数論的量子カオスと量子エルゴード性
|
|
|
- さみら えいさか
- 7 years ago
- Views:
Transcription
1 $\lambda$ (Shin-ya Koyama) ( (Toyo University))* $\lambdaarrow\infty$ $u_{\lambda}$ 2 ( ) $($ 1900, $)$ $*$ $ $ 2100
2 2 (1915 ) (1956 ) ( $)$ (1980 ) 3 $\lambda$ (1) : $GOE$ - (2) $u_{\lambda}$ If- $L^{\infty}-$ $\lambdaarrow\infty$ ( $L^{\infty}$- ) 2,3 $L^{\infty}-$ (3) $u_{\lambda}(z)$ $ u_{\lambda}(z) $ $z$ $\lambdaarrow\infty$ ) (
3 3 (3 ) (3) ( ) $\infty$ $L$ $L$ $L$ $L$ 2. $M$ ( $)$ $\lambda$, $u_{\lambda}$ $1A,$ $B$ $\lim_{\lambdaarrow\infty}\frac{\int_{a} u_{\lambda}(z) ^{2}\frac{dxdy}{y^{2}}}{\int_{B} u_{\lambda}(z) ^{2}\frac{dxdy}{y^{2}}}=\frac{vo1(A)}{vo1(B)}$ (1) $M$ ( ) $\frac{dxdy}{y^{2}}$ vol(a) $= \int_{a}\frac{dxdy}{y^{2}}$ 1
4 4 (1) $ u_{\lambda}(z) ^{2} \frac{dxdy}{y^{2}}$ $\frac{dxdy}{y^{2}}$ 2 $\lambdaarrow\infty$ $\lambda$ $\lambda$ $\lambda$ $u_{\lambda}$ ( $1O$ ) $\lambda=\frac{1}{4}+r^{2}$ $r$ (1) $\int_{a} u_{\lambda}(z) ^{2}\frac{dxdy}{y^{2}}\sim Cvo1(A)\log r$ $(rarrow\infty, C r )$. (2) (2) $L$- ( 14 ) $H$ $z=x+iy\in H,$ ${\rm Re}(s)>1,$ $\Gamma=SL(2, \mathbb{z})$, $\Gamma_{\infty}=\{\pm(\begin{array}{ll}1 b0 1\end{array}) b\in \mathbb{z}\}\subset\gamma$ $E(z, s)= \sum_{\gamma\in\gamma_{\infty}\backslash \Gamma}{\rm Im}(\gamma z)^{s}$ (3) $E(z, s)$
5 5 $E(z, s)=y^{s}+^{\hat{\zeta}(s-1)}y^{1-s} \hat{\zeta}(s)+\frac{2}{\hat{\zeta}(2s)}\sum_{n=1}^{\infty} n ^{s-\frac{1}{2}}\sigma_{1-2s}(n)e^{2\pi inx}k_{s-\frac{1}{2}}(2\pi n y)\sqrt{y}.$ (4) $\sigma_{s}(n)=\sum_{d n}d^{s}$ $\int_{a} E(z, \frac{1}{2}+ir) ^{2}\frac{dxdy}{y^{2}}\sim\frac{48}{\pi}vol(A)\log r (rarrow\infty)$ $A$ $M=\Gamma\backslash H$ $A$ $f_{a}(z)$ $\int_{a} E(z, \frac{1}{2}+ir) ^{2}\frac{dxdy}{y^{2}}=\int_{M}f_{A}(z) E(z, \frac{1}{2}+ir) ^{2}\frac{dxdy}{y^{2}}$ $f_{a}\in L^{2}(M)$ $\lambdaarrow\infty$ $L^{2}(M)$ ( ) 1 $M=SL(2, \mathbb{z})\backslash H$ ) ( $L^{2}(M)$ $\lim_{rarrow\infty}\int_{m^{u}}j(z) E(z, \frac{1}{2}+ir) ^{2}\frac{dxdy}{y^{2}}=0$ $J_{j}(r)= \int_{m}uj(z)e(z, \frac{1}{2}+ir)e(z, \frac{1}{2}-ir)\frac{dxdy}{y^{2}}$ (5)
6 6 $I_{j}(s)= \int_{m}u_{j}(z)e(z, \frac{1}{2}+ir)e(z, s)\frac{dxdy}{y^{2}}$. (6) $u_{j}$ (6) $E(z, s)$ (3): $E(z, s)= \sum_{\gamma\in\gamma_{\infty}\backslash \Gamma}{\rm Im}(\gamma z)^{s}$ $M=\Gamma\backslash H$ $H$ $I_{j}(s)= \int_{\gamma_{\infty}\backslash H}u_{j}(z)E(z, \frac{1}{2}+ir)y^{s}\frac{dxdy}{y^{2}}$ $= \int_{0}^{\infty}\int_{0}^{1}u_{j}(z)e(z, \frac{1}{2}+ir)y^{s}\frac{dxdy}{y^{2}}$ (7) $u_{j}(-\overline{z})=u_{j}(z)$ $u_{j}(-\overline{z})=-u_{j}(z)$ $E(z, s)=$ $E(1-\overline{z}, s)$ $u_{j}$ $u_{j}$ $I_{j}(s)\equiv 0$ $e^{2\pi inx}+e^{-2\pi inx}=2\cos(2\pi nx)$ $n$ $-n$ 8 $u_{j}(z)= \sqrt{y}\sum_{n=1}^{\infty}a_{j}(n)k_{ir_{j}}(2\pi n y)\cos(2\pi nx) (a_{j}(1)=1)$ (8) $\frac{1}{4}+r_{j}^{2}=\lambda_{j}$ $L$- $a_{j}(n)$ : $L(s, u_{j})= \sum_{n=1}^{\infty}\frac{a_{j}(n)}{n^{s}}$ $= \prod_{p}(1-\frac{a_{j}(p)}{p^{s}}+\frac{1}{p^{2s}})^{-1}$ (9)
7 7 2 (4) (8) (7) $I_{j}(s)= \int_{0}^{\infty}\int_{0}^{1}(y\sum_{n=1}^{\infty}a_{j}(n)k_{ir_{j}}(2\pi n y)\cos(2\pi nx))$ $(y^{\frac{1}{2}+ir}+y^{\frac{1}{2}-ir} \frac{\hat{\zeta}(ir)}{\hat{\zeta}(1+2ir)}+\frac{2\sqrt{y}}{\hat{\zeta}(1+2ir)}\sum_{m=1}^{\infty}\frac{\sigma_{-2ir}(m)}{m^{-ir}}e^{2\pi imx}k_{ir}(2\pi my))$ $y^{s} \frac{dxdy}{y^{2}}.$ $\int_{0}^{1}\cos(2\pi nx)dz=\{\begin{array}{ll}0 (n\neq 0)1 (n=0),\end{array}$ $\cos\alpha\cos\beta=\frac{1}{2}(\cos(\alpha+\beta)+\cos(\alpha-\beta))$ $n=m$ $ny\mapsto y$ $I_{j}(s)= \frac{2}{\hat{\zeta}(1+2ir)}(\sum_{n=1}^{\infty}\frac{\sigma_{-2ir}(n)a_{j}(n)}{n^{s-ir}})\int_{0}^{\infty}k_{ir}(2\pi y)k_{ir_{j}}(2\pi y)y^{s}\frac{dy}{y}$ $\int_{0}^{\infty}k_{ir}(2\pi y)k_{ir_{j}}(2\pi y)y^{s}\frac{dy}{y}=\frac{\gamma(\frac{s+ir_{j}+ir}{2})\gamma(\frac{s+ir_{j}-ir}{2})\gamma(\frac{s-ir_{j}+ir}{2})\gamma(\frac{s-ir_{j}-ir}{2})}{\pi^{s}\gamma(s)}$ $R(s)= \sum_{n=1}^{\infty}\frac{\sigma_{-2ir}(n)a_{j}(n)}{n^{s-ir}}$ $I_{j}(s)= \frac{2\pi^{-s}}{\hat{\zeta}(1+2ir)}\cross\frac{\gamma(\frac{s+ir_{j}+ir}{2})\gamma(\frac{s+ir_{j}-ir}{2})\gamma(\frac{s-ir_{j}+ir}{2})\gamma(\frac{s-ir_{j}-ir}{2})}{\gamma(s)}r(s)$
8 8 $R(s)$ : $J_{j}(r)=I_{j}( \frac{1}{2}-ir)$ $= \frac{2\pi^{-\frac{1}{2}+ir}\gamma(\frac{\frac{1}{2}+ir_{j}}{2})\gamma(\frac{\frac{1}{2}+ir_{j}-2ir}{2})\gamma(\frac{\frac{1}{2}-ir_{j}}{2})\gamma(\frac{\frac{1}{2}-ir_{j}-2ir}{2})l(\frac{1-2ir}{2},u_{j})l(\frac{1}{2},u_{j})}{\hat{\zeta}(1+2ir)\gamma(\frac{1}{2}-ir)\zeta(1-2ir)}.$ (11) $ \Gamma(\sigma+ir) \sim e^{-\pi r/2} r ^{\sigma-\frac{1}{2}} (rarrow\infty)$ (11) $=O( r ^{-1/2})$ (12) $\frac{1}{\zeta(1+2ir)}=o(\log r)$ (13)
9 9 (11) $L( \frac{1}{2}+ir, uj)$ (12), (13) $J_{j}(r)=O( \frac{l(\frac{1}{2}+ir,u_{j})}{ r ^{\frac{1}{2}}}) (rarrow\pm\infty)$ (14) $L$ $L( \frac{1}{2}+\dot{\iota}r, u_{j})=o( r ^{\frac{1}{2}}) (rarrow\pm\infty)$ $L( \frac{1}{2}+\dot{\iota}r, uj)=o( r ^{\frac{1}{2}-\delta}) (rarrow\pm\infty)$ $\delta>0$ (14) $J_{j}(r)=O( r ^{-\delta}) (rarrow\pm\infty)$ $\lim_{rarrow\pm\infty}j_{j}(r)=0$ $L( \frac{1}{2}+\dot{\iota}r, u_{j})=o( r ^{\frac{1}{3}+\epsilon}) (\forall\epsilon>0)$ (15) ( ) $h(y)$ $\infty$ $0$ $y$ $0$ $\infty$ $h(y)=o_{n}(y^{n})$ $(N\in \mathbb{z})$ ( $O_{N}$ $O$ $N$ ) $h(y)$ $y$ $N$ $H(s)= \int_{0}^{\infty}h(y)y^{-s}\frac{dy}{y}$ $h(y)$ $H(s)$ $s$ $r$
10 10 $\sigma+ir$ $\sigma\in \mathbb{r}$ $h(y)= \frac{1}{2\pi i}\int_{(\sigma)}h(s)y^{s}ds$ $\int_{(\sigma)}$ ${\rm Re}(s)=\sigma$ $h$ $F_{h}(z)= \sum_{\gamma\in\gamma_{\infty}\backslash \Gamma}h({\rm Im}(\gamma z))$ $h(y)=y^{s}$ (3) $1^{\lambda}$ $h(y)=o_{n}(y^{n})$. 2 $L^{2}(M)$ 2 $yarrow 0,$ $h(y)$ $\infty$ $yarrow 0,$ $\infty$ $E(z, s)$ $F_{h}(z)$ $E(z, s)$ $(\sigma)arrow(2)$ $F_{h}(z)= \frac{1}{2\pi i}\int_{(2)}h(s)e(z, s)ds$ 2 $M=SL(2, \mathbb{z})\backslash H$ $F(z)$ $rarrow\infty$ $\int_{m}f(z) E(z, \frac{1}{2}+ir) ^{2}\frac{dxdy}{y^{2}}\sim\frac{48}{\pi}(\int_{M}F(z)\frac{dxdy}{y^{2}})\log r$ $\infty$ $C^{\infty}(M)$
11 11 $\int_{m}f_{h}(z) E(z, \frac{1}{2}+ir) ^{2}\frac{dxdy}{y^{2}}$ $= \frac{1}{2\pi i}\int_{m}\int_{(2)}h(s)e(z, s)ds E(z, \frac{1}{2}+ir) ^{2}\frac{dxdy}{y^{2}}$ $= \frac{1}{2\pi i}\int_{0}^{\infty}\int_{(2)}h(s)y^{s}ds\int_{0}^{1} E(z, \frac{1}{2}+ir) ^{2}\frac{dxdy}{y^{2}}$ $= \frac{1}{2\pi i}\int_{0}^{\infty}\int_{(2)}h(s)y^{s}ds( y^{\frac{1}{2}+ir}+y^{\frac{1}{2}-ir}\frac{\hat{\zeta}(2ir)}{\hat{\zeta}(1+2ir)} ^{2}$ $+ \frac{2y}{\hat{\zeta}(1+2ir)} ^{2}\sum_{n=1}^{\infty} \sigma_{-2ir}(n)k_{ir}(2\pi ny) ^{2})\frac{dy}{y^{2}}$ $=F_{1}(r)$ $F_{2}(r)$. $F_{1}(r)= \frac{1}{2\pi i}\int_{0}^{\infty}$ (2) $H(s)y^{s}ds y^{\frac{1}{2}+ir}+y^{\frac{1}{2}-ir} \frac{\hat{\zeta}(2ir)}{\hat{\zeta}(1+2ir)} ^{2}\frac{dy}{y^{2}}$ $ \frac{\hat{\zeta}(2ir)}{\hat{\zeta}(1+2ir)} =1$ $F_{1}(r)=2 \int_{0}^{\infty}h(y)\frac{dy}{y}+$ ( ) (16) $r$ $F_{2}(r)= \frac{2}{\pi i \hat{\zeta}(1+2ir) ^{2}}$ (2) $H(s) \sum_{n=1}^{\infty}\frac{ \sigma_{-2ir}(n) ^{2}}{n^{s}}\int_{0}^{\infty} K_{ir}(2\pi y) ^{2}y^{s}\frac{dy}{y}ds.$ (17)
12 12 : $\sum_{n=1}^{\infty}\frac{ \sigma_{a}(n) ^{2}}{n^{s}}=\prod_{p}\sum_{k=0}^{\infty}\frac{\sigma_{a}(p^{k})\sigma_{-a}(p^{k})}{p^{ks}}$ $= \prod_{p}\sum_{k=0}^{\infty}\frac{1}{p^{ks}}(\frac{1-p^{a(k+1)}}{1-p^{a}})(\frac{1-p^{-a(k+1)}}{1-p^{-a}})^{2}$ $= \prod_{p}\frac{1}{(1-p^{a})(1-p^{-a})}\sum_{k=0}^{\infty}(2p^{-ks}-p^{(a-s)k+a}+p^{(-a-s)k-a})$ $= \prod_{p}\frac{1}{(1-p^{a})(1-p^{-a})}(\frac{2}{1-p^{-s}}-\frac{p^{a}}{1-p^{a-s}}-\frac{p^{-a}}{1-p^{-a-s}})$ $= \prod_{p}\frac{1+p^{-s}}{(1-p^{-s})(1-p^{-(s-a)})(1-p^{-(s+a)})}$ $= \prod_{p}\frac{1-p^{-2s}}{(1-p^{-s})^{2}(1-p^{-(s-a)})(1-p^{-(s+a)})}$ $= \frac{\zeta(s)^{2}\zeta(s-a)\zeta(s+a)}{\zeta(2s)}$. (18) $\Gamma$ (17) $y\}$ $F_{2}(r)= \frac{2}{\pi i \hat{\zeta}(1+2ir) ^{2}}$ (2) $H(s) \sum_{n=1}^{\infty}\frac{ \sigma_{-2ir}(n) ^{2}}{n^{s}}\int_{0}^{\infty} K_{ir}(2\pi y) ^{2}y^{s}\frac{dy}{y}ds$ $= \frac{2}{\pi i \hat{\zeta}(1+2ir) ^{2}}$ $\cross\int_{(2)}\frac{h(s)\zeta(s)^{2}\zeta(s+2ir)\zeta(s-2ir)\gamma(\frac{s}{2}+ir)\gamma(\frac{s}{2}-ir)\gamma(\frac{s}{2})^{2}}{\pi^{s}\zeta(2s)\gamma(s)}ds$ $= \frac{2}{\pi i \hat{\zeta}(1+2ir) ^{2}}\int_{(2)}B(s)ds$ (19) $B(s)= \frac{h(s)\zeta(s)^{2}\zeta(s+2ir)\zeta(s-2ir)\gamma(\frac{s}{2}+ir)\gamma(\frac{s}{2}-ir)\gamma(\frac{s}{2})^{2}}{\pi^{s}\zeta(2s)\gamma(s)}$ (20) $\Gamma$ ${\rm Re}(s)=1/2$ $H(\sigma+ir)$ $r$ (19) $s=1$
13 13 $F_{2}(r)= \frac{4{\rm Res}_{s=1}B(s)}{ \hat{\zeta}(1+2ir) ^{2}}+\frac{2}{\pi i \hat{\zeta}(1+2ir) ^{2}}\int_{(1/2)}B(s)ds+O(r^{-1})$. (21) $O(r^{-1})$ $s=1\pm 2ir$ $B(s)$ $tarrow\infty$ (21) $\zeta(\frac{1}{2}+ir)=o(r^{\frac{1}{6}+\epsilon})$ $,$ $B(s)$ $\zeta(s+2ir)\zeta(s-2ir)$ $\frac{2}{\pi i \hat{\zeta}(1+2ir) ^{2}}\int_{(1/2)}B(s)ds=O((r^{\frac{1}{3}+\epsilon})^{2}r^{-1/2})=O(r^{-\frac{1}{6}+\epsilon})$ $\epsilon$ ( ). (21) $s=1$ $G(s)= \frac{h(s)\zeta(s+2ir)\zeta(s-2ir)\gamma(\frac{s}{2}+ir)\gamma(\frac{s}{2}-ir)\gamma(\frac{s}{2})^{2}}{\pi^{s}\zeta(2s)\gamma(s)}$ $B(s)=\zeta(s)^{2}G(s)$ $2_{\gamma}$ $\zeta(s)$ $sarrow 1$ $\zeta(s)=\frac{1}{s-1}+\gamma+o(s-1) (sarrow 1)$. $B(s)$ $B(s)=( \frac{1}{s-1}+\gamma+o(s-1))^{2}(g(1)+g (1)(s-1)+O(s-1)^{3})$ $(s-1)^{-1}$ ${\rm Res}_{s=1}B(s)=2G(1)\gamma+G (1)$ $G$ ${\rm Res}_{s=1}B(s)=G(1)(2 \gamma+\frac{g }{G}(1))$ (22) 2 $\gamma=\lim_{narrow\infty}(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n)= \cdots$
14 14 $\frac{g }{G}(1)=\frac{H }{H}(1)+\frac{\zeta (1+2ir)}{\zeta(1+2ir)}+\frac{\zeta (1-2ir)}{\zeta(1-2ir)}$ $+ \frac{\gamma (\frac{1}{2}+ir)}{\gamma(\frac{1}{2}+ir)}+\frac{\gamma (\frac{1}{2}-ir)}{\gamma(\frac{1}{2}-ir)}+c.$ $C$ $r$ - $\triangleright\grave{}$ $\frac{\zeta (1+2ir)}{\zeta(1+2ir)}=O(\frac{\log r}{\log\log r})$ $\frac{\gamma }{\Gamma}(\frac{1}{2}+\dot{\iota}r)\sim\log r$ (22) $2\log r$ $G(1)= \frac{h(1) \zeta(1+2ir)\gamma(\frac{1}{2}+ir) ^{2}\Gamma(\frac{1}{2})^{2}}{\pi\zeta(2)}$ $= \frac{h(1)\pi \hat{\zeta}(1+2ir) ^{2}}{\zeta(2)}$ $= \frac{6}{\pi}h(1) \hat{\zeta}(1+2ir) ^{2}$ ${\rm Res}_{s=1}B(s)= \frac{6}{\pi}h(1) \hat{\zeta}(1+2ir) ^{2}(2\log r+o(\frac{\log r}{\log\log r}))$ (21) $\frac{4{\rm Res}_{s=1}B(s)}{ \hat{\zeta}(1+2ir) ^{2}}=\frac{48H(1)}{\pi}\log r+o(1)$. $H(1)= \int_{0}^{\infty}h(y)\frac{dy}{y^{2}}=\int_{m}f_{h}(z)\frac{dxdy}{y^{2}}$ ( )
15 15 3 $F$ $M$ $\int_{m}f(z)d\mu_{r}(z)\sim\frac{48}{\pi}(\int_{m}f(z)\frac{dxdy}{y^{2}})\log r (rarrow\infty)$. $O$ $F$ $\epsilon>0$ $\Vert G-F\Vert_{\infty}<\epsilon$ $G$ $G=G_{1}+G_{2}$ $G_{1}$ $G_{2}$ $G_{1}$ 1 $rarrow\infty$ $G_{2}$ 2 $H=G-F$ $rarrow\infty$ ( ) 1 $SL(2, \mathbb{z})$ $A$ $f_{a}$ $F(z)$ ( ) 1995 W. Luo and P. Sarnak: Quantum ergodicity of Eigenfunctions on $PSL_{2}(\mathbb{Z})/H_{2}$ Publications Mathematiques de L IHES 81 (1995) ( 14 ) 1
16 16 3. $\Gamma_{j}(j=1,2,3, \ldots)$ $SL(2, \mathbb{r})$ $H=\{x+iy y>0\}$ $M_{j}=\Gamma_{j}\backslash H$ $M_{j}$ $\varphi_{j}:m_{j}arrow M_{j+1}$ $f_{j}:m_{j}arrow \mathbb{c}$ $M_{j}$ $d\mu j$ $d \mu_{j}:= f_{j}(z) ^{2}dz, dz=\frac{dxdy}{y^{2}}$ 1( ) $f_{j}:m_{j}arrow \mathbb{c}$ (equidistributed) $A_{1},$ $B_{1}\subset M_{1}$ $\lim_{jarrow\infty}\frac{\int_{a_{j}}d\mu_{j}}{\int_{b_{j}}d\mu_{j}}=\frac{\int_{a_{1}}dz}{\int_{b_{1}}dz}$ $A_{j}=\varphi_{j-1}0\varphi_{j-2}\circ\cdots\circ\varphi_{1}(A_{1})$ 1
17 17 1( (Luo-Sarnak[4] 1995) ) $M_{j}=SL(2, \mathbb{z})\backslash H(\forall j=1,2,3, \ldots),$ $\varphi j$ $E(z, s)$ $SL(2, \mathbb{z})$ $\in \mathbb{r}$ $f_{j}(z)=e(z, \frac{1}{2}+it_{j})$ Koyama[1] 3 Truelsen [6] 2 ( (Lindenstrauss[3], Soundararajan[5]) ) 1 $M_{j},$ $M_{j}$ $\varphi J$ $0=\lambda_{0}<\lambda_{1}\leq$ $\lambda_{2}\leq\cdots$ $\lambda_{j}$ $f_{j}(z)(\vert f_{j}\vert_{2}=1)$ $f_{j}(z)$ $M$ ( Lindenstrauss Soundararajan 1 ) 3 ( (Koyama[2] 2009) $q_{1}=1$ $qj(j=2,3, \ldots)$ $M_{j}=\Gamma_{0}(qj)\backslash H$ $\pi J$ : $M_{j}arrow M_{1}$ $\psi_{j}$ : $M_{1}arrow M_{j+1}$ $\varphi_{j}:m_{j}arrow^{\pi_{j}}m_{1}arrow^{\psi_{j}}m_{j+1}$ $t\in \mathbb{r}$ $E_{q_{j},\nu_{j}}(z, s)$ $f_{j}(z)=e_{q_{j},\nu_{j}}(z, \frac{1}{2}+it)$ $\Gamma_{0}(qj)$ $vj$ $v_{j}$ 3 2 (S. Koyama and S. Nak jima) $q_{j}=j(j=2,3, \ldots)$ $M_{j}=\Gamma_{0}(qj)\backslash H$ $\psi_{j}$ : $\pi j$ : $M_{1}arrow M_{j+1}$ $M_{j}arrow M_{1}$ $\varphi_{j}:m_{j}arrow^{\pi_{j}}m_{1}arrow^{\psi_{j}}m_{j+1}$ $t\in \mathbb{r}$ $E_{q_{j},\nu_{j}}(z, s)$ $f_{j}(z)=e_{q_{j},\nu_{j}}(z, \frac{1}{2}+it)$ $\Gamma_{0}(qj)$ $\nu j$ $vj$
18 ( ) [1] S. Koyama: Quantum ergodicity of Eisenstein series for arithmetic 3-manifolds. Communications in Mathematical Physics 215 (2000), no. 2, [2] S. Koyama: Equidistribution of Eisenstein series in the level aspect. Commumications in Mathematical Physics 289 (2009), no. 3, [3] E. Lindenstrauss: Invariant measures and arithmetic quantum unique ergodicity. Annals of Mathematics 163 (2006) no. 1, [4] L. Wen Zhi and P. Sarnak: Quantum ergodicity $PSL_{2}(\mathbb{Z})\backslash H^{2}$ of eigenfunctions on. Inst. Hautes Etudes Sci. Publ. Math. 81 (1995) [5] K. Soundararajan: Quantum unique ergodicity $SL2(\mathbb{Z})\backslash H$ for. Annals of Mathematics 172 (2010) no. 2, [6] J.L. Truelsen: Quantum unique ergodicity of Eisenstein series on the Hilbert modular group over a totally real field. Forum Math. 23 (2011), no. 5.
DS II 方程式で小振幅周期ソリトンが関わる共鳴相互作用
1847 2013 157-168 157 $DS$ II (Takahito Arai) Research Institute for Science and Technology Kinki University (Masayoshi Tajiri) Osaka Prefecture University $DS$ II 2 2 1 2 $D$avey-Stewartson $(DS)$ $\{\begin{array}{l}iu_{t}+pu_{xx}+u_{yy}+r
チュートリアル:ノンパラメトリックベイズ
{ x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ
Toyo University 1 2 Toyo University Toyo University 3 2 5 201022 4 Toyo University Toyo University 5 6 Toyo University Toyo University 7 20 1 1 1 1 21 4 21 8 Toyo University Toyo University 9 10 Toyo University
$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)
$\mathrm{s}$ 1265 2002 209-219 209 DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ) (Jinghui Zhu) 1 Iiitroductioii (Xiamen Univ) $c$ (Fig 1) Levi-Civita
数理解析研究所講究録 第1977巻
1977 2015 33-44 33 Ding-Iohara-Miki modular double Yosuke Saito Osaka City University Advanced Mathematical Institute 2015 9 30 Ding-Iohara-Miki Ruijsenaars Ding-Iohara-Miki Ding-Iohara-Miki modular double
2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c
GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,
k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+
1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)
330
330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1
cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1
1398 2004 137-148 137 cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 W. Kohnen } $SL_{2}(\mathbb{Z})$ 1 1 2 1 1 1 \sigma
第86回日本感染症学会総会学術集会後抄録(II)
χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α
(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1
1040 1998 143-153 143 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [31 8 10 11] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$
381
P381 P386 P396 P397 P401 P423 P430 P433 P435 P437 P448 P451 P452 381 382 383 384 385 3.0mm 5.0mm 3.0mm 5.0mm SK SK3.0mm SK5.0mm 3.0mm PUR PUR3.0mm 2.0mm 2.0mm3.0mm 2.5mm 2.5mm3.0mm 3.0mm 5.0mm 3.0mm 1.8mm
105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2
1155 2000 104-119 104 (Masatake Mori) 1 $=\mathrm{l}$ 1970 [2, 4, 7], $=-$, $=-$,,,, $\mathrm{a}^{\mathrm{a}}$,,, $a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (11), $z=\alpha$ $c_{0}+c_{1}(z-\alpha)+c2(z-\alpha)^{2}+\cdots$
24.15章.微分方程式
m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt
第85 回日本感染症学会総会学術集会後抄録(III)
β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ
Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo
Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,
CRA3689A
AVIC-DRZ90 AVIC-DRZ80 2 3 4 5 66 7 88 9 10 10 10 11 12 13 14 15 1 1 0 OPEN ANGLE REMOTE WIDE SET UP AVIC-DRZ90 SOURCE OFF AV CONTROL MIC 2 16 17 1 2 0 0 1 AVIC-DRZ90 2 3 4 OPEN ANGLE REMOTE SOURCE OFF
数理解析研究所講究録 第1908巻
1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$
Painlev\ e V Yang-Mills (Tetsu MASUDA) 1 Yang-Mills (ASDYM ), $\partial_{z}a_{w}-\partial_{w}a_{z}+[a_{z},a_{w}]=0$, $\partial_{\ov
1650 2009 59-74 59 Painlev\ e V Yang-Mills (Tetsu MASUDA) 1 Yang-Mills (ASDYM ) $\partial_{z}a_{w}-\partial_{w}a_{z}+[a_{z}a_{w}]=0$ $\partial_{\overline{z}}a_{\overline{u}}$ $-\partial_{\overline{w}}a_{\dot{z}}+[a_{\overline{z}}
一般演題(ポスター)
6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A
Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ
Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R
日本糖尿病学会誌第58巻第1号
α β β β β β β α α β α β α l l α l μ l β l α β β Wfs1 β β l l l l μ l l μ μ l μ l Δ l μ μ l μ l l ll l l l l l l l l μ l l l l μ μ l l l l μ l l l l l l l l l l μ l l l μ l μ l l l l l l l l l μ l l l l
FR 34 316 13 303 54
FR 34 316 13 303 54 23 ( 1 14 ) ( 3 10 ) 8/4 8/ 100% 8 22 7 12 1 9 8 45 25 28 17 19 14 3/1 6/27 5000 8/4 12/2930 1 66 45 43 35 49 25 22 20 23 21 17 13 20 6 1 8 52 1 50 4 11 49 3/4/5 75 6/7/8 46 9/10/11
PowerPoint プレゼンテーション
0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)
1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b
1000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 SL 1000 1000 1000 1000 1000 1000 1000 1000 1000 ( 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
2013 5
12 (SL) (L) (SL) 2013 5 5 29 () 4 ( ) 7 17 20 ( ) 2 14. 4.17 14. 5. 1 14. 5.22 14. 6. 5 14. 4.17 14. 5. 1 14. 5. 8 14. 5.22 14. 4.17 14. 5. 1 14. 5.22 14. 6. 5 4 10 7 7 10 7 31 8 14.4.10 14.7.10 14.7.31
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ
2 / 37
INTA No.00149 1 / 37 2 / 37 3 / 37 4 / 37 5 / 37 6 / 37 7 / 37 8 / 37 9 / 37 10 / 37 11 / 37 12 / 37 13 / 37 14 / 37 15 / 37 16 / 37 17 / 37 18 / 37 19 / 37 20 / 37 21 / 37 November.2008 22 / 37 23 / 37
日本糖尿病学会誌第58巻第3号
l l μ l l l l l μ l l l l μ l l l l μ l l l l l l l l l l l l l μ l l l l μ Δ l l l μ Δ μ l l l l μ l l μ l l l l l l l l μ l l l l l μ l l l l l l l l μ l μ l l l l l l l l l l l l μ l l l l β l l l μ
NetR36_CD01-CD24_190512A.indd
36 Vol. 63 0 553 29 0 7 51 5129 5130 51 51 5133 5134 5158 9 515898 555 515911 5 515912 30 515915 5 515916 5 60-600017 24 600018 24 600019 24 600020 24 600070 24 6000 24 600072 24 6000 24 600129 24 600181
204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047
9 π 046 Vol.69-1 January 2016 204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 β γ α / α / 048 Vol.69-1 January 2016 π π π / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 049 β 050 Vol.69-1
曲面のパラメタ表示と接線ベクトル
L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =
Series
5 1000 3000 5000 R 3000 1000 5000 C D 683 1000 3000 5000 Series 1000 1000 3000 5000 3000 5000 1000 3000 5000 684 685 1000 3000 5000 Series A B ØØ ØØ ØØ Ø R C D 1000 3000 5000 Series 1000 3000 5000 DXT170
P1-1 P1-2 P1-3 P1-4 P1-5 P1-6 P3-1 P3-2 P3-3 P3-4 P3-5 P3-6 P5-1 P5-2 P5-3 P5-4 P5-5 P5-6 P7-1 P7-2 P7-3 P7-4 P7-5 P7-6 P9-1 P9-2 P9-3 P9-4 P9-5 P9-6 P11-1 P11-2 P11-3 P11-4 P13-1 P13-2 P13-3 P13-4 P13-5
受賞講演要旨2012cs3
アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α
