事例8_ホール素子

Similar documents
事例2_自動車用材料

事例6_住宅用断熱材

PowerPoint プレゼンテーション

Microsoft Word 磁気ディスク装置_Version 1.1(p)

1. 目的 実施計画 高度なエネルギーマネジメント技術により 需要家側のエネルギーリソースを統合的に制御することで バーチャルパワープラントの構築を図る < 高度なエネルギーマネジメント技術 > 蓄熱槽を活用した DR 複数建物 DR 多彩なエネルギーリソースのアグリゲーション < 便益 > 系統安

untitled

事業の目的 * 本補助金を申し込むに至った経緯 ( 何故設備自体の入れ替えを選択しなかったか等 ) を記入する 設備を導入して7 年経過し 最新の設備と比較すると性能が低下し 経年劣化もあり電力料金の負担が増加している 設備全体の入替も検討したが予算の関係上困難であると判断した 経年劣化した空調ファ

AISIN GROUP REPORT 2011

Microsoft PowerPoint - 資料7-5.ppt

店舗・オフィス用パッケージエアコン「省エネの達人プレミアム」新シリーズを発売

B.2 モニタリング実績 (1) 活動量 ( 燃料消費量 生成熱量 生産量等 ) 記号 モニタリング項目 定義 単位 分類 1 モニタリング方法 概要 頻度 実績値 モニタリング実績 計測対象期間 ( 年月日 ~ 年月日 ) 備考 F PJ,biosolid プロジェクト実施後のバイオマス固形燃料使

資料3-1 温室効果ガス「見える化」の役割について

橡木炭技術分科会の検討報告書

東洋インキグループの環境データ(2011〜2017年)

世界の CO2 排出量と東京都 2013 年度は 東京 63.8 百万トン シンガポールフィンランドポルトガルスウェーデンデンマーク < 東京 < マレーシアベルギーオーストリア 2

新潟県地域新エネルギー重点ビジョン報告書

A.3 排出削減量の算定方法 A.3.1 排出削減量 ER EM BL EM PJ ( 式 1) 定義単位 数値 4 ER 排出削減量 1 kgco2/ 年 0 t<1 年 年 t<2.5 年 年 <t EM BL ベースライン排出量 2 kgco2/

方法論 EN-S-031(ver.1.0) サーバー設備の更新 方法論番号 EN-S-031 Ver.1.0 本方法論に基づいてプロジェクトを計画する場合は 方法論名称 サーバー設備の更新 方法論の改定が必要となる場合があるので 計画書作成前に制度管理者へ確認してください < 方法論の対象 > <

新規文書1

untitled

01盤用熱対策機器_coolcabi.indd

azbilグループ企業活動報告書2013_azbil report

1 排出削減事業者の情報排出削減事業者会社名株式会社シンセラ排出削減事業を実施する事業所事業所名株式会社シンセラ排出削減事業共同実施者 ( 国内クレジット保有予定者 ) 排出削減事業共同実施者名一般社団法人低炭素投資促進機構 1

NHK環境報告書2008

Microsoft Word 後藤佑介.doc

様式 1 別紙 1 設備の高効率化改修支援モデル事業実施計画書 事業名 空調設備の高効率化改修支援モデル事業 団体名 所在地 545-XXXX 大阪府大阪市 XX X 丁目 XX 番地 XX 団体概要 主な業務内容 特別養護老人ホーム 産業分類 事業実施責任者 役職理事長 太郎 資本金 代表事業者

ウエダ本社_環境レポート_111007_04

事業の目的 * 本補助金を申し込むに至った経緯 ( 何故設備自体の入れ替えを選択しなかったか等 ) を記入する 設備を導入して7 年経過し 最新の設備と比較すると性能が低下し 経年劣化もあり電力料金の負担が増加している 設備全体の入替も検討したが予算の関係上困難であると判断した 経年劣化した空調ファ

(2) ベースラインエネルギー使用量 それぞれの排出起源のベースラインエネルギー使用量の算定方法は以下のとおり 1) 発電電力起源 EL BL = EL ( 式 1) 記号定義単位 ELBL ベースライン電力使用量 kwh/ 年 EL 事業実施後のコージェネレーションによる発電量 kwh/ 年 2)

CONTENTS

(2) ベースラインエネルギー使用量 それぞれの排出起源のベースラインエネルギー使用量の算定方法は以下のとおり 1) 発電電力起源 EL BL = EL ( 式 1) 記号定義単位 ELBL ベースライン電力使用量 kwh/ 年 EL 事業実施後のコージェネレーションによる発電量 kwh/ 年 2)

4 推進体制別途添付いたします 5 公表の方法等 ホームページアドレス 閲覧場所 窓口で閲覧 所在地 冊 子 閲覧可能時間 冊子名 入手方法 その他

<8CF68A4A E94728F6F8DED8CB88E968BC68C7689E62E786C73>

国土技術政策総合研究所 研究資料

1 プロジェクト実施者の情報 1.1 プロジェクト実施者 ( 複数のプロジェクト実施者がいる場合は代表実施者 ) ( フリガナ ) エンジニアウッドミヤザキジギョウ実施者名キョウドウクミアイエンジニアウッド宮崎事業協同組合住所 宮崎県都城市吉尾町 プロジェクト代

工場など天井が高く、中・大規模な空間の効率的な空調を実現する置換換気空調用パッケージエアコンを製品化

公開用_ZEB(ネット・ゼロ・エネルギー・ビル)の定義と評価方法(150629)

1. 家電エコポイント制度の概要 目的 1 地球温暖化対策の推進 2 経済活性化 3 地上デジタル放送対応テレビの普及 実施期間 家電エコポイント発行対象期間 : 平成 21 年 5 月 15 日 ~ 平成 23 年 3 月 31 日購入分 家電エコポイント登録申請受付期間 : 平成 21 年 7

<4D F736F F F696E74202D E815B839395F18D908F912082C882D782DC82AB205B8CDD8AB B83685D>

UIプロジェクトX

平成 30 年度朝倉市地球温暖化対策実行計画 ( 事務事業編 ) 実施状況報告書 ( 平成 29 年度実績 ) 平成 30 年 9 月 朝倉市環境課

Qfuel, ベースラインエネルギー使用量 GJ/ 年 Qheat, 事業実施後使用熱量 GJ/ 年 事業実施前のボイラーのエネルギー消費効率 4 % Fheat, ΔTheat, 事業実施後の設備で加熱された温水の使用量又は熱媒油の流量事業実施後の設備で加熱された温水又は熱媒油の熱利用前後の温度差

Microsoft Word - 世界のエアコン2014 (Word)

地域別世界のエアコン需要の推定について 年 月 一般社団法人 日本冷凍空調工業会 日本冷凍空調工業会ではこのほど 年までの世界各国のエアコン需要の推定結果を まとめましたのでご紹介します この推定は 工業会の空調グローバル委員会が毎年行 なっているもので 今回は 年から 年までの過去 ヵ年について主

日本市場における 2020/2030 年に向けた太陽光発電導入量予測 のポイント 2020 年までの短 中期の太陽光発電システム導入量を予測 FIT 制度や電力事業をめぐる動き等を高精度に分析して導入量予測を提示しました 2030 年までの長期の太陽光発電システム導入量を予測省エネルギー スマート社

CO CO

表紙

取組概要 ( 申請書からの転記 ) 全 般 排 出 量 の 認 識 取組名称 認証取得者名取組の概要 適用したカーボン オフセット第三者認証基準のバージョン認証の有効期間オフセット主体認証ラベルの使途 認証対象活動 認証番号 :CO 有効期間満了報告書受領済み 持続可能な島嶼社会の発展に


発売の狙い 昨今の電力事情から節電に対する関心は高く 業務用エアコンにおいてもより一層の省エネ 節電を強く求められています また エネルギー効率が高い製品の使用を促進するために 省エネルギー法で 2015 年度に具体的に達成すべき基準値が定められています 当社は今回 機器本体の省エネ性の向上を図り

問題意識 民生部門 ( 業務部門と家庭部門 ) の温室効果ガス排出量削減が喫緊の課題 民生部門対策が進まなければ 他部門の対策強化や 海外からの排出クレジット取得に頼らざるを得ない 民生部門対策において IT の重要性が増大 ( 利用拡大に伴う排出量増加と省エネポテンシャル ) IT を有効に活用し

,745 3,000 JK

地域別世界のエアコン需要の推定について 2018 年 4 月一般社団法人日本冷凍空調工業会日本冷凍空調工業会ではこのほど 2017 年までの世界各国のエアコン需要の推定結果をまとめましたのでご紹介します この推定は 工業会の空調グローバル委員会が毎年行なっているもので 今回は 2012 年から 20

EcoZeas2C_IN.xls

はじめに 昨今の国際的な地球温暖化防止の動きを背景に,CO2 排出の抑制が求められており, 総消費電力量の 40 ~ 50% を占めるといわれるモータを取り巻く環境も大きく変化しています 誘導電動機 ( 誘導モータ ) の効率はIE1( 標準 ),IE2( 高効率 ),IE3( プレミアム効率 ),

【HP公開用】J-グリーン・リンケージ倶楽部(電気自動車)プロジェクト計画書案(別紙) 1205

Microsoft Word - EA21環境活動レポート (5.30..doc

1 プロジェクト実施者の情報 1.1 プロジェクト実施者 ( 複数のプロジェクト実施者がいる場合は代表実施者 ) 実施者名 住所 イッハ ンサ イタ ンホウシ ンフ ナノサトシラカミコウシャ一般財団法人ブナの里白神公社 青森県中津軽郡西目屋村大字田代字神田 プロジェク

平成18年3月期 第1四半期財務・業績の概況

番号文書項目現行改定案 ( 仮 ) 1 モニタリン 別表 : 各種係 グ 算定規程 ( 排出削 数 ( 単位発熱量 排出係数 年度 排出係数 (kg-co2/kwh) 全電源 限界電源 平成 21 年度 年度 排出係数 (kg-co2/kwh) 全電源 限界電源 平成 21 年度 -


ガスヒートポンプエアコン メンテナンス契約のおすすめ|2018年11月

資料3    既存品目の再商品化等について

各家庭の 1 年間の出費のうち約 7% は電気 ガス 灯油といったエネルギーへの支出です 詳しくは 各制度のパンフレット W EB で 市民向け 太陽光発電 燃料電池 ( エネファーム ) HEMS ( ホームエネルギーマネジメントシステム ) 定置用蓄電 太陽熱利用 ガスエンジン木質コージェネバイ

Microsoft Word - 文書 1

<4D F736F F D C9F93A B BA FC696BE816A8AAE90AC815B D815B >

1

真空ガラス スペーシア のご紹介 一般に使用されている一枚ガラスの約 4 倍の断熱効果を発揮!! お部屋全体を快適にします オフィスやパブリックスペースの環境は 冷房や暖房に常に取付専用グレチャン気を配らなければなりません 高断熱 Low-Eガラスしかし一方で経営者の方々にとっては節電対策も重要な項

<4D F736F F F696E74202D C668DDA C6F89DF944E909492B28DB D838A815B94C E B93C782DD8EE682E890EA97705D>

平成 29 年度家庭部門の CO 2 排出実態統計調査の分析事例 ( 参考資料 ) 平成 31 年 3 月 環境省地球環境局 低炭素社会推進室 1 はじめに環境省は 家庭部門の詳細な CO 2 排出実態等を把握し 地球温暖化対策の企画 立案に資する基礎資料を得ることを目的に 平成 29 年度から 統

平成 27 年度補正予算中小企業等の省エネ 生産性革命投資促進事業費補助金 設備別省エネルギー効果計算の手引き 省エネルギー効果計算について 平成 28 年 7 月 2.0 版

Heading title

5

目 次 1. トップランナー制度について 1トップランナー制度の概要について 3 2トップランナー基準に関する基本的な考え方について 5 3トップランナー基準に関する主な規定について 8 4トップランナー基準策定及び運用の流れについて 9 2. ラベリング制度について 1ラベリング制度の概要について

国等のグリーン購入推進による環境負荷低減効果等の評価について

店舗・オフィス用パッケージエアコン 室内ユニット「てんかせ2方向」シリーズを発売

azbil Technical Review 2011年1月号

( お知らせ ) 家電メーカー各社による家電リサイクル実績の公表について 参考資料 4 平成 19 年 6 月 12 日 ( 火 ) 環境省大臣官房廃棄物 リサイクル対策部企画課リサイクル推進室直通 : 代表 : 室長補佐 : 相澤寛史 ( 内線


輸入バイオマス燃料の状況 2019 年 10 月 株式会社 FT カーボン 目 次 1. 概要 PKS PKS の輸入動向 年の PKS の輸入動向 PKS の輸入単価 木質ペレット

北杜市新エネルギービジョン

お知らせ

第4章 日系家電メーカーにおけるグローバル化の進展と分業再編成

空港での 素利活 に向けた検討会 資料 (1/14) 燃料電池 (FC) フォークリフトの取組み FC = Fuel Cell ( ベース 両 : 積載荷重 2.5t 電動フォークリフト ) 2016 年 7 月 5 日 株式会社豊田自動織機 産 FC プロジェクト Copyright(c) 201

P01-P20.ai

環境方針 基本理念 エンプラ工業 は 地球環境の保全が人類共通の最重要課題の一つであることを認識し 全組織を挙げて環境負荷の低減に努力します 方針 当社はエンジニアリング プラスチック樹脂成形及び加工の事業活動とこれらの製品の環境影響を低減するために 次の指針に基づき環境マネジメント活動を推進して地


< F18D908F DC58F4994C5817A>

様式1

スライド 1

ACモーター入門編 サンプルテキスト

L419b リニ ア 駆 動 ピ ストン 方 式 ブ ロ ワ 浄化槽用ブロワシリーズカタログ MOTOR FREE PISTON SYSTEM BLOWER SERIES LA-30E / LA-40E/ LA-45C LAX-60 LA-60E / LA-80E LA-100 / LA-120 L

省エネ性能カタログ2013冬.pdf

3 地球温暖化対策の推進に関する方針及び推進体制 (1) 地球温暖化対策の推進に関する方針 [ 基本理念 ] 人類が自然と調和し 未来にわたり持続可能な発展を実現するため NTT グループ地球環境憲章に則り NTT 西日本はグループ会社と一体になって 全ての企業活動において地球環境の保全に向けて最大

DC-VFBパンフ indd

見直し後11 基準相当1.64GJ/ m2年hh11 基準相当見直しH11 基準と見直し後の省エネ基準の比較について 住宅 建築物判断基準小委員会及び省エネルギー判断基準等小委員会平成 24 年 8 月 31 日第 2 回合同会議資料 1-1 より抜粋 設備機器の性能向上により 15~25% 程度省

01_教職員.indd


untitled

業務用空調から産業用まで 圧倒的な効率で省エネやCO2排出量削減に 貢献するKOBELCOのヒートポンプ ラインナップ一覧 業界最高効率の高い省エネ性 シリーズ 全機種インバータを搭載し 全負荷から部分 機 種 総合COP 冷房 供給温度 暖房 熱回収 冷温同時 製氷 冷媒 ページ HEMⅡ -10

Transcription:

省エネルギーその 7- ホール素子 ホール IC 1. 調査の目的エアコンの室内機と室外機には空調を行うための FAN 用のモータが搭載されている モータには DC ブラシレスモータと AC モータ ( 誘導モータ ) とがある DC ブラシレスモータを搭載したエアコンはインバータエアコンと呼ばれ 電力の周波数を変えてモータの回転数を制御できることから 非インバータエアコン (AC モータを搭載 ) に比べ温度を細かく制御でき 消費電力を削減することができる 従来 エアコンの室内機及び室外機の FAN 用には AC モータが使用されていたが 省エネ規制の厳しい現在の日本においては エネルギー効率の良い DC ブラシレスモータが使用されている 現在主流の DC ブラシレスモータは ホール素子の採用によって小型化 損失低減を実現し 高精度な回転制御が可能となった ホール素子を使うメリットとしては 1 非接触で位置を検出できるため耐久性が高い 2 磁気を検出するため塵 埃 油などの汚れに強い 3 小型化 軽量化 損失低減が可能の3 点が挙げられる 本事例はホール素子 ホール IC を用いた DC ブラシレスモータを搭載したインバータエアコンによる CO2 排出削減貢献量を定量的に把握するために clca による評価を行った 図 42. ホール素子 ホール IC エアコン 1CO 2 排出削減貢献の内容 DC モータを使用したインバータエアコンの使用時における消費電力は 従来の非インバータエアコンよりも少ない 2エアコンの種類と特徴 インバータエアコン:DC ブラシレスモータを搭載したエアコン DC ブラシレスモータは AC モータよりも高効率であり DC ブラシレスモータを搭載した製品の使用時の省電力化に貢献する機器である DC ブラスレスモータにはホール素子 ホール IC が使用されている 非インバータエアコン: 従来の AC モータを搭載したエアコン 3DC プラシレスモータに使用される化学製品例 1

ホール素子 ホール IC 2. バリューチェーンにおけるレベル本事例は化学製品であるホール素子 ホール IC を使用したインバータエアコン (DC ブラシレスモータを搭載 ) と非インバータエアコン (AC モータを搭載 ) を対象としたものであり そのバリューチェーンを下図に示す 図 43. 本事例のバリューチェーン 3. 製品の比較評価対象製品はインバータエアコン 比較製品は非インバータエアコンである どちらの製品もエアコンの使用時に消費される電力量に基づいて CO2 排出量を算定している 2011 年時点の評価対象製品のシェアは日本が 100% 中国 30% 欧州 30% アジア 10% 北米と南米が 0% である インバータエアコンは今後も普及が進むものとみられているが 削減貢献量を保守的に算定するために 2020 年においても現状の普及率は維持しているものとした 表 35. 評価対象製品と比較製品 評価対象製品 比較製品 インバータエアコン 非インバータエアコン 4. 機能単位 4.1 機能及び機能単位の詳細本事例はモータの異なるエアコンの比較であり 評価対象製品と比較製品においてエアコンを使用する際の電気消費量が異なる 機能単位は 2.8kW 型の家庭用エアコン 1 台とした インバータエアコンを使用することによって便益を受けるユーザーは同製品の利用者である 2

機能エアコン使用による冷暖房 機能単位 2.8kW 型家庭用エアコン 1 台 便益を受けるユーザーエアコンの利用者 4.2 品質要件評価対象製品は DC ブラシレスモータを搭載したインバータエアコン 比較製品は AC モータを搭載したエアコンであり 評価対象製品と比較製品は同等の冷暖房機能を発揮するものである インバータエアコンは DC ブラシレスモータを用いることで電力の周波数を変えてモータの回転数を制御することができ 非インバータエアコンよりも電力の損失を低減した ON ON OFF OFF OFF インバータエアコン 非インバータエアコン 4.3 製品のサービス寿命エアコンのサービス寿命は 使用状況やメンテナンスの頻度によって製品毎に異なると考えられるが 比較を行うために評価対象製品と比較製品で同じサービス寿命を設定した 本事例では エアコンのサービス寿命を実態に合致したデータであることから経過年数調査の結果に基づき 14.8 49) 年とした 一般的にエアコンのサービス寿命は 10 年程度と言われており 日本の法人税法の耐用年数は家庭用エアコンが 6 年 業務用エアコンが 13 年である 4.4 時間的基準と地理的基準 CO2 排出量の算定に用いたデータは 2010 年のデータを使用した 2020 年の需要については市場予測に基づいて設定した 排出削減貢献量は 対象年 (2020 年 )1 年間に製造された製品をライフエンドまで使用した際の CO 2 排出削減貢献量として算定された 対象地域は日本 中国 アジア 北米 中南米 欧州 その他とし 需要は市場予測をもとに設定した エアコンの使用期間における電気消費量は 日本の電気消費量に基づき算定した 本来であれば エアコンに使用される電気消費量は地域別に設定することが必要であるが 地域別の平均的な電気消費量は把握できなかったため 日本のデータを用いた 5. 算定の方法論本事例では 評価対象製品と比較製品でエアコンの使用段階における CO2 排出量を算定対象と 3

した エアコンのライフサイクルにおける CO2 排出量を算定した事例 50) では 使用段階の電力消費に伴う CO2 排出量は 95.3% を占め 原料調達段階 製品製造段階 廃棄段階は 4.7% である また一般的に DC モータの方が AC モータよりも小型である 51) ことから 原料調達 製品製造 廃棄段階における CO2 排出量に大差はないものと考えられる 本事例においては エアコンに搭載されているモータの違いが反映される使用段階の電力消費に伴う CO2 排出量が主要なパラメータであることから エアコンの使用段階のみを算定の対象とした 5.1 境界の設定本事例では使用時以外はライフサイクルでの排出量の 5% 以下であることからカットオフし エアコンの使用段階のみを算定の対象とした インバータエアコンのシステム境界 非インバータエアコンのシステム境界 注 : 本図ではプロセス間の輸送を省略している CO2 排出量を考慮しているプロセス CO2 排出量をカットオフしたプロセスシステム境界図 44. システム境界 4

5.2 前提条件 製品寿命 49) :14.8 年 ( 両製品の寿命は同じ ) モータの効率 : 同条件下による消費電力量に関する情報が得られなかったため 各モータの効率を用いて AC モータを搭載した非インバータエアコンの使用段階における消費電力を推定した AC モータの効率は 以下の事例を参考に非インバータエアコンの消費電力をインバータエアコンの 1.5 倍として CO2 排出量の計算を行った 表 36. モータの効率 DC モータ効率 AC モータ効率 事例 1 52) 80% 55% 約 1.5 倍 事例 2 53) 85% 70% 約 1.2 倍 事例 3 54) 58% 39% 約 1.5 倍 年間消費電力量: インバータエアコン 845kWh/ 台 55) 非インバータエアコン 1,268kWh/ 台 (845 kwh/ 年 1.5 倍 ) 非インバータエアコンは 上記のモータ効率の比を利用して設定 冷房期間 :3.6 ヶ月 (6 月 2 日 ~9 月 21 日 ) 暖房期間 :5.5 ヶ月 (10 月 28 日 ~4 月 14 日 ) 設定温度 : 冷房時 27 / 暖房時 20 使用時間 :6:00~24:00 の 18 時間 各地域における電力の CO2 排出係数 56) 表 37. 電力の CO 2 排出係数 単位 :[kg-co2/kwh] 日本 0.330 中国 0.743 アジア 0.745 北米 0.466 中南米 0.175 欧州 0.326 その他 0.500 5.3 主要パラメータ CO2 排出量全体に与える影響が大きい主要パラメータは 1 運転条件 2モータ効率 ( エアコンの消費電力 ) である 5

5.4 不確実性と将来的進展シナリオの統合シナリオ分析 : 将来何の変化もおこらないと想定 (2010 年時の CO2 削減貢献量を使用 ) した 2020 年の CO2 排出量の算定をベースケースとして行った 6. 貢献の度合い ( 重要性 ) インバータエアコンを使用することによって 長期間にわたって使用されるエアコン稼働時の消費電力を低減することができ インバータエアコンに使用されるホール素子 ホール IC の使用は CO2 排出削減に貢献している ただし CO2 排出削減貢献量は 化学産業だけに帰属しておらず 原料調達からユーザーを通じたバリューチェーン全体に帰属している 7.CO2 排出量の算定結果エアコン使用段階における地域別の電気消費量と CO2 排出量を表 38 に示す 表 38. 各地域における電気消費量とエアコンの使用に係る CO 2 排出量 評価対象製品 比較製品 年間の消費電力量 [kwh / 年 / 台 ] 845 1,268 稼動年数 [ 年 ] 14.8 14.8 稼動年数の総電力量 [kwh / 台 ] 12,506 18,766 使用に係る CO2 排出量 日本 4,127 6,190 [kg-co2 / 台 ] 中国 9,292 13,938 アジア 9,317 13,975 北米 5,828 8,742 中南米 2,189 3,283 欧州 4,077 6,115 その他 6,253 9,380 インバータエアコン 1 台当たりの CO2 排出削減貢献量評価対象製品と比較製品の CO2 排出量の差から算出した 1 台あたりの CO2 排出削減貢献量を表 39 に示す インバータエアコン 1 台あたりの CO2 排出削減貢献量は 日本 2,063 kg-co2 / 台 中国 4,646 kg-co2 / 台 アジア 4,658 kg-co2 / 台 北米 2,914 kg-co2 / 台 中南米 1,094 kg-co2 / 台 欧州 2,038 kg-co2 / 台 その他 3,127 kg-co2 / 台となる 6

表 39. エアコン 1 台あたりの CO 2 排出削減貢献量 ( 地域別 ) 単位 :kg-co2/ 台 (14.8 年間 ) 地域 CO2 排出削減貢献量 日本 2,063 中国 4,646 アジア 4,658 北米 2,914 中南米 1,094 欧州 2,038 その他 3,127 (kg CO 2 / 台 ) 20,000 4,646 4,658 15,000 13,938 13,975 2,914 3,127 10,000 2,063 9,292 9,317 8,742 2,038 9,380 5,000 4,127 6,190 5,828 1,094 3,283 2,189 4,077 6,115 6,253 0 日本中国アジア北米中南米欧州その他 評価対象製品 比較製品 図 45. エアコン 1 台あたりの CO 2 排出量と CO 2 排出削減貢献量 8. 今後の予測 8.1 日本での導入効果 2020 年の日本における CO2 排出削減貢献量は 以下の設定に基づいて算定した 1 評価対象製品の出荷予想 2020 年 795 万台 57) 2 インバータエアコン 1 台当たりの CO2 排出削減貢献量 2,063 kg-co2/ 台 3CO2 排出削減貢献量 エアコン1 台当たりの CO2 排出削減貢献量 生産量 =2,063 kg-co2/ 台 7,950,000 台 =16,400kt-CO2 7

表 40. 2020 年における評価対象製品による CO2 排出削減貢献量インバータ 1)2020 年の出荷量予測と CO2 排出削減貢献量エアコン インバータエアコンの出荷台数 ( 万台 ) 795 インバータエアコンによる CO2 排出削減量 (kg-co2/ 台 ) 2,063 2)CO2 排出削減貢献量 ( 万 t-co2) 1,640 評価対象製品 1 台あたりの CO2 排出量は 4.127kg-CO2 2020 年の出荷予想は 795 万台であることから CO2 総排出量は 3,281 万 t-co2(4,127kg-co2/ 台 795 万台 =32,809kt-CO2) となる 8.2 世界での導入効果 2020 年の世界における CO2 排出削減貢献量は 以下の設定に基づいて算定した 1 評価対象製品の出荷予想 ( 世界 ) 2020 年 4,731 万台 57) 表 41. 各地域のインバータエアコンの普及率 日本中国アジア北米中南米欧州その他 普及率 100 % 30 % 10 % 0 % 0 % 30 % 10 % 表 42. 家庭用エアコンの地域別需要動向予測単位 : 千台 2020 年 ( 見込 ) 出荷量 57) インバータ 非インバータ エアコン エアコン 日本 7,950 7,950 0 中国 110,730 33,219 77,511 アジア 23,710 2,371 21,339 北米 15,500 0 15,500 中南米 12,800 0 12,800 欧州 11,120 3,336 7,784 その他 4,350 435 3,915 計 186,160 47,311 138,849 注 1: インバータエアコンと非インバータエアコンの台数は インバータ普及率を用いて算出 注 2:2017 年地域別需要予測を横這いとして 2020 年の予測値を設定 8

2インバータエアコン1 台当たりの CO2 排出削減貢献量 地域 CO2 排出削減貢献量 (kg-co2/ 台 ) 日本 2,063 中国 4,646 アジア 4,646 北米 2,914 中南米 1,094 欧州 2,038 その他 3,127 3CO2 排出削減貢献量エアコン1 台当たりの CO2 排出削減貢献量 評価対象製品の出荷予測台数 世界における導入効果は 日本 1,640 万 t-co2 中国 15,433 万 t-co2 アジア 1,105 万 t-co2 欧州 680 万 t-co2 その他 136 万 t-co2 となり 合計すると 18,994 万 t-co2 の CO2 排出削減貢献量となる 北米と中南米はインバータエアコンの導入予想が 0% であるため CO2 排出削減貢献量は算出されない 表 43. 2020 年に世界で販売されるインバータエアコンによる CO 2 排出削減貢献量 地域 導入台数 CO2 排出削減貢献量 CO2 排出削減貢献量 ( 万台 ) (kg-co2/ 台 ) ( 万 t-co2) 日本 795 2,063 1,640 中国 3,322 4,646 15,433 アジア 237 4,658 1,105 北米 0 2,914 0 中南米 0 1,094 0 欧州 334 2,038 680 その他 44 3,127 136 計 4,732 20,540 18,994 各地域の評価対象製品 1 台あたり CO2 排出量と導入予想台数から算出される世界のインバータエアコン使用に伴う CO2 排出量は 37,994 万トンとなる インバータエアコンによる CO2 排出量 : 37,994 万トン 日本 4,127kg-CO2/ 台 14.8 年 795 万台 = 32,810kt-CO2 9

中国 アジア 9,292kg-CO2/ 台 14.8 年 3,322 万台 =308,680kt-CO2 9,317kg-CO2/ 台 14.8 年 237 万台 = 22,081kt-CO2 北米 5,828kg-CO2/ 台 14.8 年 0 万台 = 0kt-CO2 中南米 2,189kg-CO2/ 台 14.8 年 0 万台 = 0kt-CO2 欧州 4,077kg-CO2/ 台 14.8 年 334 万台 = 13,617kt-CO2 その他 6,253kg-CO2/ 台 14.8 年 44 万台 = 2,751kt-CO2 総計 379,939kt-CO2 9. 調査の限界と将来に向けた提言本事例は冷暖房兼用 壁掛け形 冷房能力 2.8kW クラス省エネルギー型の代表機種の CO2 排出量を評価しており 2020 年の需要予測に基づいて CO2 排出削減貢献量を算定したものである したがって冷房能力が大きく異なる製品 使用条件 ( 使用時の電気使用量 ) については個別の評価が必要であり その結果によっては CO2 排出削減貢献量の算定結果に違いが生じる 参考文献 49) 平成 22 年度 使用済み家電 4 品目の経過年数等調査 報告書 ( 平成 23 年 3 月 ) 財団法人家電製品協会 50) ダイキン工業株式会社 CSR 報告書 2012 51) 富士通ゼネラルホームページによると 室外機と室内機のモータの重量の合計は DC モータは 2.3 kg AC モータの重量の合計は 2.6 kg である http://www.fujitsu-general.com/jp/products/motor/lineup.html 52) 事例 1 ダウ化工株式会社熱と環境 (2006 年 )(20rps) 53) 事例 2 ダウ化工株式会社熱と環境 (2006 年 )(40rps) 54) 事例 3 株式会社上村工業ホームページ http://kami-kogyo.co.jp/main2.html 55) 経済産業省資源エネルギー庁 省エネ性能カタログ 2011 冬 冷暖房兼用 壁掛け形 冷房能力 2.8kW クラス省エネルギー型の代表機種の単純平均値 56)CO 2 Emissions from Fuel Combustion 2011(International Energy Agency) 2009 年のデータを使用 その他 地域には世界平均を適用 57) 富士キメラ総研 2012 ワールドワイドエレクトロニクス市場総調査 10