時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

Similar documents
ohp_06nov_tohoku.dvi

* (Ben T. Nohara), (Akio Arimoto) Faculty of Knowledge Engineering, Tokyo City University * 1 $\cdot\cdot

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

i


Wide Scanner TWAIN Source ユーザーズガイド

Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Progress in Qualitative Theory of Fun



LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i,


ver.1 / c /(13)

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

178 5 I 1 ( ) ( ) ( ) ( ) (1) ( 2 )

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

I II III 28 29


量子フィードバック制御のための推定論とその応用

2301/1     目次・広告


ii

untitled

i

AccessflÌfl—−ÇŠš1

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

2

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開)

Title 素数の3 乗の和で表せない自然数の密度について ( 解析的整数論とその周辺 ) Author(s) 川田, 浩一 Citation 数理解析研究所講究録 (2009), 1665: Issue Date URL

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)


1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

xia2.dvi

86 7 I ( 13 ) II ( )



316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and

入門ガイド

...J QX

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

<4D F736F F F696E74202D C835B B E B8CDD8AB B83685D>

SC-85X2取説


Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野, 勝利 Citation 数理解析研究所講究録 (2001), 1238: 1-11 Issue Date URL

untitled

第1部 一般的コメント

,, ( ), ( ), ( ), ( ) 2, ( 2 ) $L^{2}$ ( ) I, $L^{2}(-\infty, \infty)$ II, I, $L^{\infty}(-\infty, \infty)$ I 1 $n$ $f(t)\in L^{2

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o

untitled

表1票4.qx4

福祉行財政と福祉計画[第3版]

第1章 国民年金における無年金

本文/020:デジタルデータ P78‐97

THE HARRIS SCIENCE REVIEW OF DOSHISHA UNIVERSITY, VOL. 57, NO. 4 January 2017 An Extension of Kocic-Ladas s Oscillatory Theorem Concerning Difference

橡ミュラー列伝Ⅰ.PDF

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル



PR映画-1

- 2 -


1 (1) (2)

dプログラム_1

02[ ]小林(責).indd

II

これわかWord2010_第1部_ indd

パワポカバー入稿用.indd

これでわかるAccess2010

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

数理解析研究所講究録 第1908巻

数論的量子カオスと量子エルゴード性

平成18年版 男女共同参画白書

ÿþ

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

(a) (b) (c) 4. (a) (b) (c) p.2/27

provider_020524_2.PDF

(Tamiki Umeda) (Hisao Nakajima) (Hirokazu Hotani) Liposomes, vesicles oflipid bilayer, have a variety of shapes: a circular biconcav

「産業上利用することができる発明」の審査の運用指針(案)

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録


$w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W

FA - : (FA) FA [3] [4] [5] 1.1 () 25 1:

sakigake1.dvi

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD

3 3 i

エクセルカバー入稿用.indd

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

1: Pauli 2 Heisenberg [3] 3 r 1, r 2 V (r 1, r 2 )=V (r 2, r 1 ) V (r 1, r 2 ) 5 ϕ(r 1, r 2 ) Schrödinger } { h2 2m ( )+V (r 1, r 2 ) ϕ(r 1, r 2

30

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2


R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á

Fock - Fock 1,,, 1984 Hudson-Parthasarathy [12] 1., i ( ) Meyer [17], Parthasarathy [25], Mathematical Reviews 2,. Fock, Gauss (Gaus


ii

untitled

流体としてのブラックホール : 重力物理と流体力学の接点

01_.g.r..

DS II 方程式で小振幅周期ソリトンが関わる共鳴相互作用

Transcription:

1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$ (11) $t$ $t$ $dx/dt$ $x$ (11) $\tau>0$ (12) $\frac{dx(t)}{dt}=ax(t-\tau)$ $x(t)=ce^{at}$, ( : ) $C$ 1 $\tau=02$ ( ) $\tau=0$ ( ) $0$ $1$ $\tau=06$ ( ) $\tau=08$ (2 ) Hutchinson [3] (13) $\frac{dx(t)}{dt}=ax(t)(1-\frac{x(t-\tau)}{k})$, ( $a,$ $K$ : )

73 1: $a=-2$ $\tau=06$ ;2 (12) $\tau=0$ ; $\tau=02$ $x(s)=2(s\in[-\tau, 0])$ $\tau=08$ ;1 (12) $\tau$ [4] May [6] (13) $x(t)$ $\tau$ May Nicholson [6, Fig 48] (13) 32 2 [11] 2: $a=-2,$ $K=100$ $\tau=06;2$ (12) $\tau=0$ ; $\tau=02;1$ $x(s)=10(s\in[-\tau, 0])$ $\tau=08$ Mackey & Glass [5] ( ) (14) $\frac{dx(t)}{dt}=-ax(t)+\frac{bx(t-\tau)}{1+x(t-\tau)^{m}}$, $(a,$ $b,$ $)$ $m$ :

(3) ( ) ( ) 74 3: $a=-2,$ $b=354,$ $m=10$ $x(s)=01(s\in[-\tau, 0])$ (14) $\tau=0$ ; $\tau=1$ ( [2] ) Mackey & Glass (14) Pyragas[7] Delayed Feedback Pyragas $u(t)$ R\"ossler (15) $\{\begin{array}{l}\frac{dx(t)}{dt}=-y(t)-z(t)\frac{dy(t)}{dt}=x(t)+02y(t)+u(t)\frac{dz(t)}{dt}=02+z(t)(x(t)-57)\end{array}$ $u(t)=k(y(t-\tau)-y(t))_{;}$ ( $K$ : ) (15) $(K=0)$ ( 4 ) Pyragas $K$ $\tau$ $\tau$

$K=02,$ $\tau=59$ $K=02,$ $\tau=1175$ ( 5 6 ) $u(t)$ 75 $u(t)=\{\begin{array}{ll}-01, K(y(t-\tau)-y(t))\leq-01K(y(t-\tau)-y(t)), -01<K(y(t-\tau)-y(t))<0101, K(y(t-\tau)-y(t))>01\end{array}$ 7 $\tau=175$ $x(s)=1,$ $y(s)=z(s)=0(s\in[-\tau, 0])$ 4: (15) 5: $K=02,$ $\tau=59$ (15) $(100\leq t\leq 200)$ 6: $K=02,$ $\tau=1175$ (15) 7: $K=02,$ $\tau=1175$ (15) $(400\leq t\leq 500)$ $u(t)$ $(400\leq t\leq 500)$

76 2 $\mathbb{c}$ $\mathbb{r}$, $E$ $E=\mathbb{R}^{n}$ $\mathbb{c}^{n}$ $\mathbb{r}\cross E$ $f:\mathbb{r}\cross Earrow E$ (21) $\frac{dx}{dt}=f(t, x)$ $x$ $E$ $\in \mathbb{r}\cross E$ (to, $x_{0}$ ) $x(t_{0})=x_{0}$ $t\in \mathbb{r}$ (21) $x$ $[-\tau, 0]$ $\}$ $C:=C([-\tau, 0]_{:}E)=\{\phi:[-\tau,$ $0]arrow E:\phi$ $\tau>0$ $E$ $E$ $ x (x\in E)$ $E$ $C$ $\Vert\phi\Vert=\sup_{-\tau\leq s\leq 0} \phi(s) $, $(\phi\in C)$ $C$ $[\sigma-\tau, \sigma+a](\sigma\in \mathbb{r}, a>0)$ $x_{t}\in C$ $x_{t}(s)=x(t+s)$, $(-\tau\leq s\leq 0)$ $x$ $t$- ( 8 ) $x:[\sigma-\tau, \sigma+a]arrow E$

77 8: $x$ $t$- $C$ $t$- $\mathbb{r}\cross C$ $F:\mathbb{R}\cross Carrow E$ (22) $\dot{x}(t)=f(t,x_{t})$ $\dot{x}(t)$ $x(t)$ $t$ $C$ $F$ 21 (i) (12) : $F(t_{:}\phi)=a\phi(-\tau)$ (ii) (13) : $F(t, \phi)=a\phi(0)(1-\frac{\phi(-\tau)}{k}i\cdot$ (iii) (14) : $F(t, \phi)=-a\phi(0)+\frac{b\phi(-\tau)}{1+\phi(-\tau)^{m}}$ (iv) (15) : $F(t, \phi)=(\begin{array}{l}-\psi(0)-\eta(0)\phi(0)+02\psi(0)+k(\psi(-\tau)-\psi(0))02+\eta(0)(\phi(0)-57)\end{array})$, $(\phi=(\begin{array}{l}\phi\psi\eta\end{array}))$ (V) (23) $\dot{x}(t)=ax(t-\tau)+bx(t-\sigma)$

$\sigma$ $\tau,$ $F(t,\phi)=a\phi(-\tau)+bx(-\sigma)$ 78 (vi) (24) $\dot{x}(t)=ax(t)+\int_{t-\tau}^{t}c(s)x(s)ds$ $F(t, \phi)=a\phi(0)+\int_{-\tau}^{0}c(t+s)\phi(s)ds$ 21 $\dot{x}(t)=ax(t)+\int_{0}^{t}c(t, s)x(s)ds$ (21) $x(t)$ $[t_{0}-\tau, t_{0}+a]$ $(t_{0}\in \mathbb{r}, a>0)$ (22) $x\in C([t_{0}-\tau, t_{0}+a]_{:}e)$ $t\in[t_{0}, \sigma+a]$ (22) $(t_{0}, \phi)\in \mathbb{r}\cross C$ (22) (25) $x_{t_{0}}=\phi$ $[t_{0}-\tau, t_{0}+a]$ $x$ $\phi$ (25) to (21) 9:

(21) $x_{0}\in E$ $\phi\in C$ (21) $\dot{x}(t)=f(t, x(t-\tau))$ $t=t_{1}$ (1 ) $f(t_{1}, x(t_{1}-\tau))$ $t_{1}=t_{0}$ $f(t_{1}, x(t_{1}-\tau))=f(t, \phi(-\tau))$ ( 9) $t=t_{0}$ $t>t_{0}$ $to-\tau\leq t\leq t_{0}$ (22) (21) ([1] [9] ) 79 3 (12), (23), (24) $L:Carrow E$ (31) $x (t)=l(x_{t})$ [1] [9] (12) $\searrow$ 31 (12) (11) $x(t)=ce^{at}$ (12) $C$ $ace^{at}=ace^{a(t-\tau)}$ $1=e^{-a\tau}$ $\tau=0$ (11) (32) $x(t)=ce^{\lambda t}$, ( $C$ : )

(12) 80 $\lambda Ce^{at}=aCe^{\lambda(t-\tau)}$ $\lambda=ae^{-\lambda\tau}$ (33) $\triangle(\lambda):=\lambda-ae^{-\lambda\tau}=0$ (33) (12) (32) (33) (12) 31 $a\neq 0,$ $\tau>0$ (12) (i) (ii) $\overline{\lambda}$ $\alpha\in \mathbb{r}$ (iii) ${\rm Re}\lambda>\alpha$ (12) (34) $x(t)= \sum_{k=1}^{\infty}c_{k}e^{\lambda_{k}t}$ $\lambda_{1},$ $\lambda_{2)}\ldots$ (33) $c_{1_{j}}c_{2},$ $\ldots\in \mathbb{c}$ $\lambda_{j_{1\dot{l}}}\lambda_{j_{2}}$ 31 (33) $x(t)=c_{j_{1}}e^{\lambda_{j_{1}}t}+c_{j_{2}}e^{\lambda_{j_{2}}t}$ $\lambda_{j_{1}}=\alpha+i\beta$ $x(t)=(c_{j_{1}}+c_{j_{2}})e^{\alpha t}\cos\beta t+i(c_{j_{1}}-c_{j_{2}})e^{\alpha t}\sin\beta t$ $c_{j_{1}},$ $c_{j_{2}}$ $c_{j_{1}}=a_{j}+ib_{j},$ $c_{j_{2}}=a_{j}-ib_{j}$ $x(t)=a_{j}e^{\alpha t}\cos\beta t+b_{j}e^{\alpha t}\sin\beta t$

31 1 1 No (34)? $a\tau=-1/e$ $\lambda=-1/\tau$ $x(t)=cte^{\lambda t}$, ( $C$ : ) $n\in N$ (35) $x(t)=e^{\lambda t} \sum_{k=0}^{n}\frac{t^{k}}{k!}c_{k}$ ( $c_{k}$ : ) 81 (12) $\lambda e^{\lambda t}\sum_{k=0}^{n}\frac{t^{k}}{k!}c_{k}+e^{\lambda t}\sum_{k=1}^{n}\frac{t^{k-1}}{(k-1)!}c_{k}=ae^{\lambda(t-\tau)}\sum_{k=0}^{n}\frac{(t-\tau)^{k}}{k!}c_{k}$ $\cdot$ $\lambda\sum_{k=0}^{n}\frac{t^{k}}{k!}c_{k}+\sum_{k=0}^{n-1}\frac{t^{k}}{k!}c_{k+1}=ae^{-\lambda\tau}\sum_{k=0}^{n}\frac{(t-\tau)^{k}}{k!}c_{k}$ $(t-\tau)^{k}$ $\lambda\sum_{k=0}^{n}\frac{t^{k}}{k!}c_{k}+\sum_{k=0}^{n-1}\frac{t^{k}}{k!}c_{k+1}=ae^{-\lambda\tau}\sum_{k=0}^{n}\frac{t^{k}}{k!}\sum_{j=0}^{n-k}\frac{(-\tau)^{j}}{j!}c_{k+j}$ $\cdot$ $\frac{t^{n}}{n!}(\lambda-ae^{-\lambda\tau})c_{n}+\sum_{k=0}^{n-1}\frac{t^{k}}{k!}(\lambda c_{k}+c_{k+1}-\sum_{j=0}^{n-k}a\frac{(-\tau)^{j}}{j!}e^{-\lambda\tau}c_{k+j})=0$ $t$ $n$ (36) $\triangle(\lambda)c_{n}=0$ $t$ $k(k=0,1, \ldots, n-1)$ $\lambda c_{k}+c_{k+1}-\sum_{j=0}^{n-k}a\frac{(-\tau)^{j}}{j!}e^{-\lambda\tau_{c_{k+j}}}=0$ $\cdot$ $( \lambda-ae^{-\lambda\tau})c_{k}+(1-a(-\tau)e^{-\lambda\tau})c_{k+1}-\sum_{j=2}^{n-k}a\frac{(-\tau)^{j}}{j!}e^{-\lambda\tau}c_{k+j}=0$ (37) $\cdot$ $\triangle(\lambda)c_{k}+\triangle^{(1)}(\lambda)c_{k+1}+\sum_{j=2}^{n-k}\frac{\triangle^{(j)}(\lambda)}{j!}c_{k+j}=0$

$(^{\frac{\delta^{(2)}(\lambda)}{2\cdot!0}}0$ $\frac{\delta^{(2)}(\lambda)}{\delta^{(1)}(,\lambda\delta(\lambda)2!})\ldots\cdot\cdot\cdot\cdot$ $\frac{\delta^{(2)}(\lambda)}{\delta^{(1)}(2!}\lambda)\ldots\cdot\cdot\cdot$ $\frac\triangle:\frac{\delta(\lambda)\frac{\delta^{(n)}(\lambda)}{(n-i)n^{1}}}{\delta_{(n-2)!}\{_{n-2)}^{n-1)!}(\lambda)}1(\begin{array}{l}c_{0}c_{l}c_{2}\vdots c_{n}\end{array})=(\begin{array}{l}000\vdots 0\end{array})$ $\Delta^{(j)}(\lambda)$ $\Delta(\lambda)$ $j$ 82 (36) (37) $(000$ $\Delta^{(1)}(\lambda)\triangle(\cdot\lambda)00$ $D_{n}(\lambda)$ $\det D_{n}(\lambda)=(\Delta(\lambda))^{n+1}$ (35) $c_{0}$ $c_{1},$ $\ldots,$ $c_{n}$ $(00$ $\frac{\delta(\lambda)\frac{\delta^{(n)}(\lambda)}{(n\underline{n}_{i)}^{1}}}{(n-1)!}\triangle^{(1)}:(\lambda))(\begin{array}{l}c_{l}c_{2}\vdots c_{n}\end{array})=(\begin{array}{l}00\vdots 0\end{array})$ $D_{n}^{1}(\lambda)$ $\triangle^{(1)}(\lambda)\neq 0$ $\det D_{n}^{1}(\lambda)=(\Delta^{(1)}(\lambda))^{n}$ $\triangle^{(1)}(\lambda)=0$ $c_{1}=c_{2}=\cdots=c_{n}=0$ $c_{1}$ $c_{2:}c_{3},$ $\cdots,$ $c_{n}$ $\frac{\delta^{(2)}(\lambda)}{2,!}\ldots\cdot\cdot$ $\frac{\triangle(\lambda)\frac{\delta^{(n)}(\lambda)}{(r\iota\underline{n}_{i)}^{1}}}{(n-1)!}\frac{\delta^{(2)}(\lambda)}{2!}1(\begin{array}{l}c_{2}c_{3}\vdots c_{n}\end{array})=(\begin{array}{l}00\vdots 0\end{array})$ $D_{n}^{2}(\lambda)$ $-a\tau^{2}e^{-\lambda\tau}\neq 0$ 31 $\det D_{n}^{2}(\lambda)=(\Delta^{(2)}(\lambda)/2!)^{n-1}$ $\Delta^{(2)}(\lambda)=$ $c_{2}=c_{3}=\cdots=c_{n}=0$ (35) (12) (12) (12) $\triangle^{(1)}(\lambda)\neq 0$ (i) $c_{0}$ $x(t)=c_{0}e^{\lambda t}$ (35) (ii) $\Delta^{(1)}(\lambda)=0$ $c_{k}=0(k\geq 1)$ $c_{0}$ $c_{1}$ $c_{k}=0(k\geq 2)$ (35) $x(t)=e^{\lambda t}($ co $+c_{1}$ 32 31 (ii) $a\tau=-1/e,$ $\triangle^{(1)}(\lambda)=0$ $\lambda=-1/\tau$ $\triangle(\lambda)=$

83 32 31 (12) (31) 31 (ii) 1 $\mathbb{c}^{n}$ $\mathbb{c}^{n}$ (31) $C=C([-\tau, 0], \mathbb{c}^{n})$ [1] [9] (31) $x_{0}=\phi\in C$ $t$- $x_{t}(\phi)$ $t\geq 0$ $C$ $T(t)$ $T(t)\phi=x_{t}(\phi)$, $(\phi\in C)$ $C$ $\mathcal{a}$ (31) $T(t)$ $\mathcal{a}\phi=\lim_{tarrow 0}\frac{T(t)\phi-\phi}{t}$ 32 $\mathcal{a}$ ([9, 514] ) (31) $T(t)$ $\sigma(\mathcal{a})$ $\lambda\in\sigma(\mathcal{a})$ $\phi\in C(\phi\neq 0)$ $\mathcal{a}\phi=\lambda\phi$ (12) $\sigma(\mathcal{a})=\{\lambda:\delta(\lambda)=0\}$ 33 $\sigma(a)$ ([9, 514] ) (31) (12) $n$ (38) $\dot{x}=ax$ $A$ $x(o)=x_{0}\in \mathbb{c}^{n}$ $n\cross n$ $x(t)=e^{at_{x_{0}}}$

(12) 84 (38) $T(t)=e^{At}$ $\mathcal{a}x=\lim_{tarrow 0}\frac{T(t)x-x}{t}=\lim_{tarrow 0}\frac{e^{At}x-x}{t}=Ax$ $A$ $A$ (38) $A$ 32 31 $\mathcal{a}$ $A$ $\mathcal{m}_{\lambda}(\mathcal{a}):=\bigcup_{j=1}^{\infty}n((\mathcal{a}-\lambda I)^{j})$ $N((A-\lambda I)^{j})=\{\phi:(\mathcal{A}-\lambda I)^{j}\phi=0\}$ (12) 33([9, 515,516] ) $\mathcal{m}_{\lambda}(\mathcal{a})$ $\triangle^{(1)}(\lambda)\neq 0$ (i) $\mathcal{m}_{\lambda}(\mathcal{a})=n(a-\lambda I)$ $\phi\in \mathcal{m}_{\lambda}(\mathcal{a})$ $\Lambda 4_{\lambda}(\mathcal{A})$ 1 s}$ $\phi(s)=$, ( $c_{0}$ : co$e^{\lambda ) (ii) $\triangle^{(1)}(\lambda)=0$ $M_{\lambda}(\mathcal{A})=N((A-\lambda I)^{2})$ $\phi\in \mathcal{m}_{\lambda}(\mathcal{a})$ $M_{\lambda}(\mathcal{A})$ 2 $\phi(s)=e^{\lambda s}(co+c_{1}s)$, ( $c_{0},$ $c_{1}$ : ) $\Lambda=\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\in\sigma(\mathcal{a})\}$ $\mathcal{m}_{\lambda}(\mathcal{a})=\mathcal{m}_{\lambda_{1}}(\mathcal{a})\oplus \mathcal{m}_{\lambda_{2}}(\mathcal{a})\oplus\cdots\oplus \mathcal{m}_{\lambda_{p}}(\mathcal{a})$ (12)

34([9, 519] ) (12) $C=C([-\tau, 0], \mathbb{c})$ 85 $C=\mathcal{M}_{\Lambda}(\mathcal{A})\oplus \mathcal{n}_{\lambda}(\mathcal{a})$ $\mathcal{m}_{\lambda}(\mathcal{a})$ $\mathcal{n}_{\lambda}(\mathcal{a})$ $T(t)$ $\beta\geq\max\{{\rm Re}\lambda:\lambda\in\sigma(\mathcal{A})\backslash \Lambda\}$ $\epsilon>0$ $N_{\epsilon}>0$ $\Vert T(t)\phi\Vert\leq N_{\epsilon}e^{(\beta+\epsilon)t}\Vert\phi\Vert$, $(\phi\in \mathcal{n}_{\lambda}(\mathcal{a}), t\geq 0)$ 34 34 $\phi\in C$ $\phi=\phi+\psi$, $\phi\in \mathcal{m}_{\lambda}(\mathcal{a})$, $\psi\in \mathcal{n}_{\lambda}(a)$ $T(t)$ $T(t)\phi=T(t)\phi+T(t)\psi$, $T(t)\phi\in \mathcal{m}_{\lambda}(\mathcal{a})$, $T(t)\psi\in \mathcal{n}_{\lambda}(a)$ $\beta<0$ $\epsilon=-\beta/2$ $\Vert T(t)\psi\Vert\leq N_{\epsilon}e^{-\beta t/2}\vert\psi\vert$ $\lim_{tarrow\infty}\vert T(t)\psi\Vert=0$ $T(t)\psi$ $0$ 31 (iii) A $\beta<0$ $\mathcal{m}_{\lambda}(a)$ ( 33 ) 33 (12) 31 (12) (i) $\lambda_{0}$ $a>0$ ${\rm Re}\lambda<\lambda_{0}$ $\lambda_{0}$

$\lambda_{0}$ 86 (ii) $\lambda_{1},$ $\lambda_{2}(\lambda_{1}>\lambda_{2})$ $-1/e<a\tau<0$ ${\rm Re}\lambda<\lambda_{1}$ (iii) $a\tau=-1/e$ 2 $\lambda_{0}=-1/\tau$ ${\rm Re}\lambda<\lambda_{0}$ (iv) $-\pi/2<a\tau<-1/e$ ${\rm Re}\lambda<0$ (v) $a\tau=-\pi/2$ $\lambda_{\pm}=\pm i\pi/(2\tau)$ ${\rm Re}\lambda<0$ (vi) $a\tau<-\pi/2$ 34 33 35 (12) ( $tarrow\infty$ ) (i) $a>0$ (ii) $0$ $-1/e<a\tau<0$ $0$ (iii) $a\tau=-1/e$ (iv) $0$ $-\pi/2<a\tau<-1/e$ $x=0$ (v) $a\tau=-\pi/2$ $c_{1},$ $c_{2}$ $x(t)=c_{1} \cos(\frac{\pi}{2\tau}t)+c_{2}\sin(\frac{\pi}{2\tau}t)$ (vi) $a\tau<-\pi/2$ $0$ $x=0$ References [1] J K Hale and S V Verduyn Lunel, Introduction to Functional Differential Equations, Springer, 1993 [2] H Y Hu and Z H Wang, Dynamics of Controlled Mechanical Systems with Delayed Feedback, Springer, 2002

[3] G E Hutchinson, Circular casual systems in ecology, Ann $NY$ Acad Sci, 50, 221-246, 1948 [4] J L Kaplan and J A Yorke, On the stability of a periodic solutionof a differential delay equation, SIAM J Math Anal, 6, 268-282, 1975 [5] M C Mackey and L Glass, Oscillation and chaos in physiological control systems, Science, 197, 287-289, 1977 [6] R M May, Stability and Complexity in Model Ecosystems, Princeton University Press, 1974 [7] K Pyragas, Continuous control of chaos by self-controlling feedback, Phys Lett $A$, (1992), 170, 421-428 [8] 1997 [9] 2002 [10] 2003 [11] 1 2008 [12] 2003 87