* (Shingo Iwami) Department of Mathematical Sciences, Osaka Prefecture University, Japan (Jyunya Mikura) Department of Science,

Similar documents
一般演題(ポスター)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

生活設計レジメ

I II III 28 29


jigp60-★WEB用★/ky494773452500058730

プログラム



ii

i


Wide Scanner TWAIN Source ユーザーズガイド

○広島大学職員任免規則\(案\)

○広島大学船員就業規則

第1部 一般的コメント

第1章 国民年金における無年金

untitled

表1票4.qx4

福祉行財政と福祉計画[第3版]

橡ミュラー列伝Ⅰ.PDF

1 (1) (2)

- 2 -


PR映画-1

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル




1

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

provider_020524_2.PDF

「産業上利用することができる発明」の審査の運用指針(案)

:

兵庫県立大学学報vol.17

第89回日本感染症学会学術講演会後抄録(I)



178 5 I 1 ( ) ( ) ( ) ( ) (1) ( 2 )

[ ]{木山(判例)}(責)魏.indd

untitled

ron04-02/ky768450316800035946


SARS %,

プログラム 3日目:11月16日(日曜日)

0428_HP用.pdf


ii

untitled

i

AccessflÌfl—−ÇŠš1

2

CONTENTS N T


スポーツ科学 20年度/01 目次





yakuri06023‡Ì…R…s†[

RGR22737_6150.pdf


CSR レポート 2009

規定/規定

日本呼吸器学会雑誌第49巻第4号


プラズマ・核融合学会



日本内科学会雑誌第98巻第3号

名大_医学部保健学科年報第8巻/巻頭

ito.dvi


日本糖尿病学会誌第58巻第3号

86 7 I ( 13 ) II ( )

入門ガイド

H19国際学研究科_02.indd

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

1

/‚“1/ŒxŒ{‚×›î’æ’¶

(2-3)CyberSpace

凡友83号.indd

凡友86号.indd

SC-85X2取説


<4D F736F F F696E74202D C835B B E B8CDD8AB B83685D>


生物資源学2017/表紙

2009年度 東京薬科大学 薬学部 授業計画

untitled

表紙PDF作成用/PDF表紙作成用

II II,,,, AII BII CII

参加報告書

P70

untitled

日本糖尿病学会誌第58巻第2号


診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o

Transcription:

1556 2007 112-122 112 * (Shingo Iwami) Department of Mathematical Sciences Osaka Prefecture University Japan (Jyunya Mikura) Department of Science Hiroshima University Japan (Yukihiko Nakata) Department of Mathematical Sciences Waseda University Japan (Hiroko Okouchi) School of Pharmacy Tokyo University of Pharmacy and Life Science Japan SIR Keywo \gamma &: 1 SIR 18 1940 1980 SARS shingo@msosakafu-uacjp

113 1927 Kermack-McKendrick $S =-\beta SI$ $I =\beta SI-\gamma I$ $R =\gamma I$ 1905 12 17 1906 7 21 (Susceptible) $S$ (Infected) $I$ $R$ (Recovered) (S)\rightarrow (I)\rightarrow $(R)$ Kermack-McKendrick SI $R$ Kermack-McKendrick $I$ Kermack-McKendrick 1976 Hethcote Kermack- McKendrick Hethcote SI $R$ $S =b-\beta SI-\mu S$ $I =\beta SI-\gamma I-\mu I$ $I$ $=\gamma I-\mu R$ Kermack-McKendrick SI $R$ SI 2 $R$ $E_{0}$ $E_{+}$ $E_{0}=( \frac{b}{\mu}00)$ $E_{+}=( \frac{\gamma+\mu}{\beta}\frac{b}{\mu+\gamma}-\frac{\mu}{\beta}$ $\frac{\gamma}{\mu}$ ($\frac{b}{\mu+\gamma}$ $)$ $\frac{\mu}{\beta}$) SI $R$ Kermack-McKendrick SI $R$ $\mathcal{r}_{0}=\frac{b\beta}{\mu(\gamma+\mu)}$ $\mathcal{r}_{0}\leq 1$ $E_{0}$ $\mathcal{r}_{0}>1$ $E_{+}$

$\mathcal{r}_{0}\leq 1$ 114 $0$ $>1$ $b/(\mu+\gamma)-\mu/\beta$ $\mathcal{r}_{0}$ 2 1981 AIDS HIV $S_{1\text{ }}I_{1\text{ }}S_{2\text{ }}$ $I_{2}$ Sj $j(j=12)$ 2 2 1 5 1:

115 21 2 ( $1(i)$ ) 2 2 $Os_{1}$ $Os_{2}$ $\downarrow$ 1 $OI_{1}$ $OI_{2}$ 2: : : $S_{1} =b_{1}-\mu_{1}s_{1}-\beta_{1}s_{1}i_{1}$ $I_{1} =\beta_{1}s_{1}i_{1}-\alpha_{1}i_{1}$ $S_{2} =b_{2}-\mu_{2}s_{2}-\beta_{2}s_{2}i_{2}$ (1) $I_{2} =\beta_{2}s_{2}i_{2}-\alpha_{2}i_{2}$ $S_{1\text{ }}I_{1}$ $S_{2\text{ }}I_{2}$ (1) 2 : $E_{0}=(\overline{S}_{1}0\overline{S}_{2}0)$ $E_{+}=(S_{1}^{+} I_{1}^{+} S_{2}^{+}I_{2}^{+})$ $E_{0}$ $E_{+}$ $S_{j}^{+}(j=12)$ $S_{1}= \frac{\alpha_{1}}{\beta_{1}}$ $S_{1}= \frac{b_{1}}{\mu_{1}}$ (2) $S_{2}= \frac{\alpha_{2}}{\beta_{2}}$ $S_{2}= \frac{b_{2}}{\mu_{2}}$ ) 2 ( 2 $\bullet$ $\blacksquare$ $I_{1\text{ }}I_{2}$ 1 2 $R_{1}= \frac{b_{1}\beta_{1}}{\mu_{1}\alpha_{1}}$ $R_{2}= \frac{b_{2}\beta_{2}}{\mu_{2}\alpha_{2}}$

116 (1) $R_{1\text{ }}R_{2}$ [1] 22 I ( l(ii)) $m$ lhrrvan 3: : I : [2] 3 $S_{1} =b_{1}-\mu_{1}s_{1}-\beta_{1}s_{1}i_{1}$ $I_{1} =\beta_{1}s_{1}i_{1}-\alpha_{1}i_{1}$ $S_{2} =b_{2}-\mu_{2}s_{2}-\omega_{1}s_{2}i_{1}$ (3) $I_{2} =w_{1}s_{2}i_{1}-\alpha_{2}i_{2}$ (3) 2 : $E_{0}=(\overline{S}_{1}0\overline{S}_{2}0)$ $E+=(S_{1}^{+} I_{1}^{+} S_{2}^{+}I_{2}^{+})$ $E_{0}$ $\overline{s}_{j}$ $E+$ $S_{j}^{+}(j=12)$ $S_{1}= \frac{\alpha_{1}}{\beta_{1}}$ $S_{1}= \frac{b_{1}}{\mu_{1}}$ (4) $S_{1}= \frac{b_{1}}{\mu_{1}}-\frac{\alpha_{1}}{\mu_{1}\omega_{1}}\frac{b_{2}-\mu_{2}s_{2}}{s_{2}}$

117 $I_{1}$ ( 3 $\bullet$ ) 1 $R_{1}= \frac{b_{1}\beta_{1}}{\mu_{1}\alpha_{1}}$ (3) $R_{1}$ [2] 23 II ( l(iii)) $m$ bmrn 4: : II : SARS 4 $S_{1} =b_{1}-\mu_{1}s_{1}-\beta_{1}s_{1}i_{1}$ $I_{1} =\beta_{1}s_{1}i_{1}-\alpha_{1}i_{1}$ $S_{2} =b_{2}-\mu_{2}s_{2}-\beta_{2}s_{2}i_{2}-\omega_{1}s_{2}i_{1}$ (5) $I_{2} =\beta_{2}s_{2}i_{2}+\omega_{1}s_{2}i_{1}-\alpha_{2}i_{2}$ (5) 2 : $E_{0}=(\overline{S}_{1}0\overline{S}_{2}0)$ $E_{+}=(S_{1}^{+} I_{1}^{+} S_{2}^{+}I_{2}^{+})$

118 $E_{0}$ $\overline{s}_{j}$ $E+$ $S_{j}^{+}(j=12)$ $S_{1}= \frac{\alpha_{1}}{\beta_{1}}$ $S_{1}= \frac{b_{1}}{\mu_{1}}$ (6) $S_{1}= \frac{b_{1}}{\mu_{1}}-\frac{\alpha_{1}}{\mu_{1}w_{1}}\frac{b_{2}-\mu_{2}s_{2}-\beta_{2}s_{2^{\frac{b_{2}-\mu_{2}s_{2}}{\alpha_{2}}}}}{s_{2}}$ ( 4 $\bullet$ ) $O$ $\mathbb{r}_{+}^{4}$ $I_{1\text{ }}I_{2}$ $1_{\backslash }$ 2 $R_{1}= \frac{b_{1}\beta_{1}}{\mu_{1}\alpha_{1}}$ $R_{2}= \frac{b_{2}\beta_{2}}{\mu_{2}\alpha_{2}}$ (5) 24 2 ( 1(iv)) $vm$ Huwn 5: : : 5

119 $S_{1} =b_{1}-\mu_{1}s_{1}-w_{2}s_{1}i_{2}$ $I_{1} =\omega_{2}s_{1}i_{2}-\alpha_{1}i_{1}$ $S_{2} =b_{2}-\mu_{2}s_{2}-\omega_{1}s_{2}i_{1}$ (7) $I_{2} =w_{1}s_{2}i_{1}-\alpha_{2}i_{2}$ (7) 2 : $E_{0}=(\overline{S}_{1}0\overline{S}_{2}0)$ $E_{+}=(S_{1}^{+}I_{1}^{+} S_{2}^{+}I_{2}^{+})$ $E_{0}$ $\overline{s}_{j}$ $E+$ $S_{j}^{+}(j=12)$ $S_{1}= \frac{b_{1}}{\mu_{1}}-\frac{\alpha_{1}}{\mu_{1}w_{1}}\frac{b_{2}-\mu_{2}s_{2}}{s_{2}}$ (8) $S_{2}= \frac{b_{2}}{\mu_{2}}-\frac{\alpha_{2}}{\mu_{2}\omega_{2}}\frac{b_{1}-\mu_{1}s_{1}}{s_{1}}$ $I_{1}$ ( 5 $\bullet$) $I_{2}$ 2 [3] $R_{12}=\sqrt{\frac{b_{1}b_{2}w_{1}w_{2}}{\mu_{1}\mu_{2}\alpha_{1}\alpha_{2}}}$ (7) 25 $r$ 2 ( $1(v)$ ) HIV 6

120 Femele Md$\bullet$ 6: : : $S\text{\ {i}}=b_{1}-\mu_{1}s_{1}-\beta_{1}s_{1}i_{1}-w_{2}s_{1}i_{2}$ $I_{1} =\beta_{1}s_{1}i_{1}+w_{2}s_{1}i_{2}-\alpha_{1}i_{1}$ $S_{2} =b_{2}-\mu_{2}s_{2}-\beta_{2}s_{2}i_{2}-w_{1}s_{2}i_{1}$ (9) $I_{2} =\beta_{2}s_{2}i_{2}+w_{1}s_{2}i_{1}-\alpha_{2}i_{2}$ (9) 2 : $E_{0}=(\overline{S}_{1}0\overline{S}_{2}0)$ $E_{+}=(S_{1}^{+} I_{1}^{+} S_{2}^{+}I_{2}^{+})$ $\overline{s}_{j}$ $E_{0}$ $E_{+}$ $S_{j}^{+}(j=12)$ $S_{1}= \frac{b_{1}}{\mu_{1}}-\frac{\alpha_{1}}{\mu_{1}\omega_{1}}\frac{b_{2}-\mu_{2}s_{2}-\beta_{2}s_{2^{\frac{b_{2}-\mu_{2}s_{2}}{\alpha_{2}}}}}{s_{2}}$ (10) $S_{2}= \frac{b_{2}}{\mu_{2}}-\frac{\alpha_{2}}{\mu_{2}w_{2}}\frac{b_{1}-\mu_{1}s_{1}-\beta_{1}s_{1^{\frac{b_{1}-\mu_{1}s_{1}}{\alpha_{1}}}}}{s_{1}}$ ( 6 $\bullet$ ) $O$ $\mathbb{r}_{+}^{4}$ $I_{1}$ $I_{2}$ [3] 2 $R_{12}= \frac{b_{1}\beta_{1}}{\mu_{1}\alpha_{1}}+\frac{b_{2}\beta_{2}}{\mu_{2}\alpha_{2}}+\sqrt{(\frac{b_{1}\beta_{1}}{\mu_{1}\alpha_{1}}-\frac{b_{2}\beta_{2}}{\mu_{2}\alpha_{2}})^{2}+4\frac{b_{2}w_{1}}{\mu_{2}\alpha_{1}}\frac{b_{1}w_{2}}{\ovalbox{\tt\small REJECT}\mu_{1}\alpha_{2}}}2$ $\beta_{1}=\omega_{1}$ $\beta_{2}=w_{2}$ $R_{12}= \frac{b_{1}\beta_{1}}{\mu_{1}\alpha_{1}}+\frac{b_{2}\beta_{2}}{\mu_{2}\alpha_{2}}$ (9)

121 3 $S_{1\text{ }}S_{2}$ (i) (iii) $II$ $(v)$ $(i)>(iii)>(v)$ ( 7 ) (i) (iii) (v) 7: (1) 2 (i) $I$ (i) (ii) (iv) 8: (2) (ii) (iv) (i) ( 8 ) 2

122? [1] Shingo Iwami Tadayuki Hara Global property of an invasive disease with n- strains In Review [2] Shingo Iwami Yasuhiro Takeuchi Xianning Liu Avian-Human influenza epidemic model Mathematical Biosiences In Press [3] Pvan den Driessche and James Watmough (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Mathematical Biosciences 180 29-48