1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =
|
|
|
- ゆゆこ ちゅうか
- 8 years ago
- Views:
Transcription
1 Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv: Prog. Theor. Phys. 122 (2009)
2 1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = det(e µa ). (e a µ, ω ab µ ) Poincaré cf. Poincaré gauge theory, 3D Chern-Simons gravity, BF gravity, Ashtekar formalism, 1
3 (Anti) de Sitter Gravity (MMSW Gravity) MacDowell and Mansouri 77, West 78, Stelle and West 79, Fukuyama 83 e µ a ω µ ab multiplet ω µ AB = { ab ωµ if A = a, B = b, a5 ω µ a e µ if b = 5, A, B = 1, 2, 3, 4, 5, a, b = 1, 2, 3, 4. ω µ AB : SO(2, 3)(anti de Sitter ) SO(1, 4)(de Sitter ) SO(1, 3) AdS(dS) gravity 4 SO(2, 3) or SO(1, 4) break Einstein 2
4 metric g µν Cosmological Constant: Λ 1 l 2 l: SO(2, 3) = negative, SO(1, 4) = positive 3
5 Weyl, Majorana fermion SO(2, 3), SO(1, 4) Weyl fermion SO(1, 4) Majorana fermion SO(2, 3) Majorana fermion action Kugo, Townsend 82 4D AdS(dS) gravity Weyl, Majorana fermion 4
6 4D AdS(dS) gravity Weyl, Majorana fermion SO(2, 3) or SO(1, 4) Dirac fermion SO(1, 3) Weyl fermion, SO(1, 3) Majorana fermion 5
7 2. (Anti) de Sitter Gravity in Four Dimensions 4D spacetime SO(2, 3) or SO(1, 4) ω µab metric compensator field (Higgs ) Z A = Z A (x) σ(x) SO(1, 3) SO(2, 3) (AdS) A field strength R µνab takes the form R µνab = µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb. We construct an SO(2, 3) invariant action 6
8 AdS Gravity Sgrav = = d 4 xlgrav ( ) [ ( ) d 4 xϵ ABCDE ϵ µνρσ ZA 1 il 16g 2 R µνbc R λρde { (ZF ) ] 2 +σ(x) 1} D µ Z B D ν Z C D ρ Z D D σ Z E, il g is a coupling constant and l is a real constant. The equation of motion for Z A is (Z A ) 2 = l 2. 7
9 If we take a solution breaking the SO(2, 3) symmetry this breaking derives the vierbein e µa, Z A = (0, 0, 0, 0, il), D µ Z A ( µ δ AB ω µab )Z B = { iωµa5 l e µa ifa = a, 0 ifa = 5, Lgrav takes the Einstein gravity form Lgrav = µ C µ e 16πG ( R + 6l ) 2. Here, µ C µ is the topological Gauss-Bonnet term. G is the gravitational constant derived from 16πG = g 2 l 2. 8
10 SO(1, 4) (ds) We construct an SO(1, 4) invariant action ds Gravity Sgrav = = d 4 xlgrav ( ) [ ( ) d 4 xϵ ABCDE ϵ µνρσ ZA 1 l 16g 2 R µνbc R λρde { (ZF ) ] 2 +σ(x) 1} D µ Z B D ν Z C D ρ Z D D σ Z E. l The equation of motion for Z A is (Z A ) 2 = l 2. We break the SO(1, 4) group to 9
11 the local Lorentz group SO(1, 3) as This breaking leads to Z A = (0, 0, 0, 0, l). D µ Z A = ( µ δ AB ω µab )Z B = { ωµa5 l e µa ifa = a. 0 ifa = 5. Lgrav takes the form Lgrav = µ C µ e 16πG ( R 6l ) 2. 10
12 3. Gamma Matrix Gamma Matrix Γ A SO(1, 3) γ A, SO(2, 3) γ (AdS) A, SO(1, 4) γ (ds) A Dirac (Pauli) basis {Γ A, Γ B } = 2δ AB, Γ A = Γ A. γ T A = { γa if A = 2, 4, 5, γ A if A = 1, 3. 11
13 4. Dirac Fermion Fukuyama 83 Let ψ be an SO(2, 3)(SO(1, 4)) Dirac fermion. SO(2, 3) (AdS) An SO(2, 3) invariant Dirac spinor action is defined as L Dirac = ϵ ABCDE ϵ µνρσ ψ ( is AB D µ 3! iλ Z A il D µ Z B 4! where S AB 1 4i [γ(ads) A, γ (AdS) B], and λ is a mass. ) ψd ν Z C D ρ Z D D σ Z E ψ ψ γ (AdS) 5γ (AdS) 4 12
14 By the symmetry breaking Z A = (0, 0, 0, 0, il) from SO(2, 3) to SO(1, 3), L Dirac reduces to the Dirac action in the four-dimensional curved spacetime L Dirac = e ψ ( γ a e µa ) ( D µ + λ ψ, = e ψ 1 ( 2 eµa γ ad µ ) D µ γ a ) + λ ψ, ψ = ψ γ 4. where γ a iγ (AdS) 5γ (AdS) a, γ 5 γ (AdS) 5. γ (AdS) a iγ 5 γ a, γ (AdS) 5 γ 5. 13
15 SO(1, 4) (ds) In the ds gravity, we consider an SO(1, 4) invariant Dirac spinor action L Dirac = ϵ ABCDE ϵ µνρσ ψ ( Z A D µ l γ(ds) B 3! + λ Z A l D µ Z B 4! ) ψd ν Z C D ρ Z D D σ Z E which is a slightly different form from the SO(2, 3) case. Here, ψ = ψ γ (ds) 4. By the symmetry breaking Z A = (0, 0, 0, 0, l) from SO(1, 4) to SO(1, 3), L Dirac 14
16 reduces to the Dirac action in the four-dimensional curved spacetime L Dirac = e ψ where ψ = ψ γ 4 and ( γ a e µa ) ( D µ + λ ψ, = e ψ 1 ( 2 eµa γ ad µ ) D µ γ a γ (ds) A γ A. ) + λ ψ, 15
17 5. Weyl Fermion symmetry 4D Weyl fermion SO(2, 3) SO(1, 4) spinor 1, SO(2,3)(SO(1,4)) covariant 2, chiral projections 1±γ 5 2 operator P ± SO(2, 3) (AdS) Let ψ be an SO(2, 3) Dirac spinor. We introduce a projection operator, P ± 1 2 ( 1 ± ) l2 Z A γ (AdS) A Z 2 il, 16
18 which is P± 2 = P ± and P + P = 0. We define ψ ± P ± ψ. If we break the SO(2, 3) symmetry Z A = (0, 0, 0, 0, il), P ± reduces to the chiral projections P ± P ± P ± = 1 ± γ(ads) 5 2 = 1 ± γ 5. 2 Then, ψ ± becomes Weyl spinors ψ ± ψ ± ψ ± = P ± ψ, 17
19 respectively, which have definite chirality. We can construct an SO(2, 3) invariant action by modifying the action for a Dirac fermion, L Weyl = ϵ ABCDE ϵ µνρσ ψ+ ( is AB D µ 3! iλ Z A il D µ Z B 4! ) ψ + D ν Z C D ρ Z D D σ Z E The action becomes a SO(1, 3) massless Weyl fermion action by breaking the symmetry L Weyl = e (γ ψ+ a e µa ) D µ + λ ψ+ = e (γ ψ+ a e µa D ) µ ψ +, 18
20 SO(1, 4) (ds) Let ψ be an SO(1, 4) Dirac spinor. In the SO(1, 4) case, we introduce P ± 1 2 ( 1 ± l 2 Z A γ (ds) A Z 2 l ), which is P± 2 = P ± and P + P = 0. We define ψ ± P ± ψ. If we break the SO(1, 4) symmetry as Z A = (0, 0, 0, 0, l), 19
21 P ± reduces to chiral projections P ± P ± P ± = 1 ± γ(ds) 5 2 = 1 ± γ 5. 2 Then ψ ± becomes Weyl fermions ψ ±, ψ ± ψ ± = P ± ψ, respectively, which have definite chirality. We can construct SO(1, 4) invariant action by modifying the Dirac action 20
22 ( L Weyl = ϵ ABCDE ϵ µνρσ Z A D µ ψ+ l γ(ds) B 3! D ν Z C D ρ Z D D σ Z E. + λ Z A l D µ Z B 4! The action becomes an SO(1, 3) massless Weyl fermion action by breaking the symmetry L Weyl = e (γ ψ+ a e µa ) D µ + λ ψ+ = e (γ ψ+ a e µa D ) µ ) ψ + ψ +. 21
23 6. Majorana Fermion SO(1, 3) 4D Majorana fermion ψ M ψ M = ψ c M C ψ T M, C is the charge conjugation in SO(1, 3). If we take the Dirac (Pauli) basis, C is C = γ 2 γ 4. However, C is not covariant under either SO(2, 3) or SO(1, 4). ψ M is not consistent with the SO(2, 3) (SO(1, 4)) covariance. If a charge conjugation is defined, a Majorana fermion can be defined. 22
24 Conditions for SO(2, 3) or SO(1, 4) charge conjugation C 1. C 1 γ A C is covariant under the symmetry to be consistent with the action. C 1 γ A C = ±γ T A, is sufficient where the signatures are the same for all A. 2. B defined by Bψ M = C ψ T M must satisfy B B = 1, since a charge conjugation has a Z 2 symmetry. (B = γ 2 for SO(1, 3).) 3. C reduces to C = γ2 γ 4 by breaking the symmetry. 23
25 SO(2, 3) (AdS) C = γ (AdS) 2γ (AdS) 4. SO(1, 4) (ds) C ( Z A γ (ds) A l + ) Z2 l 2 i γ (ds) 2γ (ds) 4γ (ds) 5. l 2 24
26 SO(2, 3) (AdS) The SO(2, 3) gamma matrices γ (AdS) A are constructed as γ (AdS) a iγ 5 γ a, γ (AdS) 5 γ 5, From the condition 1, we have two candidates C 1 = γ (AdS) 1γ (AdS) 3γ (AdS) 5, C 2 = γ (AdS) 2γ (AdS) 4. C 2 = γ (AdS) 2γ (AdS) 4 = γ 2 γ 4 is equal to the SO(1, 3) charge conjugation Therefore C 2 satisfies the condition 2 and 3. Note that C = C 2 is not a 25
27 charge conjugation in the SO(2, 3) representation. fermion ψ M is defined by Therefore AdS Majorana ψ M = C ψ T M = C 2 ψt M. SO(2, 3) invariant AdS Majorana fermion action L Majorana = ϵ ABCDE ϵ µνρσ ψm ( is AB D µ 3! iλ Z A il D µ Z B 4! ) ψ M D ν Z C D ρ Z D D σ Z E Let us investigate the consistency of this action. Substituting ψ M = C 2 ψt M, to 26
28 the right-hand of the action, we obtain ϵ ABCDE ϵ µνρσ ( ψ T M( C T ) 1) ( is AB D µ 3! iλ Z A il D µ Z B 4! ) ( ) C ψt M D ν Z C D ρ Z D D σ Z E. We can easily check that = L Majorana. Thus, the definition of the charge conjugation is consistent with the action. If we break the SO(2, 3) symmetry by Z A = (0, 0, 0, 0, il), the action reduces to an SO(1, 3) Majorana fermion action in the Einstein gravitational theory in four dimensions L Majorana = e ψ M (γ a e µa ) D µ + λ ψ M. 27
29 SO(1, 4) (ds) γ (ds) A γ A From the condition 1, we obtain two candidates C 3 γ (ds) 1γ (ds) 3, C 4 γ (ds) 2γ (ds) 4γ (ds) 5. Condition 2 B B = 1: Neither C 3 nor C 4 can be defined as a consistent charge conjugation. 28
30 Now, we consider a third candidate: C 5 ( Z A γ (ds) A l + ) Z2 l 2 i γ (ds) 2γ (ds) 4γ (ds) 5. l 2 This satisfies the condition 1. Condition 2. B 5B 5 = 1 ( B 5 = ( Z A γ (ds) A l + Condition 3. C 5 γ (ds) 2γ (ds) 4 = γ 2 γ 4 = C. A ds Majorana spinor ) ) Z 2 l 2 i γ (ds) l 2γ (ds) 2 5 ψ M = C 5 ψt M. 29
31 SO(1, 4) invariant ds Majorana fermion action ( L Majorana = ϵ ABCDE ϵ µνρσ Z A D µ ψm l γ(ds) B 3! + λ Z A l D µ Z B 4! ) ψ M D ν Z C D ρ Z D D σ Z E We can prove the consistency of the action for the charge conjugation C 5 similar to SO(2, 3) case. ϵ ABCDE ϵ µνρσ ( ( ψm(c T T ) 1) Z A D µ l γ(ds) B 3! D ν Z C D ρ Z D D σ Z E. + λ Z A l D µ Z B 4! ) (C ) ψt M 30
32 We can easily check that = L Majorana. If we break the SO(1, 4) symmetry by Z A = (0, 0, 0, 0, l), the action becomes the Majorana fermion action in the Einstein gravitational theory in four dimensions L Majorana = e ψ M (γ a e µa ) D µ + λ ψ M, 31
33 7. Summary and Discussion Weyl, Majorana fermion action AdS (ds) Gravity action New mechanism to derive a chiral fermion from a nonchiral fermion Chiral symmetry and chiral anomaly Z A dynamical 32
QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1
QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann
[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo
[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν
Einstein ( ) YITP
Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =
q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices
Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple
SUSY DWs
@ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding
Kaluza-Klein(KK) SO(11) KK 1 2 1
Maskawa Institute, Kyoto Sangyo University Naoki Yamatsu 2016 4 12 ( ) @ Kaluza-Klein(KK) SO(11) KK 1 2 1 1. 2. 3. 4. 2 1. 標準理論 物質場 ( フェルミオン ) スカラー ゲージ場 クォーク ヒッグス u d s b ν c レプトン ν t ν e μ τ e μ τ e h
25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble
25 II 25 2 6 13:30 16:00 (1),. Do not open this problem boolet until the start of the examination is announced. (2) 3.. Answer the following 3 problems. Use the designated answer sheet for each problem.
a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i
解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ
0. Intro ( K CohFT etc CohFT 5.IKKT 6.
E-mail: [email protected] 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y
Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x
7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)
YITP50.dvi
1 70 80 90 50 2 3 3 84 first revolution 4 94 second revolution 5 6 2 1: 1 3 consistent 1-loop Feynman 1-loop Feynman loop loop loop Feynman 2 3 2: 1-loop Feynman loop 3 cycle 4 = 3: 4: 4 cycle loop Feynman
(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w
S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T
NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977
all.dvi
38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t
4/15 No.
4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
〈論文〉興行データベースから「古典芸能」の定義を考える
Abstract The long performance database of rakugo and kabuki was totaled, and it is found that few programs are repeated in both genres both have the frequency differential of performance. It is a question
Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).
Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation
2
2011 8 6 2011 5 7 [1] 1 2 i ii iii i 3 [2] 4 5 ii 6 7 iii 8 [3] 9 10 11 cf. Abstracts in English In terms of democracy, the patience and the kindness Tohoku people have shown will be dealt with as an exception.
Author Workshop 20111124 Henry Cavendish 1731-1810 Biot-Savart 26 (1) (2) (3) (4) (5) (6) Priority Proceeding Impact factor Full paper impact factor Peter Drucker 1890-1971 1903-1989 Title) Abstract
Test IV, March 22, 2016 6. Suppose that 2 n a n converges. Prove or disprove that a n converges. Proof. Method I: Let a n x n be a power series, which converges at x = 2 by the assumption. Applying Theorem
On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e
On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new electric wave projector is proposed in this paper. The
2017 II 1 Schwinger Yang-Mills 5. Higgs 1
2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2
1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2
CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for
『共形場理論』
T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................
T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,
(ver. 4:. 2005-07-27) 1 1.1 (mixed matrix) (layered mixed matrix, LM-matrix) m n A = Q T (2m) (m n) ( ) ( ) Q I m Q à = = (1) T diag [t 1,, t m ] T rank à = m rank A (2) 1.2 [ ] B rank [B C] rank B rank
1 # include < stdio.h> 2 # include < string.h> 3 4 int main (){ 5 char str [222]; 6 scanf ("%s", str ); 7 int n= strlen ( str ); 8 for ( int i=n -2; i
ABC066 / ARC077 writer: nuip 2017 7 1 For International Readers: English editorial starts from page 8. A : ringring a + b b + c a + c a, b, c a + b + c 1 # include < stdio.h> 2 3 int main (){ 4 int a,
A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B
9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A
2 146
28 2004 pp. 145 159 1 Received October 29, 2004 In 1999, North Korea reversed the negative economic growth of the 90s, and displayed a positive trend which, although weak, was maintained at 1.8% in 2003.
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
262 F s PRO A Community Investment and the Role of Non-profit Organizations: Present Conditions in the US, the UK, and Japan Takashi Koseki Abstract 1
262 F s PRO A Community Investment and the Role of Non-profit Organizations: Present Conditions in the US, the UK, and Japan Takashi Koseki Abstract 1. The issue of SRI (Socially Responsible Investment)
PowerPoint Presentation
2010 KEK (Japan) (Japan) (Japan) Cheoun, Myun -ki Soongsil (Korea) Ryu,, Chung-Yoe Soongsil (Korea) 1. S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998) Magnetar : ~ 10 15 G ~ 10 17 19 G (?)
1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25
.. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t
Numerical Analysis II, Exam End Term Spring 2017
H. Ammari W. Wu S. Yu Spring Term 2017 Numerical Analysis II ETH Zürich D-MATH End Term Spring 2017 Problem 1 Consider dx = f(t, x), t [0, T ] dt x(0) = x 0 R [28 Marks] with f C subject to the Lipschitz
ABSTRACT The "After War Phenomena" of the Japanese Literature after the War: Has It Really Come to an End? When we consider past theses concerning criticism and arguments about the theme of "Japanese Literature
早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Ec
早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Economic Affairs Waseda University 169-8050 Tokyo,Japan
0406_total.pdf
59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ
Microsoft Word - PCM TL-Ed.4.4(特定電気用品適合性検査申込のご案内)
(2017.04 29 36 234 9 1 1. (1) 3 (2) 9 1 2 2. (1) 9 1 1 2 1 2 (2) 1 2 ( PSE-RE-101/205/306/405 2 PSE-RE-201 PSE-RE-301 PSE-RE-401 PSE-RE-302 PSE-RE-202 PSE-RE-303 PSE-RE-402 PSE-RE-203 PSE-RE-304 PSE-RE-403
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
音響部品アクセサリ本文(AC06)PDF (Page 16)
Guide for Electret Condenser Microphones A microphone as an audio-electric converting device, whose audio pickup section has a structure of a condenser consisting of a diaphragm and a back plate opposite
先端社会研究 ★5★号/4.山崎
71 72 5 1 2005 7 8 47 14 2,379 2,440 1 2 3 2 73 4 3 1 4 1 5 1 5 8 3 2002 79 232 2 1999 249 265 74 5 3 5. 1 1 3. 1 1 2004 4. 1 23 2 75 52 5,000 2 500 250 250 125 3 1995 1998 76 5 1 2 1 100 2004 4 100 200
24 Depth scaling of binocular stereopsis by observer s own movements
24 Depth scaling of binocular stereopsis by observer s own movements 1130313 2013 3 1 3D 3D 3D 2 2 i Abstract Depth scaling of binocular stereopsis by observer s own movements It will become more usual
エレクトーンのお客様向けiPhone/iPad接続マニュアル
/ JA 1 2 3 4 USB TO DEVICE USB TO DEVICE USB TO DEVICE 5 USB TO HOST USB TO HOST USB TO HOST i-ux1 6 7 i-ux1 USB TO HOST i-mx1 OUT IN IN OUT OUT IN OUT IN i-mx1 OUT IN IN OUT OUT IN OUT IN USB TO DEVICE
cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq
2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge
iPhone/iPad接続マニュアル
/ JA 2 3 USB 4 USB USB i-ux1 USB i-ux1 5 6 i-mx1 THRU i-mx1 THRU 7 USB THRU 1 2 3 4 1 2 3 4 5 8 1 1 9 2 1 2 10 1 2 2 6 7 11 1 2 3 4 5 6 7 8 12 1 2 3 4 5 6 13 14 15 WPA Supplicant Copyright 2003-2009, Jouni
磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論
email: [email protected] May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear
A Contrastive Study of Japanese and Korean by Analyzing Mistranslation from Japanese into Korean Yukitoshi YUTANI Japanese, Korean, contrastive study, mistranslation, Japanese-Korean dictionary It is already
インターネット接続ガイド v110
1 2 1 2 3 3 4 5 6 4 7 8 5 1 2 3 6 4 5 6 7 7 8 8 9 9 10 11 12 10 13 14 11 1 2 12 3 4 13 5 6 7 8 14 1 2 3 4 < > 15 5 6 16 7 8 9 10 17 18 1 2 3 19 1 2 3 4 20 U.R.G., Pro Audio & Digital Musical Instrument
840 Geographical Review of Japan 73A-12 835-854 2000 The Mechanism of Household Reproduction in the Fishing Community on Oro Island Masakazu YAMAUCHI (Graduate Student, Tokyo University) This
浜松医科大学紀要
On the Statistical Bias Found in the Horse Racing Data (1) Akio NODA Mathematics Abstract: The purpose of the present paper is to report what type of statistical bias the author has found in the horse
149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :
Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]
p _08森.qxd
Foster care is a system to provide a new home and family to an abused child or to a child with no parents. Most foster children are youngsters who could not deepen the sense of attachment and relationship
FA
29 28 15 1985 1993 The process of the labor negotiations of the Japan Professional Baseball Players Association, 1985 1993 ABE Takeru Graduate School of Social Science, Hitotsubashi University Abstract
137. Tenancy specific information (a) Amount of deposit paid. (insert amount of deposit paid; in the case of a joint tenancy it should be the total am
13Fast Fair Secure PRESCRIBED INFORMATION RELATING TO TENANCY DEPOSITS* The Letting Protection Service Northern Ireland NOTE: The landlord must supply the tenant with the Prescribed Information regarding
10 2000 11 11 48 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) CU-SeeMe NetMeeting Phoenix mini SeeMe Integrated Services Digital Network 64kbps 16kbps 128kbps 384kbps
all.dvi
5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0
