image 25 No Image No Image No Image No Image 26 27 28

More information

ISO/IEC 9798プロトコルの安全性評価

ISO/IEC 9798プロトコルの安全性評価 ISO/IEC 9798 2011 2 4 ISO/IEC 9798-2 (Mechanisms using symmetric encipherment algorithms), ISO/IEC 9798-3 (Mechanisms using digital signature techniques), ISO/IEC 9798-4 (Mechanisms using a cryptographic

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e

Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e Khomskii Lebesgue Soloay 1 Friday 27 th November 2015 1 This slide is available on http://slideshare.net/konn/lebesguesoloay 1 / 34 Khomskii 1 2 3 4 Khomskii 2 / 34 Khomskii Solovay 3 / 34 Khomskii Lebesgue

More information

1 IDC Wo rldwide Business Analytics Technology and Services 2013-2017 Forecast 2 24 http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h24/pdf/n2010000.pdf 3 Manyika, J., Chui, M., Brown, B., Bughin,

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

1 2 X X X X X X X X X X Russel (1) (2) (3) X = {A A A} 1.1.1

1 2 X X X X X X X X X X Russel (1) (2) (3) X = {A A A} 1.1.1 1 1 1.1 G.Cantor (1845 1918) 1874 Unter eines Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten in unserer Anschauung oder unserers Denkens (welche die Elemente von

More information

handout.dvi

handout.dvi http://www.kurims.kyoto-u.ac.jp/ ichiro 1 1.1 (formal verification, formal methods) [3] 2 theorem prover proof assistant PVSIsabell/HOLCoq Kripke M ϕ M ϕ M = ϕ model checker M ϕ M ϕ M M ϕ state explosion

More information