通勤混雑と家賃関数*

Similar documents
tnbp59-21_Web:P2/ky132379509610002944

日本内科学会雑誌第97巻第7号

日本内科学会雑誌第98巻第4号

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

³ÎΨÏÀ

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

日本内科学会雑誌第102巻第4号



O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

プログラム

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)


労働法総論講義(2・完)

日歯雑誌(H19・5月号)済/P6‐16 クリニカル  柿木 5





‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

Vol

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

nsg04-28/ky208684356100043077

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

JFE.dvi

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

pdf

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

研修コーナー

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

パーキンソン病治療ガイドライン2002

1

JGSS統計分析セミナー2009-傾向スコアを用いた因果分析-


TOP URL 1

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

憲法h1out

2000年度『数学展望 I』講義録

日本内科学会雑誌第96巻第7号

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

LLG-R8.Nisus.pdf

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

第86回日本感染症学会総会学術集会後抄録(I)

03実習2・松井.pptx

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

snkp-14-2/ky347084220200019175


solutionJIS.dvi

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

all.dvi


slide1.dvi

202

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

Part () () Γ Part ,

1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct


液晶の物理1:連続体理論(弾性,粘性)

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

入試の軌跡

Transcription:

CIRJE-J-30 CIRJE 000 8

5 9 3 Estmaton of Fatgue Cost of Commutng Congeston and Optmal Congeston Fare Ths paper has three ams. Frst, we estmate a hedonc housng rent functon along the Chuo Lne n Tokyo wth ( commutng tme dstance and ( congeston degree as explanatory varables. Second, from the hedonc rent functon thus estmated, we measure tme cost and fatgue cost of commutng n terms of Equvalent Varaton. We show that the fatgue cost of commutng s 5-9% of total commutng cost. Thrd, from the fatgue cost thus estmated, we measure margnal external congeston cost of an addtonal passenger at the peak rush hour. Ths margnal external congeston cost s nterpreted as optmal congeston toll. The result ndcates that the optmal congeston toll for the most congested tme s -3 tmes the current commuter-pass fare dependng upon the tran lne segment.

5 9 3 (976 (988,989 567-00476- E-mal yamaga@ser.osaka-u.ac.jp 3-0033 7-3-E-mal hatta@css.u-tokyo.ac.jp 89% 00% 0

(995 (999 (995 Hatta and Ohkawara(994 (995 (999 (995 (995 (995 (999 (999

u h,z,l = h z l ( β β α ( h z l l δ x 3 x l = δ x ( δ ( l ( u U h,z,x = h z δ x ( β β ( α (3 ( l δ ( x + a = (4 a a a a x + a x k m(x k 4 3 x δ 3

(x x + a = m k (5 m( k ( m( k x m( k m( k m( k m k m 0 m 0 k 0 m( k (4 (5 ( ( β U h,z,x,k = h z β ( δ m( k x α (x k (6 m( k m 0 0 k 0 k ~ k m( k 3 m( k x r ( x h + z = Y (7 4 m( k k 4

r( x x Y Y x r( x z h (7 (6 ( ( Y max U h,z,x,k h,z s.t. r x h + z = v( r( x,y,x,k v v r( x Y x k v ( r( x,y,x,k = v (8 (8 r( x * r( x r ( Y,x,k,v = (9 r * 5, 6 (6 (9 β α β β r * ( Y,x,k,v = β( β β Y v [ δ m( k x] β Y v α r * ( x,k = C[ δ m( k x] β (0 β β β ( β C β β Y v m( k k = m( k ( σ m k = λ k ( 7 λ k σ ( m( k (0 r * = C δ λ k σ x [ ] β α ( 5 v 6 (999 max u( h,z,k s.t. r( x h + z = Y tx tx x v( r( x,y tx,k v r( x r( x = R( Y tx,k,v k 7 (989 5

( δ 80 ( * α σ log r = p + p s + p + p3 y + log[ 80 ( γ x + λ k x ] + e 0 W (3 s β p0 log C, s y e..d. ( 70 U 8 x W x 9 δ NHK(995 6 6 80 4 (3 JR JR JR Y JR k (999 77 x JR x W k 0 I 0,, L, I =,, L, I k 8 s h s (996 9 W x γ 0 6

k N = (4 K N ( K N 0 k = ω k =,, L, I (5 ω (5 (5 k I I 0 5 (3 log r * = 3. 76+ 0. 00 s + 8. 40 0. 009 y s (. (.8 (5.9 (-.9. +. 840 log[ 80. 50 x 0. 807 k x] 0 (6 (.44 (3.50 (3.96 (4.0 W R = 0. 78 (3 (6 α β = 0. 840 (6 β β = 0. α =0.76 (5 m( k (5 9,043 43,350 7

. m( k = 0. 807 k m 0 k 0 m( k x m(x k x m( k [ ]x m(k 3.5. ( k 0. 8 k m = m 0.5 0.5 0 0 0.5.5.5 3 k 0. k m( k 6 m( k x m( k Y 3 3 Y 997 43,350 43,350 449,86 8

x = 0 c (9 * * r ( Y,x,k,v r ( Y c,x,k,v = (7 c Y x c = c( x c x x Y c( x m( k ~ = k ~ k ~ x Y Y c * * r ( Y,x,k,v r ( Y c,x,k,v = (8 f Y k = k ~ k c = c ( f f x c f ( x c f ( x x x m( k k ~ Y (8 c f ( x c t x ( x c x c t ( c ( x 5 9 f f 9

x m(k x [m(k-]x 6.367.367 8.3.3 8.8 3.4 94.5.9 0.369.368.9.9 37.3 84.3 47.0 3..73.35 4.8.8 36.9 30.7 73.7.9 4.07.3 6.4.4 3.5 33.3 300.7 9.5 6.64.30 8.. 8.4 356.6 38. 8.0 9..8 30.8.8 4.9 395. 370. 6.3 3.75.66 3.5.5.0 49.7 398.7 5.0 35.79.393 40.8 5.8 84.9 545. 460.4 5.6 38.3.474 47. 9. 39.0 647.8 508.8.5 40.987.509 5.0.0 70. 7.8 54.7 3.9 44.97.559 58. 4. 9.4 839. 609.7 7.3 48.647.568 63.8 5.8 67.5 946.8 679.3 8.3 50.563.568 66.5 6.5 84.3 999.4 75. 8.4 54.348.548 70.8 6.8 300.0,087.6 787.6 7.6 58.09.5 74.0 6.0 94.,55.4 86.3 5.5 6.04.48 76. 5. 86.3,04.4 98. 3.8 65 0.89.438 78.5 3.5 6.7,56.9 995. 0.8 70 0.79.394 8.7.7 34.8,33.0,096. 7.6 73 0.497.35 8. 9. 87.6,343.3,55.7 4.0 7 m( k k z MRS F MRS ( h,z,x,k 4 U ( h,z,x,k ( h,z,x,k U k F = (9 U z k z U U( h,z,x,k z k (9 (9 - h z h Y z = z Y (9 Y h = ( ( k x f ( k,x f ( k,x MRS ( h( Y,z( Y,x,k (0 F Y f ( (6 z k = ( β h β z β ( δ m( k x α α β β U k = α( δ m( k x h z m ( kx U z ( ( 0

m ( k = dm( k f ( k,x (0 m ( k x ( δ m( k x = αy (3 (3 (6 ( k,x % 5 f 8 (9 k k ( k N x (3 f ( k( k,x N k 0 k ( k k (4 4 5 k (3 (3

= (4 K k k ( k (5 (4 (5 k k k = (6 ( ( ( = K f ( k ( k,x N E (6 ( k E = N f ( k ( k,x (7 f ( 3 x f k,x ( 6 60 5 0 0.96 0 06 6 60 0.99 9 6 0.3 4 5 6 50.55 6 76 07 300.45 9 33 07 340.64 3 338 07 400.93 35 40 47 480.94 38 47 47 590.39 40 53 47 670.7 44 604 93 770.63 48 69 93 830.83 50 739 93 890 3.04 54 830 338 970.87 58 96 378,060.8 6 983 378,00.9 65,07 44,80.78 70,83 44,30.9 73,38 487,60.59 6 998

(999.3 5 (995 3 3 9 5 9 3 ( k k n N n N k k 0 k k (4 f ( k,x k (4 = =, (8 K ( k,k ( k =, (9 3

(5 (8 (9 k,k k,k k,k = =, (30 ( ( ( = K k k k = (3 ( ( ( = K n x, x f k, x ( =, n ( ( k ( k,k, x ( k ( k, f x E (30 (3 E n f ( k ( k,k,x f n n ( k,k ( k ( k,x = + n f (3 E ( k n N n N k k k ( k, k k ( k 0 k ( k, f x n E (30 4

E n f ( k ( k,k,x ( k,k = (33 n ( k, x ( k, f x E (30 (3 E n f ( k ( k,k,x ( k,k f n n ( k ( k,x = + n f (34 (7 (33 (34 E E = E + E = n f ( k ( k,k,x + n f ( k ( k,k,x ( k,k ( k,k + n f ( k ( k,x ( k ( k (35 E E 0 I 0 E j ( (,x I E = E n j f k j k, L +,k j= E = 0 =,, L,I 0 ( j j j ( k, L,k (36JR, (36 n N n N k k k( k, k k( k, k k ( k 0 k k 5

,(988,, 6,(989,, (995,,, (996, (976, 7 (999,,,VOL.34. (999, ISIZE http://www.sze.com ( (997 7 ( (999 0 NHK 995,NHK 999 Hatta, T. and Ohkawara, T. (994, Housng and the Journey to Work n the Tokyo Metropoltan Area, n Yuko Noguch and James M. Poterb ed. Housng Markets n the Unted States and Japan, Unversty of Chcago Press, pp. 87-3. 6