薄板プレス成形の高精度変形解析手法と割れ予測

Similar documents
電子部品はんだ接合部の熱疲労寿命解析

Journal of Japan Institute of Light Metals, Vol. 58, No. 2 (2008), pp

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

Computer Simulation in Thermoplastic Injection Molding Takaaki Matsuoka Toyota Central Research and Development Laboratories, Inc. 41-1, Yokomichi, Na

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

A2, Vol. 69, No. 2 Vol. 16, I_237-I_246, Analytical Investigation of Shear Force Distribution of Perfobond Strip with Plural Perforations * ** *

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

untitled

untitled

6) , 3) L60m h=4m 4m φ19 SS400 σ y = kn/mm 2 E = 205.8kN/mm 2 Table1 4) 7 Fig.1 5 7) S S 2 5 (Fig.2 ) ( No.1, No.2, No.3, No.4)

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

燃焼圧センサ

untitled

untitled

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki M

塗装深み感の要因解析

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

JFE.dvi

日立金属技報 Vol.34

1..FEM FEM 3. 4.

Microsoft Word - 予稿集表紙.doc

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Fig. 1. Relation between fatigue crack propagation rate and stress intensity factor range. Fig. 2. Effect of stress ratio on fatigue crack opening rat

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

r z m ε r ε θ z rθ

Steel Construction Vol. 6 No. 22(June 1999) Engineering

特-3.indd

n-jas09.dvi

X-Ray Investigation on the Residual Stress of Metallic Materials (On the Residual Stress of Stretched Carbon Steel) by Shuji TAIRA and Yasuo YOSHIOKA

Al-Si系粉末合金の超塑性

0801391,繊維学会ファイバ12月号/報文-01-西川

.I.v e pmd

Study on Fracture Strength Assessment (The 1st Report) Comparison of JWES approach and R6 approach by Susumu Machida, Member Yukito Hagiwara, Member H

Fig. 1 Sampling positions from the ingot. Table 2 Chemical compositions of base metal (%) Fig. 2 (unit: mm) Shape and size of fatigue test specimen. T

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

Microsoft PowerPoint - ’Ý„v„¤‰ƒ›ï.ppt

013858,繊維学会誌ファイバー1月/報文-02-古金谷

Effect of Autofrettage on Fatigue Crack Growth Rate for High Pressure Reactors For high pressure reactor vessels such as for polyethylene production,

A Practical Calculating Method on Spring Characteristics and Stresses of Coiled Wave Springs Hideki TAKAHASHI, Naoko KAWAMURA, Takahiko KUN

untitled

J. Jpn. Inst. Light Met. 64(8): (2014)

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP


Vol. 16 ( ), No JASCOME INDIVIDUAL IDENTIFICATION OF CONTACT PRESSURE DISTRIBUTION OF INNER AND OUTER BRAKE PAD USING INVERSE ANALYS

080 vol.128 No :00 10: AE 2 10:35 12: A Study on Stress occurri

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

Qx-Qy2 cbmo=arctanv ax=-arctanzzxylay=ax+ r am-(ax+a) RS-1ksineccosImo2S(sin-sinmo)2 RT-ks sin bsincbmosin -sin qs mo Rc-1sinsinImodam2sin-sinoUm dys=

ON STRENGTH AND DEFORMATION OF REINFORCED CONCRETE SHEAR WALLS By Shigeru Mochizuki Concrete Journal, Vol. 18, No. 4, April 1980, pp. 1 `13 Synopsis A

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

鉄鋼協会プレゼン

Transactions of JSCES, Paper No Development of Shell Element with Thickness Stretch Takeki YAMAMOTO, Takahiro YAMADA, and Kazumi MATSUI

ステンレス鋼用高性能冷間鍛造油の開発

LOL ONNRION RRISIS OF RQUK RSPONS OF KO ROUN akashi kiyoshi, ept. o ivil ngrg., Kumamoto Univ., Kunihiko Fuchida, ept.

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Title インジウムを添加した Ag-Au-Cu-Pd 系合金の物性 Author(s) 時崎, 照彦 ; 服部, 雅之 ; 小田, 豊 Journal 歯科材料 器械, 26(5-6): URL Right Post

Photo. 1. Scale banding in roughing mill work roll. Photo. 2. Etched micro-structure of alloyed grain iron roll. Photo. 3. Etched micro-structure of a

Quantitative Relationship between SAR and Temperature Rise inside Eyeball in a Realistic Human Head Model for 1.5 GHz-Microwave Exposure Kiyofumi Taka

K02LE indd

0801297,繊維学会ファイバ11月号/報文-01-青山

Research Reports on Information Science and Electrical Engineering of Kyushu University Vol.11, No.1, March 2006 Numerical Analysis of Scattering Atom


技術研究所 研究所報 No.80

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

(43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND

Journal of Textile Engineering, Vol.53, No.5, pp

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

Key Words: average behavior, upper and lower bounds, Mori-Tanaka theory, composites, polycrystals

Study on Imaging and Strain Mapping in the Vicinity of Internal Crack Tip Using Synchrotron White X-Ray

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Template For The Preparation Of Papers For On-Line Publishing In JSME

r 0 r 45 r 90 F 0 n

Fig. 1 Experimental apparatus.

浜松医科大学紀要


T05_Nd-Fe-B磁石.indd

力学的性質

Keywords: corotational method, Rigid-Bodies-Spring model, accuracy, geometrical nonlinearity

-37-

Corrections of the Results of Airborne Monitoring Surveys by MEXT and Ibaraki Prefecture

P036-P041

”R„`‚å−w‰IŠv†^›¡‚g‡¾‡¯.ren

技術研究報告第26号

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li

Steel Construction Engineering Vol.3 No.12(December 1996)

Transcription:

Finite Element Simulation of Deformation and Breakage in Sheet Metal Forming Noritoshi Iwata, Masao Matui 3 4J2G Stören & Rice FEM In the analysis of sheet metal forming, constitutive equations are examined for the prediction of breakage strains. Breakage initiation is numerically evaluated by Gotoh's method in which the onset of the localized necking is adopted as a breakage condition. The commercial elastic-plastic FEM code is improved by using J2-Gotoh's corner theory and biquadratic anisotropic yield function. The evaluation function for breakage is also introduced into this code. The friction coefficient on dies are measured by a model test, and the actual pressure distribution on the blank-holder is considered. The square-cup drawing process is numerically analyzed using the improved code. Numerical results with respect to the distribution of displacement and strain along the die surface, the punch load, the breakage location, and the punch stroke at the onset of breakage are in good agreemen with the experimental results. The ring-shaped cup press working process is also numerically analyzed. The yield function is modified so as to consider the effect of the pressure on breakage. Numerical results for the strain, the breakage site, and the breakage depth are in good agreement with the experimental results. R&D Vol. 32 No. 1 ( 1997. 3 )

CAD ( computer aided design ) / CAE ( computer aided engineering ) CAE 2 ) ) FEM ) ) FEMJNIKE3D 20% FEM FEM FEMJNIKE3D JNIKE3D von MisesJ2F An example of mechanical properties of mild steel sheet ( thickness:t = 0.7mm ). Tensile direction α / Yield stress σy / MPa Tensile stress Ts / MPa Total elongation δ / % n-value r-value 0 158 300 55.6 0.231 2.14 45 172 314 44.6 0.218 1.53 90 168 303 50.2 0.221 2.47 mean 168 308 48.8 0.222 1.92 R&D Vol. 32 No. 1 ( 1997. 3 )

Uniaxial yield stressσ /MPa r-value Hill2 4 Hill Bassani ) FEM Hill24 15% r 42 4 4 (1) 4 φ *4 = σ *4 = σ 4 X 2.77σ 3 Xσ Y + 3.96σ 2 Xσ 2 Y 2.76σ X σ 3 Y + 0.974σ 4 Y + ( 5.79σ 2 X 7.32σ X σ Y + 6.19σ 2 Y ) τ 2 XY + 8.87τ 4 XY(1) J2G 4J2G (14) (2) φ *4 = σ 4 = σ 4 X + A 2 σ 3 Xσ Y + A 3 σ 2 Xσ 2 Y + A 4 σ X σ 3 Y + A 5 σ 4 Y + ( A 6 σ 2 X + A 7 σ X σ Y + A 8 σ 2 Y )τ 2 XY + A 9 τ 4 XY 2 ( σ 3 X + σ 3 Y)σ' Z + 3(σ 2 X + σ 2 Y)σ' 2 Z 2( σ X + σ Y ) σ' 3 Y + σ' 4 Zσ' Z = σ Z / X (2) A 2 A 9 X =2 Biquadratic Old Hill's Experimental 2.4 r-value 400 2.0 380 360 σ 1.6 0 30 60 90 Tensile direction in degree from roll direction Uniaxial yield stress and r-value at nominal strain 15% ( experiment and theory ). Model test for friction condition in deep drawing. R&D Vol. 32 No. 1 ( 1997. 3 )

(1) (2) FEM J2F 4 J2G Stören & Rice ( ) ( ) J2G g ( g 1 g 2 ) 4 (3) Ag 4 1 + Bg 3 1 g 2 + Cg 2 1 g 2 2 + Dg 1 g 3 2 + Eg 4 2 = 0 (3) AE 4 (3) ( ) Table 1 0.7mm ( SPCD ) 8 ( ) JIS5 σ ε p Swiftσ ε ε p n Fig. 2 F : Punch force P : Blankhold Punch(150150) force(80kn) P Blank holder Die Blank(340340) Conditions of square-cup drawing. Friction coefficient measured by model test. Part of tool Flange Die shoulder Punch shoulder Friction coefficient 0.14 0.23 0.20 h : Punch travel R&D Vol. 32 No. 1 ( 1997. 3 )

Pressure p / MPa Fig. 4 h = 25mm 20mm 20mm25mm 0.013mm : p = k ( t t min ) (4) Y p / MPa 0-1 1-2 2-3 3 - t : t min : t max 0.013mm k : Fig. 6(a)h = 25mm Fig. 6(b) h = 34.5mm 4J2G 4J2F von Mises O X Pressure distribution on blank-holder in square-cup drawing ( h = 25mm ). h = 25mm 3 2 1 0 0.68 0.7 Thickness / mm (b) h=34.5mm Relationship between sheet thickness and pressure on blank-holder in square-cup drawing. Calculated distribution of thickness strain in square-cup drawing. R&D Vol. 32 No. 1 ( 1997. 3 )

Punch load F / kn J2F25mm 150 100 50 Relationship between punch load and. punch travel in square-cup drawing ( Y.F. : Yield function, C.E. : Constitutive equation ). Y. F. C. E. Biquadratic J2G Biquadratic J2F von Mises J2F Experimental 0 10 20 30 Punch travel h / mm Fig. 6 ε r h34.5mm von Mises L 0 = 95mm ε r 1.4100L 0 140mm 4J2GJ2F von Mises 130 L 0 160mm ε t von Mises L 0 = 95mm ε t 1.5 40L 0 100mm 4 J2GJ2Fvon Mises 40L 0 70mm J2GJ2F ε r Original distance from center L 0 / mm Thickness strain t ε t 0.1 0-0.1-0.2-0.3-1.5 h=34.5mm Punch 80 50 100 L 0 120 Die Y. F. Biquadratic Biquadratic von Mises Experimental 100 150 200 Original distance from center L 0 / mm C. E. J2G J2F J2F Meridional strain distribution along diagonal direction in square-cup drawing. Thickness strain distribution along diagonal direction in square-cup drawing. R&D Vol. 32 No. 1 ( 1997. 3 )

140 420 Rolling direction 4 (a) 33.5mm Fig. 10(b) ( : 35mm ) 14 Fig. 10(b) 1mmFig. 10 φ37mm64mm ( Y ) 10mm65mm Picture of specimen after ring-shaped cup press working. 420 Y A La 150 X Notch Breakage position in square-cup drawing. Geometry of specimen in ring-shaped cup press working. R&D Vol. 32 No. 1 ( 1997. 3 )

2mm 590MPaJIS13B 0mm ( Fig. 11 ) 1/4 ( 2 1/2 JIS13B Swiftσ ε ε p n 4 (2)4 X ( 2 1 ) 2r Mechanical properties of workpiece in ringshaped cup press working. Tensile Yield Tensile Total direction stress stress elongation α / σy / MPa Ts / MPa δ / % n-value r-value 0 435 585 27.0 0.157 0.758 45 437 568 28.3 0.154 1.415 90 465 604 27.3 0.142 1.144 mean 443 582 27.7 0.152 1.183 A half section of press working in ring-shaped cup press working. Initial pressure distribution on inner blankholder in ringshaped cup press working. R&D Vol. 32 No. 1 ( 1997. 3 )

Thickness strain ( ) S = 40mm ( B ) Fig. 12XA 40mm 20 30mm Fig. 11La = 19mm A A A Fig. 11 ( 40mm ) 37mm 1mm 0.0 0.1 0.2 0.3 0 h = 40mm Necking 25 50 75 100 La: Arc from point A / mm Calculation, S=20mm Calculation, S=30mm Calculation, S=40mm Experimental, S=20mm Experimental, S=30mm Experimental, S=40mm 125 150 Thickness strain around inner edge ringshaped cup press working. Thickness strain distribution in ring-shaped cup press working ( h : punch travel ). Calculated location of breakage intiation in ring-shaped cup press working ( h = 36mm ). R&D Vol. 32 No. 1 ( 1997. 3 )

(3) ( ) 4 11.5mm 32mm 1/10 FEM ()1 Punch travel of breakage initiation in ringshaped cup press working. Out-plane stress Punch travel Calculation Neglected 32.0 Calculation Considered 36.0 Experiment ----------- 37.0 1),, :, -275(1983), 1282 2),, :, (1995), 62 3),, :, (1992), 97 4),,, :, -63(F)(1993), 113 5), :, -340(1989), 625 6) Nakamachi, E. and Wagoner R. H. : SAE Tech. Pap. Ser., No. 880528(1988), 12p. 7) Proc. of NUMISHEET'93, Ed. by Makinouchi, A., Nakamachi, E., Onate, E. and Wagoner, R. H., (1993) 8) : A, -458 (1984), 1753 9) Hill, R : Plasticity, (1950), 317, Oxford. 10) :, -208(1978), 377 11) Hill, R : Math. Proc. Camb. Phil. Soc., (1979), 179 12) Bassani, J. L. : Int. J. Mech. Sci., (1977), 651 13) :, -210(1978), 599 14) Gotoh, M. : Int. J. Solids & Struct., -11(1985), 1101 15) Duncan, J., Shabel, B. S., Gerbase Filho, J. : SAE Tech. Pap. Ser. No.780391(1978). 16) : A, -437(1982), 92 17) Stören, S., Rice, J. R. : J. Mech. & Phys. Solids, -6 (1975), 42 18),, :, -381 (1992), 1202 R&D Vol. 32 No. 1 ( 1997. 3 )