037310 医用画像‐32‐4/32‐4‐特集12‐一般総説‐守屋様

Similar documents
第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

06_学術_関節単純X線画像における_1c_梅木様.indd

Folie 1

880 臨床技術 Inversion Recovery T 1-3D Variable Refocus Flip Angle Turbo Spin Echo SPACE Black Blood Imaging 1 井上裕二 2 米山正己 2 中村理宣 尾崎 3 聡 3 伊藤建次郎 4 日浦幹夫 20

04_学術.indd

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

The Most Effective Exercise for Strengthening the Supraspinatus : Evaluation by Magnetic Resonance Imaging by TAKEDA Yoshitsugu and ENDO Kenji Departm

その他の脂肪抑制法 -Dixon法を中心に-

EVALUATION OF MAGNETIC RESONANCE IMAGING (MRI) IN DIAGNOSIS OF ACOUSTIC NEUROMA-COMPARATIVE STUDY WITH PLAIN X-RAY AND CTS- KIMIHISA NOMURA, M.D., MAK

43

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

2 94

高速撮像法の種類と使い方

1611 原著 論文受付 2009 年 6 月 2 日 論文受理 2009 年 9 月 18 日 Code No. 733 ピクセル開口率の向上による医用画像表示用カラー液晶モニタの物理特性の変化 澤田道人 石川晃則 1) 松永沙代子 1) 1) 石川陽子 有限会社ムツダ商会 1) 安城更生病院放射

<95DB8C9288E397C389C88A E696E6462>

Accuracy check of grading of XCT Report Accuracy check of grading and calibration of CT value on the micro-focus XCT system Tetsuro Hirono Masahiro Ni

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

知能と情報, Vol.30, No.5, pp

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

08医療情報学22_1_水流final.PDF

bosai-2002.dvi

理学療法検査技術習得に向けた客観的臨床能力試験(OSCE)の試行

1_2.eps

50-3ガイド10ポ.indd

202

2 The Bulletin of Meiji University of Integrative Medicine 3, Yamashita 10 11

パナソニック技報

817 原著 3D-FSE MRA 1 伊豆野勇太 4 野田誠一郎 2 肥合康弘 4 豊成信幸 2 米田哲也 5 酒本司 3 沖川隆志 6 市川和幸 3 太田雄 2 冨口静二 Code No Evaluation of the D

PowerPoint プレゼンテーション

<332D985F95B62D8FAC93638BA795DB90E690B62E706466>

02-Preface†i5†j

_念3)医療2009_夏.indd

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

untitled

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

223 ノート Code No. 500 立永 MR 1 謹 2 日浦友樹 3 川下郁生 1 大倉保彦 石田隆行 緒言 multiple sclerosis: MS MS 1 MR MS 2, 3 MR MS Development of a


06_学術_脱髄性疾患における_宮武様1c.indd

œ 58 / J JSCAS vol.2 no.2 Table 1 Patients' profile. IORT: intraoperative radiation therapy, PpPD: pylorus preserving pacreatoduodenectomy. Bypass: ga

Unknown

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004

日本感性工学会論文誌

Preoperative Evaluations for Traumatic Shoulder Instability due to the HAGL lesion or Capsular Tear on MR Arthrography NISHINAKA Naoya, TSUTSUI Hiroak

untitled


Vol. No. Honda, et al.,

スライド 1

622 3) 4 6) ) 8) , ,921 40, ) ) 10 11) ) ) ,434 43, ,18

07_学術_荷重位X線撮影法の違いによる_山口様.indd

頸部 PPllaaqquuee 性状評価 検討 Black Blood PPU M2D BB pulse delay

PowerPoint プレゼンテーション

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

The Journal of the Japan Academy of Nursing Administration and Policies Vol 7, No 2, pp 19 _ 30, 2004 Survey on Counseling Services Performed by Nursi

PowerPoint プレゼンテーション

Microsoft Word - 「黄砂とその健康影響について」小冊子180323版

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

A sensory testing of mental nerve by Semmes-Weinstein monofilaments standard value from 19 -A to 29 years old- The objective of the present study was

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

0401489‐工芸‐医用画像22‐1/12[論文]柳田

FUJII, M. and KOSAKA, M. 2. J J [7] Fig. 1 J Fig. 2: Motivation and Skill improvement Model of J Orchestra Fig. 1: Motivating factors for a

) 5 Lawton QOL 4 4 QOL Lawton 4) Philadelphia Geriatric Center Affect Rating ScaleARS ARS QOL 5) HDS R

非造影MRA ~上肢~


学術大会プログラム_web用.indd

2 251 Barrera, 1986; Barrera, e.g., Gottlieb, 1985 Wethington & Kessler 1986 r Cohen & Wills,

0801297,繊維学会ファイバ11月号/報文-01-青山

0801391,繊維学会ファイバ12月号/報文-01-西川

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a

肺気腫の DUAL ENERGY CT像について

Core Ethics Vol.

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

総 説 6 6 PIMs P S J 7

- March

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R


X線分析の進歩36 別刷

PowerPoint プレゼンテーション

東洋医学雑誌

474 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No.3,.1..2* (,**0) 24 Measurement of Deterioration of Frying Oil Using Electrical Properties Yoshio

プラズマ核融合学会誌11月【81‐11】/小特集5

PowerPoint プレゼンテーション

I

PowerPoint プレゼンテーション

連続講座 画像再構成 : 臨床医のための解説第 6 回 : 篠原広行 他 画像再構成 : 臨床医のための解説第 6 回胸部 腹部 MRA - 非造影 MRA を中心に - 篠原 広行 1) 小島慎也 2) 橋本雄幸 3) 2) 上野惠子 2) 1) 首都大学東京東京女子医科大学東医療センター放射線科

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

Table 1 Characteristics of the study participants in Imari municipal hospital

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2


620 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /0, No. +,, 0,* 0,1 (,**3) 14 Use of Rice Paste in Rice Bread Processing Yasuko Kainuma Keywords : rice,

% 1% SEM-EDX - X Si Ca SEM-EDX SIMS ppm % M M T 100 % 100 % Ba 1 % 91 % 9 % 9 % 1 % 87 % 13 % 13 % 1 % 64 % 36 % 36 % 1 % 34 46

4703ALL01

日本歯科放射線学会


Transcription:

606-0851 46-1 2 IVR 545-8585 1-4-3 920-0942 5 11 80 2015 9 28 2015 10 13 Magnetic resonance imaging of articular cartilage in the knee : morphological assessment Susumu MORIYA, RT, PhD., Yukio MIKI, MD, PhD., Tosiaki MIYATI, PhD, DMSc Ishikawa Clinic, 46-1 Shimokamo-Umenoki-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-0851, Japan. Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan. Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80, Kodatsuno, Kanazawa, 920-0942, Japan. Received on September 28, 2015. In final form on October 13, 2015 Abstract : Magnetic resonance imaging MRI has been the most important method for assessing knee cartilage in the past few decades. MRI has the merit of facilitating, through sequence selection and operations, visualization of the cartilage as areas of signal hyperintensity, as well as visualization with increased contrast between cartilage and synovial fluid. The objective of the present manuscript was to introduce the characteristics and diagnostic applications of sequences for observing the morphology of knee cartilage that are commonly used in routine MRI of the knee. Keywords : MRI, knee, cartilage, image-sequence, morphology [1] MRI 0.5 mm 3 2010 0.5 mm 3 8 7 [2] osteoarthritis OA 0.2 0.4 mm [3] T1 [5] T2 [5] PD [2] PD T1 [6] T1 T2 MRI [6] T1 2005 [7] 3D [8] xlii

3D SPGR 3D FLASH [12] SPGR GE FLASH Siemens T1-FFE Philips GRASS GE FFE Philips Fig.1 a T1 b T2 c d T1 a b c d T1 c d T1 MRI CHESS short-ti inversion recovery STIR water 2D 3 5 mm [9] 3D [10] 3D [10] excitation WE Iterative Decomposition of water/ fat using Echo asymmetry and Least-squares estimation IDEAL [13] CHESS [13] STIR SNR [13, 14] WE 3D [15] IDEAL [16] MRI [17] 3D 2 2 [11] Fig.2 a SPGR b FIESTA 3D [5]. Chemical Shift Selective fast-se TE 33 66 ms [5] T2 TE [5] 3D 3D-FSE [18-20] Vol.32 No.4 2015 xliii

Fig.3 a FSE PD b FSE T2 a b SPACE, GE 3D CUBE FSE T2 3D-FSE refocus pulse [18] 3D 3D-FSE SNR CNR [19] 3D-FSE 2D fat-saturated FSE [20] 3D Spoiled GRASS [3D SPGR] [5] [21, 22] [23, 24] [25] [1] [5] [5] SPGR IDEAL SNR [26] 3D DESS 3D-double echo steady state 2 2 T2* [27] [28] 3D DESS [29] [30] [31] [32] 3D DESS 2D 3D GRE [33] 3D DESS [29] 3D GRE [34] [5] Fig.5 a 40 3D-DESS b 90 3D-DESS a b Fig.4 SPGR SPGR bssfp balanced steady state free precessionssnr [35] true-fisp GE FIESTA blanced-ffe [36, 37] [38] 3D bssfp 2DFSE xliv

3D [39] [40] bssfp [41] IDEAL bssfp SNR [42] Fig.6 bssfp [ 1 ] Link TM, Stahl R, Woertler K : Cartilage imaging, motivation, techniques, current and future significance, Eur Radiol., 17 5, 1135-1146, 2007. [ 2 ] Friedrich KM, Reiter G, Kaiser B, et al. : High-resolution cartilage imaging of the knee at 3T, basic evaluation of modern isotropic 3D MR-sequences, Eur J Radiol., 78 3, 398-405, 2011. [ 3 ] Rubenstein JD, Li JG, Majumdar S, et al. : Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage, AJR., 169 4, 1089-1096, 1997. [ 4 ] Bitar R, Leung G, Perng R, et al. : MR pulse sequences, what every radiologist wants to know but is afraid to ask, Radiographics., 26 2, 513-537, 2006. [ 5 ] Crema MD, Roemer FW, Marra MD, et al. : Articular cartilage in the knee, current MR imaging techniques and applications in clinical practice and research, Radiographics., 31 1, 37-61, 2011. [ 6 ] MRI12-24 2002 [ 7 ] Woertler K, Rummeny EJ, Settles M, : A fast highresolution multislice T1-weighted turbo spin-echo TSE sequence with a DRIVen equilibrium DRIVE pulse for native arthrographic contrast, Am J Roentgenol., 185 6, 1468-1470, 2005. [ 8 ] Crema MD, Roemer FW, Marra MD, et al. : Articular cartilage in the knee, current MR imaging techniques and applications in clinical practice and research. Radiographics., 31 1, 37-61, 2011. [ 9 ] Gold GE, Chen CA, Koo S, et al. : Recent advances in MRI of articular cartilage, AJR Am J Roentgenol., 193 3, 628-638, 2009. [10] Kijowski R, Gold GE : Routine 3D magnetic resonance imaging of joints, J Magn Reson Imaging., 33 4, 758-771, 2011. [11] Mosher TJ, Pruett SW : Magnetic resonance imaging of superficial cartilage lesions, role of contrast in lesion detection, J Magn Reson Imaging., 10 2, 178-182, 1999. [12] Eckstein F, Cicuttini F, Raynauld JP, et al. : Magnetic resonance imaging MRI of articular cartilage in knee osteoarthritis OA, morphological assessment, Osteoarthritis Cartilage., 14 Suppl A, A46-A75, 2006. [13] Delfaut EM, Beltran J, Johnson G, et al. : Fat suppression in MR imaging, techniques and pitfalls, Radiographics., 19 2, 373-382, 1999. [14] Fleckenstein JL, Archer BT, Barker BA, et al. : Fast short-tau inversion-recovery MR imaging, Radiology., 179 2, 499-504, 1991. [15] Graichen H, Springer V, Flaman T, et al. : Validation of high-resolution water-excitation magnetic resonance imaging for quantitative assessment of thin cartilage layers, Osteoarthritis Cartilage., 8 2, 106-114, 2000. [16] Gerdes CM, Kijowski R, Reeder SB : IDEAL imaging of the musculoskeletal system, robust water fat separation for uniform fat suppression, marrow evaluation, and cartilage imaging, Am J Roentgenol., 189 5, W284-W291, 2007. [17] Moriya S, Miki Y, Yokobayashi T, et al. : Rice and perfluorocarbon liquid pads, comparison of fat suppression effects. Acta Radiol., 51 5, 534-538, 2010. [18] Busse RF, Hariharan H, Vu A, et al. : Fast spin echo sequences with very long echo trains, design of variable refocusing flip angle schedules and generation of clinical T2 contrast, Magn Reson Med., 55 5, 1030-1037, 2006. [19] Chen CA, Kijowski R, Shapiro LM, et al. : Cartilage morphology at 3.0T, assessment of threedimensional magnetic resonance imaging techniques. Journal of magnetic resonance imaging, J Magn Reson Imaging., 32 1, 173-183, 2010. [20] Kijowski R, Davis KW, Woods MA, et al. : Knee joint, comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging diagnostic performance compared with that of conventional MR imaging at 3.0 T, Radiology., 252 2, 486-495, 2009. [21] Disler DG, McCauley TR, Kelman CG, et al.: Fatsuppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee, comparison with standard MR imaging and arthroscopy, Am J Roentgenol., 167 1, 127-132, 1996. [22] Disler DG, McCauley TR, Wirth CR, et al. : Detection of knee hyaline cartilage defects using fat-suppressed threedimensional spoiled gradientecho MR imaging, comparison with standard MR imaging and correlation with arthroscopy, Vol.32 No.4 2015 xlv

Am J Roentgenol., 165 2, 377-382, 1995. [23] Eckstein F, Westhoff J, Sittek H, et al. : In vivo reproducibility of three-dimensional cartilage volume and thickness measurements with MR imaging, Am J Roentgenol., 170 3, 593-597, 1998. [24] Cicuttini F, Forbes A, Asbeutah A, et al.: Comparison and reproducibility of fast and conventional spoiled gradientecho magnetic resonance sequences in the determination of knee cartilage volume, J Orthop Res., 18 4, 580-584, 2000. [25] Crema MD, Guermazi A, Li L, et al. : The association of prevalent medial meniscal pathology with cartilage loss in the medial tibiofemoral compartment over a 2-year period. Osteoarthritis Cartilage., 18 3, 336-343, 2010. [26] Siepmann DB, McGovern J, Brittain JH, et al. : Highresolution 3D cartilage imaging with IDEAL SPGR at 3 T, Am J Roentgenol., 189 6, 1510-1515, 2007. [27] Hardy PA, Recht MP, Piraino D, et al. : Optimization of a dual echo in the steady state DESS free-precession sequence for imaging cartilage, J Magn Reson Imaging., 6 2, 329-335, 1996. [28] Braun HJ, Gold GE : Advanced MRI of articular cartilage, Imaging Med., 3 5, 541-555, 2011. [29] Eckstein F, Hudelmaier M, Wirth W, et al. : Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla, a pilot study for the Osteoarthritis Initiative, Ann Rheum Dis., 65 4, 433-441, 2006. [30] Ruehm S, Zanetti M, Romero J, Hodler J : MRI of patellar articular cartilage, evaluation of an optimized gradient echo sequence 3D-DESS, J Magn Reson Imaging., 8 6, 1246-1251, 1998. [31] Moriya S, Miki Y, Yokobayashi T, et al. : Threedimensional double-echo steady-state 3D-DESS magnetic resonance imaging of the knee, contrast optimization by adjusting flip angle, Acta Radiol., 50 5, 507-511, 2009. [32] Moriya S, Miki Y, Kanagaki M, et al. : Evaluation of cartilage surface injuries using 3D-double echo steady state 3D-DESS, effect of changing flip angle from 40 to 90, Acta Radiol., 52 10, 1138-1142, 2011. [33] Duc SR, Pfirrmann CW, Schmid MR, et al. : Articular cartilage defects detected with 3D waterexcitationtrue FISP, prospective comparison with sequences commonly used for knee imaging, Radiology., 245 1, 216-223, 2007. [34] Wirth W, Nevitt M, Hellio Le Graverand MP, et al. : Sensitivity to change of cartilage morphometry using coronal FLASH, sagittal DESS, and coronal MPR DESS protocols, comparative data from the Osteoarthritis Initiative OAI, Osteoarthritis Cartilage., 18 4, 547-554, 2010. [35] Vasanawala SS, Hargreaves BA, Pauly JM, et al. : Rapidmusculoskeletal MRI with phase-sensitive steadystate free precession, comparison with routine knee MRI, Am J Roentgenol., 184 5, 1450-1455, 2005. [36] Friedrich KM, Reiter G, Kaiser B, et.al. : High-resolution cartilage imaging of the knee at 3T, basic evaluation of modern isotropic 3D MR-sequences, Eur J Radiol., 78 3, 398-405, 2011. [37] Welsch GH, Zak L, Mamisch TC, et.al. : Advanced morphological 3D magnetic resonance observation of cartilage repair tissue MOCART scoring using a new isotropic 3D proton-density, turbo spin echo sequence with variable flip angle distribution PD-SPACE compared to an isotropic 3D steady-state free precession sequence True-FISP and standard 2D sequences, J Magn Reson Imaging., 33 1, 180-188, 2011. [38] Quist B, Hargreaves BA, Daniel BL, et al. : Balanced SSFP Dixon imaging with banding-artifact reduction at 3 Tesla, Magn Reson Med., 74 3, 706-715, 2015. [39] Duc SR, Pfirrmann CW, Schmid MR, et al. : Articular cartilage defects detected with 3D waterexcitation true FISP, prospective comparison with sequences commonly used for knee imaging, Radiology., 245 1, 216-223, 2007. [40] Duc SR, Pfirrmann CW, Koch PP, et al. : Internal knee derangement assessed with 3-minute three-dimensional isovoxel true FISP MR sequence, preliminary study, Radiology., 246 2, 526-535, 2008. [41] Yuan J, Madore B, Panych LP : Fat-water selective excitation in balanced steady-state free precession using short spatial-spectral RF pulses, J Magn Reson., 208 2, 219-224, 2011. [42] Gold GE, Reeder SB, Yu H, et al. : Articular cartilage of the knee, rapid three-dimensional MR imaging at 3.0 T with IDEAL balanced steady-state free precession initial experience, Radiology., 240 2, 546-551, 2006. xlvi