main.dvi

Size: px
Start display at page:

Download "main.dvi"

Transcription

1 Nim Nim,.,,,,. Nim Nim,.,.,.,,.,.,. [1, 3],,, Nim,,., Nim. Date:.

2 August 10-11, Nim.. Pile., Pile.,. normal case.,. reverse case.,.. Pile. N 1, N 2, N 3., N 1, N 2, N 3,., N 1 = N 2 = N 3 =0., N 1 = N 2 = N 3 =0.,., Nim.,,., Nim.. Pile k. N 1,,N k., N 1, N k,., i, N i =0. normal case., i N i =0. reverse case. 1.1 Nim,. Definition 1.1. {N i } k i=1 = {N 1,,N k }, NIM({N 1,,N k })= NIM({N i }). {N i } k i=1 N i, N l i N l 1 i N 1 i N 0 i., N i = Ni l 2 l + Ni l 1 2 l Ni 1 2+Ni 0

3 August 10-11, , N l i =0,1., NIM({N i })=(N l N l k,n l N l 1 k,,n N 1 k,n N 0 k ) 2 =(N1 l + + Nk)2 l l +(N1 l N l 1 k )2 l 1 + +(N N k 1 )2 + (N N k 0 )., ,, N j i 0, 1. 1 Example 1.2. NIM({N i }). 1. N 1 =3,N 2 =4,N 3 =5. N 1, N 2, N 3, N 1 =3=0 1 1 N 2 =4=1 0 0 N 3 =5=1 0 1 NIM({3, 4, 5}) =0 1 0=2, NIM({3, 4, 5}) =(0, 1, 0) 2 =2. 2. N 1 =2,N 2 =5,N 3 =7. N 1, N 2, N 3, N 1 =2=0 1 0 N 2 =5=1 0 1 N 3 =7=1 1 1 NIM({2, 5, 7}) =0 0 0=0, NIM({2, 5, 7}) =(0, 0, 0) 2 =0. NIM. Proposition 1.3. NIM. 1. {N i } {N i}, NIM({N i }) = NIM({N i}). 2. NIM({M,M}) =0. 3. NIM({N 1,,N k }) = NIM({N 1,,N l }, NIM({N l+1,,n k })). 4. N i N i1, N i2, NIM({N 1,,N k }) = NIM({N 1,,N i1,n i2,,n l }). Proof.. NIM, 1., {N i } m {Ni m }, N1 m + + Nk m mod 2. mod2,.,,.

4 August 10-11, mod2 a + b = b + a. 2. M, 1+1=0,0+0=0 NIM({M,M}) =0. Theorem 1.4. Nim, {N i } NIM({N i })=0, Nim, NIM({N i }) 0., {N i } NIM({N i }) 0, Nim, {N i } NIM({N i })=0. Proof., {N i } NIM({N i })=0., {N i }. N i0, N i 0., 0 N i 0 <N i0., N i0 N i 0, 0 1., NIM({N i }) 1, N i0, NIM({N i }) 0 1.,. {N i }, {N i }, i i 0, N i = N i, N i0 >N i 0., NIM({N i })=0, j =0,,l N j N j k =0., N i0 N i 0, j = j 0., N j0 i 0 ((N 1) j 0 + +(N i 0 ) j 0 + +(N k) j 0 ) (N j0 1 (N i 0 ) j0 + + N j0 i N j0 j0 k )=Ni 0 (N i 0 ) j 0 =1.,,, N j N j0 i N j0 k =0 (N 1) j0 + +(N i 0 ) j0 + +(N k) j0 =1. NIM({N i }) 0., NIM({N i }) 0. M = NIM({N i })., M l +1. {N i } l +1 1, N i0., M l +1 1,., N i0 l +2 l +1 0 N i1, l +1 N i2,, L = NIM(N i2,m). M, N i2 M l +1 1, L l +1 0, N i2 >L., N i0 l +1 N i2 L. {N i2 } i2 {N i } N i0, N i1. Proposition 1.4, NIM({N i } i2,l) = NIM({N i } i2, NIM({N i2,m})) = NIM({N i } i2,n i2,m}) = NIM({N i },M) = NIM(NIM({N i }),M) = NIM(M,M) =0

5 August 10-11, , i 0 (N i+1 L) 2, N i 0, NIM(N i )=0. Example N 1 =7,N 2 =6,N 3 =5. N 1 =7=1 1 1 N 2 =6=1 1 0 N 3 =5=1 0 1 NIM({7, 6, 5}) =1 0 0, M =4., N i0, N 1 4, N 1 =3, i 0 =1., L =3. N 1 =3=0 1 1 N 2 =6=1 1 0 N 3 =5=1 0 1 NIM({3, 6, 5}) = N 1 =3,N 2 =4,N 3 =5. N 1 =3=0 1 1 N 2 =4=1 0 0 N 3 =5=1 0 1 NIM({3, 4, 5}) =0 1 0, M =2., i 0 =1., L = NIM(3, 2)=1,, N 1 L =1, N 1 =1=0 0 1 N 2 =4=1 0 0 N 3 =5=1 0 1 NIM({1, 4, 5}) = (normal case) normal case., i N i =0, NIM({N i }) = NIM({0,, 0}) =0., (Theorem 1.4), NIM({N i }) 0.,.

6 August 10-11, Definition 1.6. {N i } = {N 1,,N k }, NIM({N i }) 0. {N i } = {N 1,,N k }, NIM({N i })=0., Theorem 1.4,. Theorem 1.7.,.,.,. Theorem 1.8. Nim normal case,. Proof.,., Theorem 1.7,,. Theorem 1.7,,,.,, {N i }, N i0 0., N i0,. 1.3 (reverse case),.,,,.,,. Definition 1.9. {N i } = {N 1,,N k }, normal case, N i =1 0,, N i =1 0., normal case. Theorem 1.10.,.,. Proof. normal case, reverse case,, N i =1 0, N i =1,., normal case, reverse case,, N i =1 0, N i =1,.,.

7 August 10-11, , normal mode, reverse mode, 2.,, reverse mode,, reverse mode, N i =1, 0,, pile 0,, N i =1 0, reverse mode,., pile 1, 0, N i =1, reverse mode,., normal mode, reverse mode, N i =1.,, N i =1, 0., N i > 1 pile,, N i > 1 pile.,, normal mode, reverse mode.,. Theorem Nim reverse case,.

8 August 10-11, section., Nim K.. k., k K. N 1,,N k., N 1, N k K,., i, N i =0. normal case, i N i =0. reverse case section Nim Nim K, K = Nim K Nim. Definition 2.1. {N i } k i=1, NIM K({N 1,,N k }) = NIM K ({N i }). {N i } k i=1, N l i N l 1 i N 1 i N 0 i., N i = Ni l 2 l + Ni l 1 2 l Ni 1 2+Ni 0., N l i =0,1., NIM K ({N i })=(N l N l k,n l N l 1 k,,n N 1 k,n N 0 k ) 2 =(N1 l + + N k l )(K +1)l +(N1 l N l 1 k )(K +1) l 1 + +(N Nk 1 )(K +1)+(N Nk 0 )., K +1. Remark 2.2. NIM({N i }) NIM K ({N i }), 2, K +1., K +1. Example 2.3. NIM K ({N i }). 1. K =2,N 1 =3,N 2 =4,N 3 =5. N 1, N 2, N 3,, NIM 2 ({3, 4, 5}) =(2, 1, 2) 3 =23. N 1 =3=0 1 1 N 2 =4=1 0 0 N 3 =5=1 0 1 NIM 2 ({3, 4, 5}) =2 1 2= =23

9 August 10-11, Theorem 2.4. Nim K, {N i } NIM K ({N i })=0, Nim K, NIM K ({N i }) 0., {N i } NIM K ({N i }) 0, Nim K, {N i } NIM K({N i })= 0. Proof., {N i } NIM K ({N i })=0., {N i } K. N 1,,N m,0<m m, N 1,,N m., 0 N s <N s s =1, m., N s N s, 0 1., NIM K ({N i }) 1, N 1,,N m., K, NIM K ({N i }) 0 0.,. {N i }, {N i }, i>m, N i = N i, i m N i >N i., NIM K({N i })=0, j =0,,l N j N j k =0., i m N i N i, j = j 0 i i =1,,m., ((N 1) j0 + +(N k) j0 ) (N j0 1 N j0 i (N i )j0 j0 j0 + + Nk ) = N1 (N 1) j0 + Nm j0 (N m) j0 K.,,, N j N j0 k =0 (N 1) j0 + +(N k) j0 0. NIM K ({N i }) 0., NIM K ({N i }) 0. Nim K. M = NIM K ({N i })., M K +1 M l, l +1., {N i } l +1 1 M l. n, M l + n(k +1). N i1,,n im.. l,. N i, i = i 1,,i Ml l +1 0, 1., N i l 2 l 1., NIM K ({N i }) K +1 l +1 0., l, K., NIM K ({N i }) M, K +1 l, M l.,, l <l., N ij l 1,., M l. 1. M l M l., N ij, M l l 0.

10 August 10-11, M l <M l., N ij l 0 NIMK, K +1 l M l M l.,, N i, l 1 M l M l,., NIM K ({N i }), K +1 l 1., K, NIM K ({N i })=0. Example 2.5. NIM K ({N i }) K =2,N 1 =3,N 2 =4,N 3 =5. N 1 =3=0 1 1 N 2 =4=1 0 0 N 3 =5=1 0 1 NIM 2 ({3, 4, 5}) =2 1 2., N i 3 1, N 1, N 2, 011, N 1 =3=0 1 1 N 2 =3=0 1 1 N 3 =3=0 1 1 NIM 2 ({3, 3, 3}) =0 0 0=0. 2. K =2,N 1 =3,N 2 =4,N 3 =5,N 4 =9. N 1 = 3 = N 2 = 4 = N 3 = 5 = N 4 = 9 = NIM 2 ({3, 4, 5, 9}) = , N i 4 1, N 4, N 1 = 3 = N 2 = 4 = N 3 = 5 = N 4 =7= NIM 2 ({3, 4, 5, 7}) =

11 August 10-11, , N 4 N , N 1 = 1 = N 2 = 4 = N 3 = 5 = N 4 = 5 = NIM 2 ({1, 4, 5, 5}) = (normal case) normal case. Section,. Definition 2.6. {N i } = {N 1,,N k }, NIM K ({N i }) 0. {N i } = {N 1,,N k }, NIM K ({N i })=0., Theorem 1.7,. Theorem 2.7.,.,.,. Theorem 2.8. Nim K normal case,. 2.3 (reverse case),. K 2, K =1.,, K n,, n 1,,,,.,,. Definition 2.9. {N i } = {N 1,,N k }, normal case, N i =1 K +1, 0, N i =1 K +1, 0., normal case.

12 August 10-11, Theorem 2.10.,.,. Proof. normal case, reverse case,, N i =1 K +1, 0, N i =1 K +1,., normal case, reverse case,, N i =1 K +1, 0, N i =1 K +1,,.,. 1., normal mode, reverse mode, 2.,, reverse mode,, reverse mode, N i =1 K +1, 0,, pile 0,, 1, pile, N i =1 K +1, 0., reverse mode,., normal mode, reverse mode, N i =1 K +1.,, N i =1 K +1, 0., N i > 1 pile,, N i > 1 pile K.,, normal mode, reverse mode.,. Theorem Nim K reverse case,.

13 August 10-11, ,., n. 3.1, [2], n Nim K (normal case).,,., Nim n K. n P 1,,P n. k. N 1,,N k. n, N 1, N k,., i, N i =0.,, P i,. P i+1, P i+1,,p i 1,P i,, Nim K,. Definition 3.1. l-position,, l., n =2, 1-position., Nim K NIMK. Definition 3.2. {N i } k i=1, NIMn K({N 1,,N k }) = NIM n K({N i }), NIM K nk K +1. n =2, nk K +1=K +1, NIM K.,. Theorem 3.3. NIM n K({N i })=0, 1-position. Proof.,. NIM n K ({N i}) δ., δ =0, n 1, δ =0. δ 0, n 1, δ =0.,.

14 August 10-11, [1] Charles. L. Bouton, Nim, a game with a complete mathematical theorey, Ann. of Math. (2) (1902), no. 3, [2] S.-Y. R. Li, N-person Nim and N-person Moore s games, Internat. J. Game Theory 7 (1978), no. 1, [3] E.H. Moore, A generalization of the game callednim, Ann. of Math. (2) (1910), no. 11,

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

2671026 7 1515 800 D 16551659 2 350 15 10 15 131817 2014.August No.800 8 16 26 6 2612 8 9 1 400 26 9 1227 3 3 4,800 5 6 8 9 1 7 8 11 800 800 800 10 26 15 20 24 26 28 29 30 31 32 6 7 8 9 10 11 12 1 26

More information

1 48

1 48 Section 2 1 48 Section 2 49 50 1 51 Section 2 1 52 Section 2 1 53 1 2 54 Section 2 3 55 1 4 56 Section 2 5 57 58 2 59 Section 2 60 2 61 Section 2 62 2 63 Section 2 3 64 Section 2 6.72 9.01 5.14 7.41 5.93

More information

Section 1 Section 2 Section 3 Section 4 Section 1 Section 3 Section 2 4 5 Section 1 6 7 Section 1 8 9 10 Section 1 11 12 Section 2 13 Section 2 14 Section 2 15 Section 2 16 Section 2 Section 2 17 18 Section

More information

各位                               平成17年5月13日

各位                               平成17年5月13日 9000 1 6 7 8 8 9000 1960 1 2 2 3 3 1471 4 1362 5 2006 6 7 8 1967 9 1988 1988 10 1000 1348 5000 3000 2 11 3 1999 12 13 14 9000 A 15 9000 9000 9000 10000 16 6000 7000 2000 3000 6800 7000 7000 9000 17 18

More information

サービス付き高齢者向け住宅賠償責任保険.indd

サービス付き高齢者向け住宅賠償責任保険.indd 1 2 1 CASE 1 1 2 CASE 2 CASE 3 CASE 4 3 CASE 5 4 3 4 5 6 2 CASE 1 CASE 2 CASE 3 7 8 3 9 10 CASE 1 CASE 2 CASE 3 CASE 4 11 12 13 14 1 1 2 FAX:03-3375-8470 2 3 3 4 4 3 15 16 FAX:03-3375-8470 1 2 0570-022808

More information

A A A B A B A B A B A B A B A B A B A B A B *1 A B A B A B 1.3 (1.3) A B B A *1 2

A A A B A B A B A B A B A B A B A B A B A B *1 A B A B A B 1.3 (1.3) A B B A *1 2 Morality mod Science 4 2017 10 19 1 1.1 (1.1) 1 2 A 1, A 2,..., A n B A 1, A 2,..., A n B A 1, A 2,..., A n B A 1, A 2,..., A n B (1.2) 1 A B 2 B A 1.2 A B minao.kukita@gmail.com 1 A A A B A B A B A B

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

[4] 1.1. x,y 2 x = n i=0 x i2 i,y = n i=0 y i2 i (x i, y i {0, 1}) x y x y = w i 2 i, (1.1) w i = x i + y i (mod 2) (a) (N -Position)

[4] 1.1. x,y 2 x = n i=0 x i2 i,y = n i=0 y i2 i (x i, y i {0, 1}) x y x y = w i 2 i, (1.1) w i = x i + y i (mod 2) (a) (N -Position) () 2 1 2 2 1.1 3,3,2 3 3 3 2 {3, 3, 2} 1.2 1.4 3 1.1 {x, y, z} 3 {x, y, z} 3 x y z [1] x y z x y z 1.5 1.6 x y z [1] Z 0 x i {0, 1} x i 0 1 1.1. {x, y, z} (x, y, z Z 0 ) 1.1 {3, 3, 2} 1.2 {4, 4, 9} 1.3

More information

untitled

untitled NO. 2007 10 10 34 10 10 0570-058-669 http://www.i-nouryoku.com/index.html (40 ) () 1 NO. 2007 10 10 2.2 2.2 130 70 20 80 30 () () 9 10 () 78 8 9 () 2 NO. 2007 10 10 4 7 3 NO. 2007 10 10 40 20 50 2 4 NO.

More information

untitled

untitled -- -- -3- % % % 6% % % 9 66 95 96 35 9 6 6 9 9 5 77 6 6 5 3 9 5 9 9 55 6 5 9 5 59 () 3 5 6 7 5 7 5 5 6 6 7 77 69 39 3 6 3 7 % % % 6% % % (: ) 6 65 79 7 3 36 33 9 9 5 6 7 3 5 3 -- 3 5 6 76 7 77 3 9 6 5

More information

目    次

目    次 1 2 3 t 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 IP 169 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

(2/32) AV OA 1-1 / / ferrite_ni-zn_material_characteristics_ja.fm

(2/32) AV OA 1-1 / / ferrite_ni-zn_material_characteristics_ja.fm August 214 Ni-Zn (2/32) AV OA 1-1 / 214811 / ferrite_ni-zn_material_characteristics_ja.fm (3/32) Contents... 4 L8F... 6 GT2... 7 GT3... 8 High L7H... 9 High L2H... 1 High L2H... 11 High L11H... 12 High

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

Abstract Gale-Shapley 2 (1) 2 (2) (1)

Abstract Gale-Shapley 2 (1) 2 (2) (1) ( ) 2011 3 Abstract Gale-Shapley 2 (1) 2 (2) (1) 1 1 1.1........................................... 1 1.2......................................... 2 2 4 2.1................................... 4 2.1.1 Gale-Shapley..........................

More information

Tabulation of the clasp number of prime knots with up to 10 crossings

Tabulation of the clasp number of prime knots  with up to 10 crossings . Tabulation of the clasp number of prime knots with up to 10 crossings... Kengo Kawamura (Osaka City University) joint work with Teruhisa Kadokami (East China Normal University).. VI December 20, 2013

More information

( ) 1.1 Polychoric Correlation Polyserial Correlation Graded Response Model Partial Credit Model Tetrachoric Correlation ( ) 2 x y x y s r 1 x 2

( ) 1.1 Polychoric Correlation Polyserial Correlation Graded Response Model Partial Credit Model Tetrachoric Correlation ( ) 2 x y x y s r 1 x 2 1 (,2007) SPSSver8 1997 (2002) 1. 2. polychoric correlation coefficient (polyserial correlation coefficient) 3. (1999) M-plus R 1 ( ) 1.1 Polychoric Correlation Polyserial Correlation Graded Response Model

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

IPSJ SIG Technical Report Vol.2016-GI-35 No /3/8 Corner the Queen problem 1,a) 2,b) 1,c) 1,d) 1,e) Queen 2 Queen 1 Corner the Queen problem Wyth

IPSJ SIG Technical Report Vol.2016-GI-35 No /3/8 Corner the Queen problem 1,a) 2,b) 1,c) 1,d) 1,e) Queen 2 Queen 1 Corner the Queen problem Wyth Corner the Queen problem 1,a) 2,b) 1,c) 1,d) 1,e) Queen 2 Queen 1 Corner the Queen problem Wythoff s game Queen ( ) ( ) Grundy Grundy Grundy Wythoff Corner the Queen Grundy 1. 1.1. (i) N-position (ii)

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3 Title 異常磁気能率を伴うディラック方程式 ( 量子情報理論と開放系 ) Author(s) 小栗栖, 修 Citation 数理解析研究所講究録 (1997), 982: 41-51 Issue Date 1997-03 URL http://hdl.handle.net/2433/60922 Right Type Departmental Bulletin Paper Textversion

More information

2

2 1 2 119 119 5 500 1 30 102 1 113 3 4 120 2 3 113 5 230 1 1 3 4 5 6 7 8 1 support@kansen.sakura.ne.jp 2 9 3 ( ) 10 11 12 4 1. 2. 3. 4. 13 5 14 15 16 17 18 19 [ ] [ ] 20 [ ] [ ] [ ] 21 22 [ ] 23 < > < >

More information

( ) P, P P, P (negation, NOT) P ( ) P, Q, P Q, P Q 3, P Q (logical product, AND) P Q ( ) P, Q, P Q, P Q, P Q (logical sum, OR) P Q ( ) P, Q, P Q, ( P

( ) P, P P, P (negation, NOT) P ( ) P, Q, P Q, P Q 3, P Q (logical product, AND) P Q ( ) P, Q, P Q, P Q, P Q (logical sum, OR) P Q ( ) P, Q, P Q, ( P Advent Calendar 2018 @Fukuso Sutaro,,, ( ) Davidson, 5, 1 (quantification) (open sentence) 1,,,,,, 1 1 (propositional logic) (truth value) (proposition) (sentence) 2 (2-valued logic) 2, true false (truth

More information

AHPを用いた大相撲の新しい番付編成

AHPを用いた大相撲の新しい番付編成 5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

NK11_H4H1_B[0104].indd

NK11_H4H1_B[0104].indd NK Newsletter Vol.01 August.2010 ust.20 NK Newsletter Vol.11 1 Part 1 2 NK Newsletter Vol.11 NK Newsletter Vol.11 3 Part 2 4 NK Newsletter Vol.11 NK Newsletter Vol.11 5 Part 3 Interview to Expert 6 NK

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

NK17_12,01_B.indd_CS3

NK17_12,01_B.indd_CS3 NK Newsletter Vol.01 August.2010 ust.20 NK Newsletter Vol.17 1 Part 1 NK Newsletter Vol.17 2 Part 2 NK Newsletter Vol.17 3 NK Newsletter Vol.17 4 1 TEL03-5259-7171FAX03-5259-7172 NK Newsletter Vol.17 5

More information

A Brief Introduction to Modular Forms Computation

A Brief Introduction to Modular Forms Computation A Brief Introduction to Modular Forms Computation Magma Supported by GCOE Program Math-For-Industry Education & Research Hub What s this? Definitions and Properties Demonstration H := H P 1 (Q) some conditions

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

bc0710_010_015.indd

bc0710_010_015.indd Case Study.01 Case Study.02 30 Case Study.05 Case Study.03 Case Study.04 Case Study.06 Case Study.07 Case Study.08 Case Study.21 Case Study.22 Case Study.24 Case Study.23 Case Study.25 Case Study.26

More information

ntv AR05 new/J

ntv AR05 new/J Financial Section 24 25 34 34 34 36 37 38 39 43 44 56 23 1999 2000 2001 2002 2003 2004 328,013 352,409 358,682 336,299 328,374 357,614 203,862 207,743 218,888 215,180 217,844 245,109 54,350 67,302 63,573

More information

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N $\mathbb{q}$ 1097 1999 69-81 69 $\mathrm{m}$ 2 $\mathrm{o}\mathrm{d}\mathfrak{p}$ ray class field 2 (Fuminori Kawamoto) 1 INTRODUCTION $F$ $F$ $K/F$ Galois $G:=Ga\iota(K/F)$ Galois $\alpha\in \mathit{0}_{k}$

More information

カテゴリ変数と独立性の検定

カテゴリ変数と独立性の検定 II L04(2015-05-01 Fri) : Time-stamp: 2015-05-01 Fri 22:28 JST hig 2, Excel 2, χ 2,. http://hig3.net () L04 II(2015) 1 / 20 : L03-S1 Quiz : 1 2 7 3 12 (x = 2) 12 (y = 3) P (X = x) = 5 12 (x = 3), P (Y =

More information

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt NON COMMTATIVE ALGEBRAIC SPACE OF FINITE ARITHMETIC TYPE ( ) 1. Introduction (1) (2) universality C ( ) R (1) (2) ultra filter 0 (1) (1) ( ) (2) (2) (3) 2. ultra filter Definition 2.1. X F filter (1) F

More information

2 log 3 9 log 0 0 a log 9 3 2 log 3 9 y 3 y = 9 3 2 = 9 y = 2 0 y = 0 a log 0 0 a = a 9 2 = 3 log 9 3 = 2 a 0 = a = a log a a = log a = 0 log a a =. l

2 log 3 9 log 0 0 a log 9 3 2 log 3 9 y 3 y = 9 3 2 = 9 y = 2 0 y = 0 a log 0 0 a = a 9 2 = 3 log 9 3 = 2 a 0 = a = a log a a = log a = 0 log a a =. l 202 7 8 logarithm a y = y a y log a a log a y = log a = ep a y a > 0, a > 0 log 5 25 log 5 25 y y = log 5 25 25 = 5 y 25 25 = 5 3 y = 3 log 5 25 = 3 2 log 3 9 log 0 0 a log 9 3 2 log 3 9 y 3 y = 9 3 2

More information

- 1 - - 2 - 320 421 928 1115 12 8 116 124 2 7 4 5 428 515 530 624 921 1115 1-3 - 100 250-4 - - 5 - - 6 - - 7 - - 8 - - 9 - & & - 11 - - 12 - GT GT - 13 - GT - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - -

More information

加速度センサを用いた図形入力

加速度センサを用いた図形入力 ( ) 2/Sep 09 1 2 1. : ( ) 2. : 2 1. 2. 2 t a 0, a 1,..., a ( ) v 0 t v 0, v 1,..., v n ( ) p 0 t p 0, p 1,..., p n+1 3 Kentaro Yamaguchi@bandainamcogames.co.jp 1 ( ) a i g a i g v 1,..., v n v 0 v i+1

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

線形空間の入門編 Part3

線形空間の入門編 Part3 Part3 j1701 March 15, 2013 (j1701) Part3 March 15, 2013 1 / 46 table of contents 1 2 3 (j1701) Part3 March 15, 2013 2 / 46 f : R 2 R 2 ( ) x f = y ( 1 1 1 1 ) ( x y ) = ( ) x y y x, y = x ( x y) 0!! (

More information

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n 1 1.1 Excel Excel Excel log 1, log, log,, log e.7188188 ln log 1. 5cm 1mm 1 0.1mm 0.1 4 4 1 4.1 fx) fx) n0 f n) 0) x n n! n + 1 R n+1 x) fx) f0) + f 0) 1! x + f 0)! x + + f n) 0) x n + R n+1 x) n! 1 .

More information

橡HP用.PDF

橡HP用.PDF 1 2 3 ... 1... 2... 2... 3... 4... 12...12...12... 14...14...15...16... 17...17... 17...18...18...20...22... 26... 26 ... 27...27...28 32 1 2 3 8 9 O 1 2 7 C ln 6 O 4 3 C ln m + n = 8 8 9 1 2 7 3 C ln

More information

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a Page 1 of 6 B (The World of Mathematics) November 0, 006 Final Exam 006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (a) (Decide whether the following holds by completing the truth

More information

23 3 11 14 46 9.0 7 10m 40.1m 15,883 2,681 25 4 10 39 40 800 180 24 2425 22 21 24 5 3 21 24 10,899 20,472 13,723 33,007 667 400 79,167 8,620 11,694 10,089 25,131 690 215 56,439 13,614 20,897 15,200 32,213

More information

ガイドブック_医療編

ガイドブック_医療編 3 6 Section A 10 12 20 25 Section B 38 43 50 62 84 99 Section C 110 124 141 155 164 Section D 178 185 196 Section E 204 212 Section F 218 Section G 226 Section H 240 258 274 278 Section A 10 11 12 13 14

More information

_TZ_4797-haus-local

_TZ_4797-haus-local 1.1.................................... 3.3.................................. 4.4......................... 8.5... 10.6.................... 1.7... 14 3 16 3.1 ()........................... 16 3. 7... 17

More information

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i = 1 1980 1) 1 2 3 19721960 1965 2) 1999 1 69 1980 1972: 55 1999: 179 2041999: 210 211 1999: 211 3 2003 1987 92 97 3) 1960 1965 1970 1985 1990 1995 4) 1. d ij f i e i x i v j m a ij m f ij n x i = n d ij

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

2 1 Introduction

2 1 Introduction 1 24 11 26 1 E-mail: toyoizumi@waseda.jp 2 1 Introduction 5 1.1...................... 7 2 8 2.1................ 8 2.2....................... 8 2.3............................ 9 3 10 3.1.........................

More information

; Modus Ponens 1

; Modus Ponens 1 1 9 00 ; 1402 5 16 20 1502 1 11 1 1 2 1 2 Modus Ponens 1 1 2 Modus Ponens 2 1 12 Gentzen 13 Modus ponens 1 100 2 100 100 P Q P Q Q 2 P Q P Q Modus ponens Y Y 1 Modus Ponens P 2 Y Y Y Y Y Y C D Y F (C D)

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

半 系列における記号の出現度数の対称性

半  系列における記号の出現度数の対称性 l l 2018 08 27 2018 08 28 FFTPRSWS18 1 / 20 FCSR l LFSR NLFSR NLFSR Goresky Klapper FCSR l word-based FCSR l l... l 2 / 20 LFSR FCSR l a m 1 a m 2... a 1 a 0 q 1 q 2... q m 1 q m a = (a n) n 0 R m LFSR

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

独立性の検定・ピボットテーブル

独立性の検定・ピボットテーブル II L04(2016-05-12 Thu) : Time-stamp: 2016-05-12 Thu 12:48 JST hig 2, χ 2, V Excel http://hig3.net ( ) L04 II(2016) 1 / 20 L03-Q1 Quiz : 1 { 0.95 (y = 10) P (Y = y X = 1) = 0.05 (y = 20) { 0.125 (y = 10)

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

Fermat s Last Theorem Hajime Mashima November 19, 2018 Abstract About 380 years ago, Pierre de Fermat wrote the following idea to Diophantus s Arithme

Fermat s Last Theorem Hajime Mashima November 19, 2018 Abstract About 380 years ago, Pierre de Fermat wrote the following idea to Diophantus s Arithme Fermat s Last Theorem Hajime Mashima November 19, 2018 Abstract About 380 years ago, Pierre de Fermat wrote the following idea to Diophantus s Arithmetica. Cubum autem in duos cubos, aut quadratoquadratum

More information

2 / 7

2 / 7 1 / 7 1.30 1.301.00m 2.00 2.001.00m 1.70 1.701.00m 2.4 2.41.0m 2.0 2.01.0m 1.08 1.20.9m 1.08 1.20.9m 2.5 2.51.0m 2.5 2.51.0m 0.9 1.00.9m 1.44 1.60.9m 2 / 7 ml ml 3 / 7 4 / 7 ) 5 / 7 6 / 7 0798-56-1710

More information