<4D F736F F D208F4390B38DC58F49938A8D6595A CA90858D48985F95B F8F43959C82B382EA82BD B5F2E646F6378>

Similar documents
NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M

倉田.indd

Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004

J. Jpn. Inst. Light Met. 65(6): (2015)


年次大会原稿最終.PDF

H10Masuki

Japanese Journal of Applied Psychology

perature was about 2.5 Ž higher than that of the control irrespective of wind speed. With increasing wind speeds of more than 1m/s, the leaf temperatu

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

Vol.1 No Autumn

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

P.1P.3 P.4P.7 P.8P.12 P.13P.25 P.26P.32 P.33

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

SURF,,., 55%,.,., SURF(Speeded Up Robust Features), 4 (,,, ), SURF.,, 84%, 96%, 28%, 32%.,,,. SURF, i

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

622 3) 4 6) ) 8) , ,921 40, ) ) 10 11) ) ) ,434 43, ,18

ron.dvi

連結.ren

塗装深み感の要因解析

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

SOM SOM(Self-Organizing Maps) SOM SOM SOM SOM SOM SOM i

kut-paper-template.dvi

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

untitled

hiroko_city_paper17_final.dvi

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

渡辺(2309)_渡辺(2309)

_14.indd

ODA NGO NGO JICA JICA NGO JICA JBIC SCP


_念3)医療2009_夏.indd

Microsoft Word - 15.宮崎貴紀子

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun

NINJAL Research Papers No.8

技術研究報告第26号

bc0710_010_015.indd

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu



立命館21_川端先生.indd

220 28;29) 30 35) 26;27) % 8.0% 9 36) 8) 14) 37) O O 13 2 E S % % 2 6 1fl 2fl 3fl 3 4

(1) (2) (3) (4) (5) 2.1 ( ) 2

Transcription:

,54,20102 CHARACTERISTICS OF COHERENT STRUCTURE IN COMPOUND OPEN CHANNEL FLOWS WITH DEEP FLOOD PLAIN DEPTH 1 2 3 Katsutoshi WATANABE, Yousuke TOKUMITSU, Haruka YOSHINAGA 1 745-8585 3538 2 3 733-0812 13-7-502 In this study, characteristics of coherent structure in one-sided compound open channel flows with deep flood plain depth are investigated using PTV (Particle Trucking Velocimetry) and fluorescent dye injection method. The velocity measurement results show that the relative high speed region is formed over the flood plain and large negative and positive value of Reynolds stress (- ) are generated in the vicinity of junction edge. The results of flow visualization indicate that large-scale streamwise vortices are formed over the junction edge and side wall surface for a long time period. The streamwise vortices formed over junction edge tend to develop toward water surface intermittently, and decreasing tendency of their mean inclination angle in the opposite side wall is observed. Furthermore, it is inferred that interaction between streamwise vortices formed over the junction edge and the one formed over the side wall play important role in generating characteristic velocity profiles. Key Words: compound open channel flow, coherent structure, streamwise vortex, secondary current, flow visualization techniques H D H/D1.5 H/D H/D LDVPIVH/D1.5 H/D <1.5 H/D>1.5 H/D=1.5 H/D<1.5 H/D=2 H/D Naot H/D=2

risevor tank H/D=1.25 H/D z x 1/1000 6015,1m 15cm,4cm8m. 4mm 3.2cm25cm. 5m PTVParticle Tracking Velocimetry 100m4 1KW 3mm 800 1000 honeycom Flow Flood plain PTV 15 60 pit pump unit(cm) Case (a) (b) y/h y/h H (cm ) B f (cm) Flow H SONY HDR-FX1000 PTV PTV 14401080 Flow PTV 601800 PTV 05 200cc 55cm DPTV (Dye-streak-pattern Particle Velocimetry) 1cm B D D (cm) H/D Um (cm/s) y H fp B f z Re (Um*H/v) Fr (Um/ gh) A 12 3 10.2 8887 94 B 12 3 5.7 6819 53 C 12 15 4 3 3.3 6211 3 D 8 2 5.7 5202 64 E 8 2 4.7 4390 53 z/h z/h

0 0 0 - -0 - -0 U/Umax= 0.95 0.90 0.80 0.70 0.60 0 0.30 - -5 0 5 0.10 0.15 0.20 2.00 1.75 1.50 1.25 0 0 0 - -0 - -0-0 0 0 - -0 - -0 - - U/Umax= 0.90 - - -2.0-5 - - -2.5-5 0 0 0 - -0 - -0 - H=8cmCase D 0.80 0.70 0.60 0 0 5 0.10 0.15 0.20 2.00 1.75 1.50 1.25 0 0 0 - -0 - -0-0.95 0.90 0.85 0.80 0.70 0.65 0.60 0 0.20 U/Umax= 0.90 H=12cmCase A - - 0 5 0.10 0.15 0.20 -uw/u max 2 (Umax =7.41cm/s) 2.00 1.75 1.50 1.25 0 0 0 - - -0 - -0 - -5-5 - - - - -5 =4Umax Umax=7.41cm/s 0 5 0.10 0.15 0.20 0.80 0.70 0.60 0 = 5Umax Umax=13.64cm/s 0 5 0.10 0.15 0.20 1.5 2.0 - - - - - - -uw/u max 2 (Umax =13.64cm/s) 0 5 0.10 0.15 0.20 H=8cmCase D H=12cmCase A H/D,H=8cmH8H=12cm H12 H8U V,W H12H8 U/U max 0.8 H=8cmCase E Flood plain :Water surface 5 0.10 0.15 0.20 :Wall surface H=12cmCase B H8

H=8cm Case E H=12cm Case B H12 H8 H12 H8 H8H12

TH 1mm H8 y=cm streak streak H12 H8 streak H8 H8 H12 H8 H8y=3.9cm H12y=7.9cm L z H83.7cm L z /B f =H1211.4cmL z /B f =0.76 H/D H121/3 1/6150 H8-39 42H12H81/2-19 29H12,H8 H/D

DPTV H/D H/D 20 C19560523: 17B,pp.665-679 1974 Sellin,R.H.J:A laboratory investigation into the flow in the channel of a river and over flood plain, La Houille Blanche,No.7,pp.22-26,1964. 411/II-12,pp63-72,1989. No.649/II-51,pp.1-15,2000 No.509/II- 30,pp.131-142,1995 No.565/II-39,pp.73-83,1997 No.515/II- 31,pp.45-54,1995 No.789/II-71,pp.27-36,2005 Jong, J., Choi, S.-U: Investigation of twin vortices near the interface in turbulent compound open-channel flows using DNS data, Journal of Hydraulic Enginnerig, vol.134, No.12, pp.1744-1766, 2008. Naot,D., Nezu,I., Nakagawa, H.: Calculation of compound open channel flow, J. Hydraulic Engineering.,ASCE,119(12),pp.1418-1426,1993., 51pp.649-654,2007 53pp. 931-936,2009 No.593/II- 43,pp.31-40, 1998.,,, Vol. 62, No. 2, pp.186-200, 2006.