2 1 Introduction

Size: px
Start display at page:

Download "2 1 Introduction"

Transcription

1 toyoizumi@waseda.jp

2 2 1 Introduction Bayes

3 7 Poisson Poisson Poisson χ 2 ( t F t

4

5 5 1 Introduction Methods & Evaluation ( Problem Requirements 1 Text book Business Statistics (Barron s Business Review Series) Douglas Downing ( ), Jeff Clark ( ) Barrons Educational Series Inc ; 4th (2003/09) 1.

6 6 1 Introduction 1.1: Business Statistics (Barron s Business Review Series)[1]

7 Example 1.1 ( ) Problem 1.1.

8 Definition 2.1 (average). Given n samples of data, the quantity below is called by average. x = x 1 + x x n n = n i=1 x i. (2.1) n Definition 2.2 (median). Given n samples of data, the center of the ordered samples is called by median. Definition 2.3 (mode). Given n samples of data, the value which is appeared most in the data is called by mode. Problem average median mode Problem 2.2.

9 Definition 2.4 (variance). Given n samples of data, the quantity below is called by variance of data. The sample variance is also defined by Var(x) = σ 2 = n i=1 (x i x) 2 n (2.2) = x 2 x 2. (2.3) s 2 2 = n i=1 (x i x) 2 n 1 Problem 2.3. (2.3) (2.4) x 2 Definition 2.5 (standard deviation). Given n samples of data, the square-root of the variance Var(x) is called by standard deviation, and given by σ = Var(x) (2.5) = x 2 x 2. (2.6) 2.3 Example 2.1 ( ). Problem 2.4. Excel

10 Remark 3.1. Definition 3.1. Ω A A P{A or B} = P{A B} P{A}, (3.1) = P(A) + P(B) P(A B). (3.2) P{A and B} = P{A B} (3.3) P{ not A} = P{A c } = 1 P{A}. (3.4)

11 Problem n j np j = n! (n j)!, (3.5) n j ( ) n n! = n C j = j (n j)! j!, (3.6) Problem

12 n h P{ n h } = = ( )( n 1 h 2 n! h!(n h)! ) n (4.1) ( ) 1 n 2 (4.2) Problem 4.1. Problem (null hypothesis) (alternative hypothesis) false positive)

13 error) Problem 4.3. Remark % 10% Example 4.1. (null hypothesis) p = 1/2. (alternative hypothesis) p 1/2. Problem 4.4. false positive) error)

14 P{ } = (5.1) MRI 5% 5% P{A B} B B P{ } = 1 20, P{ } = (5.2) 1 [3, p.207]

15 P{A B} P{A B} = P{A B} P{B}. (5.3) P{ }. (5.4) (5.2) (5.4) Problem 5.1 (False positives 2 ). Answer the followings: 1. Suppose there are illegal acts in one in companies on the average. You as a accountant audit companies. The auditing contains some uncertainty. There is a 1% chance that a normal company is declared to have some problem. Find the probability that the company declared to have a problem is actually illegal. 2. Suppose you are tested by a disease that strikes 1/1000 population. This test has 5% false positives, that mean even if you are not affected by this disease, you have 5% chance to be diagnosed to be suffered by it. A medical operation will cure the disease, but of course there is a misoperation. Given that your result is positive, what can you say about your situation? 1/6 2 Modified from [3, p.207].

16 Definition 5.1. B P{A B} = P{A B} P{B}. (5.5) Example 5.1. P{( ) ( )} P{ } = P{ } P{ } = P{ } P{ }P{ 3} = P{ } = P{ } = 1 6. Problem 5.2. A K Problem 5.3. A

17 5.4. Bayes 17 Problem 5.4. Definition 5.2. A B Theorem 5.1 ( ). A B Problem 5.5. Theorem 5.1 P{A B} = P{A} (5.6) P{A B} = P{A}P{B}. (5.7) 5.4 Bayes Bayes Theorem 5.2 (Bayes). P{B A} = Problem 5.6. Theorem 5.2 P{A B}P{B} P{A B}P{B} + P{A B c }P{B c }. (5.8)

18 Definition 6.1. Example 6.1. W: 6.2 Definition 6.2 (). X f (a) = P{X = a}, (6.1) Problem 6.1. X X Definition 6.3 (). X F(x) = P{X x}, (6.2) f (x) Theorem 6.1. f (x) = df(x) dx = dp(x x). (6.3) dx lim F(x) = 1, (6.4) x lim F(x) = 0 (6.5) x

19 Definition 6.4 ( ). E[X] = xdp{x x} (6.6) Remark 6.1. X E[X] = xdp{x x} = ap{x = a} (6.7) a 6.4 Example 6.2. U,V 1/2 U 1/2, (6.8) V = { 1 with probability 1/2, 0 with probability 1/2. (6.9) Problem 6.2. E[U] = E[V ] = 1/2 Definition 6.5 ( ). Var[X] = E [ (X E[X]) 2]. (6.10)

20 20 6 Theorem 6.2. Var[X] = E[X 2 ] (E[X]) 2. (6.11) Var[aX + b] = a 2 Var[X]. (6.12) Remark 6.2. X Definition 6.6 (). σ = Var[X]. (6.13) Problem 6.3. Example 6.2 Theorem 6.3. X,Y E[XY ] = E[X]E[Y ], (6.14) Var[X +Y ] = Var[X] +Var[Y ]. (6.15) 6.5 A Definition 6.7 ( ). A = { 1 with probability p, 0 with probability 1 p. (6.16) Theorem 6.4. E[A] = p, (6.17) Var[A] = p(1 p). (6.18)

21 Definition 6.8. X 1,X 2,...,X n, (6.19) P{X i x} = F(x), (6.20) X 1,X 2,...,X n i.i.d: independent and identically distributed) X Theorem 6.5. X 1,X 2,...,X n, (6.21) X = 1 n n i=1 X i, (6.22) E[ X] = E[X], (6.23) Var[ X] = Var[X]. (6.24) n

22 22 7 Poisson 7.1 Definition 7.1 (). p X X Theorem 7.1. X P{X = i} = (1 p) i 1 p, (7.1) E[X] = 1 p, (7.2) Var[X] = 1 p p 2. (7.3) Proof. X = { 1 with probability p, 1 + X with probability 1 p, (7.4) X X E[X] = p 1 + (1 p)e[1 + X], (7.5) E[X] = 1/p

23 Problem 7.1. E[X 2 ] = p (1 p)e[(1 + X) 2 ], (7.6) Var[X] Problem / Definition 7.2 (). p n X X P{X = i} = ( ) n p i (1 p) n i, (7.7) i Theorem 7.2. X Bernouilli A i P{A i = 1} = p X = n i=1 Theorem 7.3. X A i, (7.8) E[X] = np, (7.9) Var[X] = np(1 p). (7.10)

24 24 7 Poisson 7.3 Problem 7.3 ( ) P_n n 7.1: : Problem 7.4 ( ). 7% 5% 7.4 Poisson Poisson Definition 7.3 (Poisson ). N N λ Poisson

25 7.4. Poisson 25 P_n n 7.2: P_n n 7.3: risk n 7.4:

26 26 7 Poisson P{N = n} = λ n Theorem 7.4. Poisson N n! e λ. (7.11) E[N] = λ, (7.12) Var[N] = λ. (7.13) Theorem 7.5. n np λ = np Poisson 7.5 Poisson Problem 7.5 ( ) P_n n 7.5: : Problem 7.6 ( )

27 Definition 7.4 ( ). M A N M B n A X X ( M )( N M ) i n i P{X = i} = ( N. (7.14) n) Theorem 7.6. N E[N] = nm N, (7.15) ( )( M Var[N] = n 1 M )( ) N n. (7.16) N N N 1

28 Definition 8.1. X a b X [a,b] a c d b P{c X d} = d c b a, (8.1) Remark 8.1. P{X = x} = 0. (8.2) 8.2 Definition 8.2. Example 8.1. H H Definition 8.3 ( ). X (Cumulative Distribution Function: CDF or Probability Density Function: PDF) Theorem 8.1. F(x) = P{X x}. (8.3) P{X > a} = 1 F(a), (8.4) P{b < X < c} = F(c) F(b). (8.5)

29 Problem 8.1. [a,b] Definition 8.4 ( ). F(x) (probability density function:pdf) f (x) = df(x) dx. (8.6) Problem 8.2. [a,b] Theorem 8.2. Theorem 8.3. P{a < X b} = E[X] = E[X 2 ] = b a f (x)dx = F(b) F(a). (8.7) x f (x)dx, (8.8) x 2 f (x)dx, (8.9) Var[X] = E[X 2 ] E[X] 2. (8.10) Problem 8.3. [a,b] X 8.3 µ σ 2 Definition 8.5 (). X µ σ 2 f (x) f (x) = 1 2πσ e [(x µ)/σ]2 /2. (8.11) X N(µ,σ 2 ) Definition 8.6 ( ). Z µ = 0 σ 2 = 1 Z N(0,1) Φ(x) = P{Z x}. (8.12)

30 30 8 Theorem % P{µ 2σ X µ + 2σ} (8.13) Theorem 8.5. µ σ 2 Y Z Y = µ + σz. (8.14) Z = Y µ σ. (8.15) Theorem 8.6. ( ) a µ P{X a} = Φ. (8.16) σ Proof. { X µ P{X a} = P a µ } σ σ { = P Z a µ } σ ( ) a µ = Φ. σ Remark 8.2. Excel Example 8.2 (). X POS 2.5% Theorem 8.5 Z = X µ σ (8.17)

31 N[0,1] P{ 2 Z 2} (8.18) P{Z 2} + P{ 2 Z 2} + P{Z 2} = 1. (8.19) P{Z 2} = P{Z 2} X P{Z 2} = 1/2P{ 2 Z 2} = (8.20) = P{Z 2} { X µ = P σ } 2 = P{X µ + 2σ} = P{X 440} % Problem 8.4. Sony Sony Sony Excel Theorem 8.7. X i µ i σi 2 ) X = n i=1 X i N ( n i=1 µ i, n i=1 σ 2 i. (8.21)

32 Definition 8.7 ( ). log(y ) Y X Y = e X, (8.22) Theorem 8.8 ( ). X N[µ,σ 2 ] Y = e X E[Y ] = e µ+σ 2 /2, (8.23) Var[Y ] = e 2µ+2σ 2 e 2µ+σ 2. (8.24) Problem 8.5. E[Y ] e µ 8.5 Theorem 8.9 ( ). Figure 8.1 Remark χ 2 ( χ 2 Definition 8.8 (χ 2 ). Z Z χ 2 χ = Z 2 (8.25)

33 8.6. χ 2 ( : The detailed histgram of the sample average A = 1 n n i=1 X i when n = 10, where X i is a Bernouilli random variable with E[X i ] = 1/2. The solid line is the corresponding Normal distribution. Theorem Proof. E[χ] = 1, (8.26) Var[χ] = 2. (8.27) E[χ] = E[Z 2 ] = 1. (8.28) Definition 8.9 ( n χ 2 ). Z i χ n = n χ 2 n i=1 Z 2 i, (8.29) Remark 8.4. n Z i Remark 8.5. χ 2 Theorem E[χ n ] = n, (8.30) Var[χ n ] = 2n. (8.31)

34 t Definition 8.10 (t ). Z Y m χ 2 T = Z Y /m, (8.32) m student t Remark 8.6. student t 8.8 F Definition 8.11 (t ). X Y m n χ 2 m n F F = X/m Y /n, (8.33)

35 Definition 9.1 ( ). X Y F(x,y) = P{X x,y y}. (9.1) Theorem 9.1. f (x,y) = d2 F(x,y). (9.2) dxdy E[XY ] = xy f (x, y)dxdy. (9.3) Problem 9.1. X Y 9.2 Definition 9.2 (). P{X x} = F X (x) = F(x, ). (9.4) f X (x) = y= f (x,y)dy. (9.5) Problem 9.2. X Y

36 Definition 9.3 ( ). P{X x Y = y}. (9.6) f (x Y = y) = f (x,y) f Y (y). (9.7) Problem 9.3. X Y f (x Y = 2), (9.8) 9.4 X Y (9.7) Theorem 9.2. X Y f (x Y = y) = f X (x). (9.9) f (x,y) = f X (x) f Y (y). (9.10) E[XY ] = E[X]E[Y ]. (9.11)

37 Definition 9.4. X Y Cov(X,Y ) = E [(X E[X])(Y E[Y ])] (9.12) = E [XY ] E[X]E[Y ]. (9.13) Problem 9.4. Cov(X,Y ) Problem 9.5. X Y Definition 9.5. ρ(x,y ) = Cov(X,Y ) Var(X)Var(Y ). (9.14) Problem 9.6. ρ(x,y ) 1-1 Problem 9.7. X Y 9.6 Theorem 9.3. E[X +Y ] = E[X] + E[Y ], (9.15) Var[X +Y ] = Var[X] +Var[Y ] + 2Cov[X,Y ]. (9.16) Remark 9.1. X Y Problem 9.8. Var[X +Y ] = Var[X] +Var[Y ] + 2Cov[X,Y ]. (9.17)

38 Example 9.1. Worldwide Fastburgers, Inc W E[W] = 1000, (9.18) Var[W] = 400, (9.19) HaveItYourWay Burgers, Inc H E[H] = 1000, (9.20) Var[H] = 400. (9.21) FunGoodTimes Pizza, Inc F E[F] = 1000, (9.22) Var[F] = 400. (9.23) Problem 9.9. Problem Theorem 9.3 Cov(W, H) = 380, (9.24) Cov(W, F) = 200, (9.25)

39 Problem HaveItYourWay Burgers, Inc Var[W + H] = Var[W] +Var[H] + 2Cov(W,H) (9.26) = (9.27) = 1,560. (9.28) Problem FunGoodTimes Pizza, Inc Problem 9.13.

40 X µ n X 1,X 2,...,X n µ ˆµ x ˆµ = x = 1 n n i=0 X i. (10.1) x Definition Example ,7,4,10,12, (10.2) µ = E[X] ˆµ ˆµ = x = 1 ( ) = 7. (10.3) 5 Remark ˆµ

41 Definition 10.2 ( ). P{X 1 = x 1,X 2 = x 2,...,X n = x n µ}, (10.4) µ Remark Example 10.2 () {1,0,0,0,1,0,1,0,0,0}. (10.5) p p = 1/2 P{X 1 = 1,X 2 = 0,...,X 10 = 0} = , (10.6) 210 p p = 1/3 P{X 1 = 1,X 2 = 0,...,X 10 = 0} = , (10.7) 310 Problem p P{X 1 = 1,X 2 = 0,...,X 10 = 0} = p 3 (1 p) 7 (10.8) p log log logp{x 1 = 1,X 2 = 0,...,X 10 = 0} = 3log p + 7log(1 p), (10.9)

42 42 10 p p 0 3 p + 7 = 0, (10.10) 1 p p = 3/10 n p = 1 n n i=1 x i (10.11) (x 1,x 2,...,x n ) Example X ˆµ = x = 1 n µ = E[X] n i=0 Example X ˆ σ 2 = 1 n n i=1 σ 2 = Var[X] X i, (10.12) (X i x) 2, (10.13) Example 10.5 (). (Definition 7.2 ( ) n P{X = i} = p i (1 p) n i, (10.14) i (10.15) p

43 Definition consistent estimator) Remark Problem Example x µ [ ] n 1 Var[ x] = Var X i n i = 1 n 2 nvar[x] = 1 Var[X] 0 as n 0. n 10.4 Definition Problem x Example ˆ σ 2 E[X] = 0, (10.16) σ 2 = Var[X] = E[X 2 ]. (10.17) ˆ σ 2 = 1 n n i=0 (X i x) 2. (10.18)

44 44 10 [ n ] E[ σ ˆ2 ] = 1 n E (X i x) 2 i=0 (10.19) = 1 n n i=0 E [ X 2 i 2 xx i + x 2] (10.20) (n 1)σ 2 =. (10.21) n E[X 2 i ] = σ 2, (10.22) E[ xx i ] = 1 n σ 2, (10.23) E[ x 2 ] = 1 n σ 2, (10.24) E[ σ ˆ2 (n 1)σ 2 ] =. (10.25) n σ ˆ2 s ˆ2 sˆ 2 = 1 n 1 n i=0 (X i x) 2 (10.26) E[ ˆ s 2 ] = σ 2, (10.27) Example

45 Example µ (X 1,X 2 ) ˆµ 2 = X 1 + X 2 2 (10.28) 1000 ˆµ 1000 = 1 n n i X i, (10.29) Problem ˆµ 1000 Problem 10.5.

46 46 11 Chapter 10 Problem 11.1 ( ). = 1, (11.1) Problem = 1, (11.2) 11.1 X 1,X 2,...,X n µ = E[X] x x = 1 n n i=0 X i. (11.3)

47 Theorem x Proof. Theorem 8.7 x x x µ c µ [ x c, x + c] µ [ x c, x + c] 95% c Definition 11.1 (). X 1,X 2,...,X n µ x [ x c, x + c] CL µ x P{ x c < µ < x + c} = CL. (11.4) Theorem 11.2 (). X 1,X 2,...,X n c P{ x c < µ < x + c} = 0.95, (11.5) (11.6) c = 1.96σ n, (11.7) 95% [ [ x c, x + c] = x 1.96σ, x σ ], (11.8) n n

48 48 11 Lemma Lemma Z = x µ σ 2 /n = n x µ σ, (11.9) N[0,1] Proof. x µ, σ 2 /n Theorem 8.5 Proof of Theorem Lemma 11.1 P{ x c < µ < x + c} = P{ c < x µ < c} = P{ c n σ < n x µ σ < c n σ } = P{ c n σ < Z < c n σ }. P{ 1.95 < Z < 1.95} = (11.10) c = 1.96σ n. (11.11) Problem t Section 11.1 c = 1.96σ n, (11.12)

49 11.2. t 49 X σ 2 Problem σ 2 1. σ 2 ˆσ 2 2. ˆσ 2 c Problem Lemma 11.1 Lemma Lemma ŝ 2 = 1 n 1 n i=0 (X i x) 2. (11.13) n( x µ) T =, (11.14) ŝ n 1 t Section 8.7 Proof. Section 8.7 Z χ 2 Y T = Z Y /m, (11.15) T t (11.14) n( x µ)/σ T = (11.16) ŝ/σ n( x µ)/σ = n i=0 (X i x) 2 /[(n 1)σ 2 ]. (11.17)

50 50 11 Lemma 11.1 n i=0 (X i x) 2 σ 2, (11.18) x n 1 χ 2 [2]P84-P87 Lemma 11.2 Theorem 11.3 ( ). X 1,X 2,...,X n n P{ x c < µ < x + c} = 0.95, (11.19) (11.20) c c = a ˆσ n, (11.21) a t P{ a < T < a} = 0.95, (11.22) n = 7 a = % [ [ x c, x + c] = x a ˆσ, x + a ˆσ ], (11.23) n n Proof. P{ x c < µ < x + c} = P{ c < x µ < c} = P{ c n ˆσ < T < c n ˆσ }. t P{ c n ˆσ < T < c n ˆσ } (11.24) Remark t t

51 Normal t n : t [1]

52 Problem Example 12.1 ( ) :

53 Problem N M p = M N, (12.1) n n X ˆp ˆp = X n, (12.2) ˆp p Problem Lemma n X (n, p) n X np np(1 p)

54 54 12 Proof. n X n Theorem n X ˆp = X n, (12.3) N(p, p(1 p)/n) Proof. Lemma 12.1 X N(np,np(1 p)) ˆp = X n, (12.4) X [ ] X E[ ˆp] = E = np = p. (12.5) n n [ ] X Var[ ˆp] = Var = 1 p(1 p) np(1 p) =. (12.6) n n2 n Remark ˆp E[ ˆp] = p. (12.7) n ˆp Var[ ˆp] = p(1 p) n 0, (12.8) ˆp

55 Theorem n ˆp 95% [ ] ˆp(1 ˆp) ˆp(1 ˆp) ˆp 1.96, ˆp (12.9) n n Proof. Theorem 12.1 ˆp σ 2 = Var[ ˆp] = ˆp(1 ˆp). (12.10) n Theorem 11.3 Remark [1] P259 Example n = 2018 ˆp = % [ ] ˆp(1 ˆp) ˆp(1 ˆp) ˆp 1.96, ˆp = [ , ], n n (12.11) 12.3 Example Literacy Digest Roosevelt Roosevelt Problem Literacy Digest Example 12.4 (). 12.2

56 Problem 12.5 ( ). : ( ) Problem 12.6.

57 :

58 : : Problem (YES or NO)

59 Section 4.2 (null hypothesis) (alternative hypothesis) error false positive) false negative) ( 5%

60 60 13 Example Problem % 20% 5% 13.2 Definition 13.1 ( ). Example X X X n = 100 p = 1/2

61 X = 90 n = 100 p = 1/2 Problem example 13.3 Definition X 1,X 2,...,X n µ = E[X] µ H 0 : µ = µ. (13.1) Example 13.3 ( ). N[µ,σ 2 ] σ 2 =

62 62 13 x {9,11,6,10,7,4,0,7,8,6,8,2,18}. (13.2) x = 7.38, (13.3) Problem x = 7.38 µ = 7 H 0 H 0 : µ = 7. (13.4) X 1,X 2,...,X 13 N[7,16.16] Lemma 11.1 x N[7,16.16/n] Z Z = n x µ σ = = 0.341, N[0,1] Z N[0,1] N[0,1] Z P{ 1.96 < Z < 1.96} = 0.95, (13.5) Z = 0.341, 7 5%

63 Problem Remark 13.1 ( ). 95% 5% 13.4 Example 13.4 () : {7,16,19,12,15,9,6,16,14,7,2,15,23,15,12,18,9}. (13.6) Problem

64 64 13 Section 13.3 H 0 : µ = µ. (13.7) Section H 0 : µ < µ. (13.8) Definition Example 13.5 ( ). 11 σ T T = n x µ ˆσ = = n 1 t P{T < 1.75} = 0.95, (13.9) T = 1.26 n 1 t 5% Problem {3,2,7,5,4,8,7,8} (13.10)

65 Problem ( % Problem 13.8.

66 66 [1] Douglas Downing and Jeffrey Clark. Business Statistics. Barrons s Educational Series, Inc., [2] Shingo Shirahata. Toukei Kaiseki Nyumon. Kyouritu, [3] Nassim Nicholas Taleb. Fooled by Randomness: The Hidden Role of Chance in the Markets and in Life. Random House Trade Paperbacks, 2005.

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

数理統計学Iノート

数理統計学Iノート I ver. 0/Apr/208 * (inferential statistics) *2 A, B *3 5.9 *4 *5 [6] [],.., 7 2004. [2].., 973. [3]. R (Wonderful R )., 9 206. [4]. ( )., 7 99. [5]. ( )., 8 992. [6],.., 989. [7]. - 30., 0 996. [4] [5]

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

最小2乗法

最小2乗法 2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

分布

分布 (normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability

More information

Hiroshi Toyoizumi May 24,

Hiroshi Toyoizumi May 24, Hiroshi Toyoizumi May 24, 2006 1 E-mail: toyoizumi@waseda.jp http://www.f.waseda.jp/toyoizumi/ 1 2 2 2 2.1 1 Figure 1: [2] 2 3 2 4 2.2 Figure 2: Business Statistics (Barron s Business Review Series)[1]

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó 2 212 4 13 1 (4/6) : ruby 2 / 35 ( ) : gnuplot 3 / 35 ( ) 4 / 35 (summary statistics) : (mean) (median) (mode) : (range) (variance) (standard deviation) 5 / 35 (mean): x = 1 n (median): { xr+1 m, m = 2r

More information

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó 2 2015 4 20 1 (4/13) : ruby 2 / 49 2 ( ) : gnuplot 3 / 49 1 1 2014 6 IIJ / 4 / 49 1 ( ) / 5 / 49 ( ) 6 / 49 (summary statistics) : (mean) (median) (mode) : (range) (variance) (standard deviation) 7 / 49

More information

(pdf) (cdf) Matlab χ ( ) F t

(pdf) (cdf) Matlab χ ( ) F t (, ) (univariate) (bivariate) (multi-variate) Matlab Octave Matlab Matlab/Octave --...............3. (pdf) (cdf)...3.4....4.5....4.6....7.7. Matlab...8.7.....9.7.. χ ( )...0.7.3.....7.4. F....7.5. t-...3.8....4.8.....4.8.....5.8.3....6.8.4....8.8.5....8.8.6....8.9....9.9.....9.9.....0.9.3....0.9.4.....9.5.....0....3

More information

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble 25 II 25 2 6 13:30 16:00 (1),. Do not open this problem boolet until the start of the examination is announced. (2) 3.. Answer the following 3 problems. Use the designated answer sheet for each problem.

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation : kubostat2017b p.1 agenda I 2017 (b) probabilit distribution and maimum likelihood estimation kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 1 : 2 3? 4 kubostat2017b (http://goo.gl/76c4i)

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: qliu@res.otaru-uc.ac.jp 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

June 2016 i (statistics) F Excel Numbers, OpenOffice/LibreOffice Calc ii *1 VAR STDEV 1 SPSS SAS R *2 R R R R *1 Excel, Numbers, Microsoft Office, Apple iwork, *2 R GNU GNU R iii URL http://ruby.kyoto-wu.ac.jp/statistics/training/

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

こんにちは由美子です

こんにちは由美子です 1 2 . sum Variable Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- var1 13.4923077.3545926.05 1.1 3 3 3 0.71 3 x 3 C 3 = 0.3579 2 1 0.71 2 x 0.29 x 3 C 2 = 0.4386

More information

Test IV, March 22, 2016 6. Suppose that 2 n a n converges. Prove or disprove that a n converges. Proof. Method I: Let a n x n be a power series, which converges at x = 2 by the assumption. Applying Theorem

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2 1 1 1.1 1.1.1 1 168 75 2 170 65 3 156 50... x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2 1 1 0 1 0 0 2 1 0 0 1 0 3 0 1 0 0 1...... 1.1.2 x = 1 n x (average, mean) x i s 2 x = 1 n (x i x) 2 3 x (variance)

More information

浜松医科大学紀要

浜松医科大学紀要 On the Statistical Bias Found in the Horse Racing Data (1) Akio NODA Mathematics Abstract: The purpose of the present paper is to report what type of statistical bias the author has found in the horse

More information

分散分析・2次元正規分布

分散分析・2次元正規分布 2 II L10(2016-06-30 Thu) : Time-stamp: 2016-06-30 Thu 13:55 JST hig F 2.. http://hig3.net ( ) L10 2 II(2016) 1 / 24 F 2 F L09-Q1 Quiz :F 1 α = 0.05, 2 F 3 H 0, : σ 2 1 /σ2 2 = 1., H 1, σ 2 1 /σ2 2 1. 4

More information

統計的データ解析

統計的データ解析 ds45 xspec qdp guplot oocalc (Error) gg (Radom Error)(Systematc Error) x, x,, x ( x, x,..., x x = s x x µ = lm = σ µ x x = lm ( x ) = σ ( ) = - x = js j ( ) = j= ( j) x x + xj x + xj j x + xj = ( x x

More information

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j ) 5 Armitage. x,, x n y i = 0x i + 3 y i = log x i x i y i.2 n i i x ij i j y ij, z ij i j 2 y = a x + b 2 2. ( cm) x ij (i j ) (i) x, x 2 σ 2 x,, σ 2 x,2 σ x,, σ x,2 t t x * (ii) (i) m y ij = x ij /00 y

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 87 6.1 AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 2, V(y t y t 1, y t 2, ) = σ 2 3. Thus, y t y t 1,

More information

(note-02) Rademacher 1/57

(note-02) Rademacher 1/57 (note-02) Rademacher 1/57 (x 1, y 1 ),..., (x n, y n ) X Y f : X Y Y = R f Y = {+1, 1}, {1, 2,..., G} f x y 1. (x 1, y 1 ),..., (x n, y n ) f(x i ) ( ) 2. x f(x) Y 2/57 (x, y) f(x) f(x) y (, loss) l(f(x),

More information

カテゴリ変数と独立性の検定

カテゴリ変数と独立性の検定 II L04(2015-05-01 Fri) : Time-stamp: 2015-05-01 Fri 22:28 JST hig 2, Excel 2, χ 2,. http://hig3.net () L04 II(2015) 1 / 20 : L03-S1 Quiz : 1 2 7 3 12 (x = 2) 12 (y = 3) P (X = x) = 5 12 (x = 3), P (Y =

More information

Microsoft Word - ??? ????????? ????? 2013.docx

Microsoft Word - ??? ????????? ????? 2013.docx @ィーィェィケィャi@@ @@pbィ 050605a05@07ィ 050605a@070200 pbィ 050605a05@07ィ 050605a@070200@ィーィィu05@0208 1215181418 12 1216121419 171210 1918181811 19181719101411 1513 191815181611 19181319101411 18121819191418 1919151811

More information

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

Rによる計量分析:データ解析と可視化 - 第3回  Rの基礎とデータ操作・管理 R 3 R 2017 Email: gito@eco.u-toyama.ac.jp October 23, 2017 (Toyama/NIHU) R ( 3 ) October 23, 2017 1 / 34 Agenda 1 2 3 4 R 5 RStudio (Toyama/NIHU) R ( 3 ) October 23, 2017 2 / 34 10/30 (Mon.) 12/11 (Mon.)

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib kubostat2015e p.1 I 2015 (e) GLM kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2015 07 22 2015 07 21 16:26 kubostat2015e (http://goo.gl/76c4i) 2015 (e) 2015 07 22 1 / 42 1 N k 2 binomial distribution logit

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

記号と準備

記号と準備 tbasic.org * 1 [2017 6 ] 1 2 1.1................................................ 2 1.2................................................ 2 1.3.............................................. 3 2 5 2.1............................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

名称未設定

名称未設定 2007 12 19 i I 1 1 3 1.1.................... 3 1.2................................ 4 1.3.................................... 7 2 9 2.1...................................... 9 2.2....................................

More information

CVaR

CVaR CVaR 20 4 24 3 24 1 31 ,.,.,. Markowitz,., (Value-at-Risk, VaR) (Conditional Value-at-Risk, CVaR). VaR, CVaR VaR. CVaR, CVaR. CVaR,,.,.,,,.,,. 1 5 2 VaR CVaR 6 2.1................................................

More information

講義のーと : データ解析のための統計モデリング. 第2回

講義のーと :  データ解析のための統計モデリング. 第2回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i kubostat2018d p.1 I 2018 (d) model selection and kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)

More information

untitled

untitled 1 Hitomi s English Tests 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 2 0 0 1 1 0 0 0 0 0 1 1 1 1 0 3 1 1 0 0 0 0 1 0 1 0 1 0 1 1 4 1 1 0 1 0 1 1 1 1 0 0 0 1 1 5 1 1 0 1 1 1 1 0 0 1 0

More information

応用数学III-4.ppt

応用数学III-4.ppt III f x ( ) = 1 f x ( ) = P( X = x) = f ( x) = P( X = x) =! x ( ) b! a, X! U a,b f ( x) =! " e #!x, X! Ex (!) n! ( n! x)!x! " x 1! " x! e"!, X! Po! ( ) n! x, X! B( n;" ) ( ) ! xf ( x) = = n n!! ( n

More information

L1 What Can You Blood Type Tell Us? Part 1 Can you guess/ my blood type? Well,/ you re very serious person/ so/ I think/ your blood type is A. Wow!/ G

L1 What Can You Blood Type Tell Us? Part 1 Can you guess/ my blood type? Well,/ you re very serious person/ so/ I think/ your blood type is A. Wow!/ G L1 What Can You Blood Type Tell Us? Part 1 Can you guess/ my blood type? 当ててみて / 私の血液型を Well,/ you re very serious person/ so/ I think/ your blood type is A. えーと / あなたはとっても真面目な人 / だから / 私は ~ と思います / あなたの血液型は

More information

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a Page 1 of 6 B (The World of Mathematics) November 0, 006 Final Exam 006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (a) (Decide whether the following holds by completing the truth

More information

~ ユリシーズ における語りのレベル Synopsis Who Is the Man in Macintosh? - Narrative Levels in Ulysses Wataru TAKAHASHI Who is the man in macintosh? This is a famous enigma in Ulysses. He comes out of the blue on the

More information

untitled

untitled 17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1 1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

151021slide.dvi

151021slide.dvi : Mac I 1 ( 5 Windows (Mac Excel : Excel 2007 9 10 1 4 http://asakura.co.jp/ books/isbn/978-4-254-12172-8/ (1 1 9 1/29 (,,... (,,,... (,,, (3 3/29 (, (F7, Ctrl + i, (Shift +, Shift + Ctrl (, a i (, Enter,

More information

外国語科 ( 英語 Ⅱ) 学習指導案 A TOUR OF THE BRAIN ( 高等学校第 2 学年 ) 神奈川県立総合教育センター 平成 20 年度研究指定校共同研究事業 ( 高等学校 ) 授業改善の組織的な取組に向けて 平成 21 年 3 月 平成 20 年度研究指定校である光陵高等学校において 授業改善に向けた組織的な取組として授業実践を行った学習指導案です 生徒主体の活動を多く取り入れ 生徒の学習活動に変化をもたせるとともに

More information

i

i i 1 1 1.1..................................... 1 1.2........................................ 3 1.3.................................. 4 1.4..................................... 4 1.5......................................

More information

k2 ( :35 ) ( k2) (GLM) web web 1 :

k2 ( :35 ) ( k2) (GLM) web   web   1 : 2012 11 01 k2 (2012-10-26 16:35 ) 1 6 2 (2012 11 01 k2) (GLM) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 : 2 2 4 3 7 4 9 5 : 11 5.1................... 13 6 14 6.1......................

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H 1 1 1.1 *1 1. 1.3.1 n x 11,, x 1n Nµ 1, σ x 1,, x n Nµ, σ H 0 µ 1 = µ = µ H 1 µ 1 µ H 0, H 1 * σ σ 0, σ 1 *1 * H 0 H 0, H 1 H 1 1 H 0 µ, σ 0 H 1 µ 1, µ, σ 1 L 0 µ, σ x L 1 µ 1, µ, σ x x H 0 L 0 µ, σ 0

More information

〈論文〉興行データベースから「古典芸能」の定義を考える

〈論文〉興行データベースから「古典芸能」の定義を考える Abstract The long performance database of rakugo and kabuki was totaled, and it is found that few programs are repeated in both genres both have the frequency differential of performance. It is a question

More information

現代日本論演習/比較現代日本論研究演習I「統計分析の基礎」

現代日本論演習/比較現代日本論研究演習I「統計分析の基礎」 URL: http://tsigeto.info/statg/ I () 3 2016 2 ( 7F) 1 : (1); (2) 1998 (70 20% 6 9 ) (30%) ( 2) ( 2) 2 1. (4/14) 2. SPSS (4/21) 3. (4/28) [] 4. (5/126/2) [1, 4] 5. (6/9) 6. (6/166/30) [2, 5] 7. (7/78/4)

More information

1 1 [1] ( 2,625 [2] ( 2, ( ) /

1 1 [1] ( 2,625 [2] ( 2, ( ) / [] (,65 [] (,3 ( ) 67 84 76 7 8 6 7 65 68 7 75 73 68 7 73 7 7 59 67 68 65 75 56 6 58 /=45 /=45 6 65 63 3 4 3/=36 4/=8 66 7 68 7 7/=38 /=5 7 75 73 8 9 8/=364 9/=864 76 8 78 /=45 /=99 8 85 83 /=9 /= ( )

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

現代日本論演習/比較現代日本論研究演習I「統計分析の基礎」

現代日本論演習/比較現代日本論研究演習I「統計分析の基礎」 URL: http://tsigeto.info/statg/ I ( ) 3 2017 2 ( 7F) 1 : (1) ; (2) 1998 (70 20% 6 8 ) (30%) ( 2) ( 2) 2 1. (4/13) 2. SPSS (4/20) 3. (4/27) [ ] 4. (5/11 6/1) [1, 4 ] 5. (6/8) 6. (6/15 6/29) [2, 5 ] 7. (7/6

More information

Outline ( ) / 10

Outline ( ) / 10 1 2014 ( ) 1 2014 1 / 10 Outline 1 1.1 ( ) 1 2014 2 / 10 Outline 1 1.1 2 1.2 ( ) 1 2014 2 / 10 Outline 1 1.1 2 1.2 3 1.3 ( ) 1 2014 2 / 10 Outline 1 1.1 2 1.2 3 1.3 4 1.4 ( ) 1 2014 2 / 10 Outline 1 1.1

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

Clustering in Time and Periodicity of Strong Earthquakes in Tokyo Masami OKADA Kobe Marine Observatory (Received on March 30, 1977) The clustering in time and periodicity of earthquake occurrence are investigated

More information

solutionJIS.dvi

solutionJIS.dvi May 0, 006 6 morimune@econ.kyoto-u.ac.jp /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x

More information

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G (

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G ( 7 2 2008 7 10 1 2 2 1.1 2............................................. 2 1.2 2.......................................... 2 1.3 2........................................ 3 1.4................................................

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 : Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]

More information

2

2 2011 8 6 2011 5 7 [1] 1 2 i ii iii i 3 [2] 4 5 ii 6 7 iii 8 [3] 9 10 11 cf. Abstracts in English In terms of democracy, the patience and the kindness Tohoku people have shown will be dealt with as an exception.

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

10 2000 11 11 48 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) CU-SeeMe NetMeeting Phoenix mini SeeMe Integrated Services Digital Network 64kbps 16kbps 128kbps 384kbps

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 確率的手法による構造安全性の解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/55271 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 25 7 ii Benjamin &Cornell Ang & Tang Schuëller 1973 1974 Ang Mathematica

More information

きずなプロジェクト-表紙.indd

きずなプロジェクト-表紙.indd P6 P7 P12 P13 P20 P28 P76 P78 P80 P81 P88 P98 P138 P139 P140 P142 P144 P146 P148 #1 SHORT-TERM INVITATION GROUPS 2012 6 10 6 23 2012 7 17 14 2012 7 17 14 2012 7 8 7 21 2012 7 8 7 21 2012 8 7 8 18

More information

2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2

2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2 1 1 Lambert Adolphe Jacques Quetelet (1796 1874) 1.1 1 1 (1 ) x 1, x 2,..., x ( ) x a 1 a i a m f f 1 f i f m 1.1 ( ( )) 155 160 160 165 165 170 170 175 175 180 180 185 x 157.5 162.5 167.5 172.5 177.5

More information

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alternative approach using the Monte Carlo simulation to evaluate

More information