ノック解析(1) CARSによるエンジン筒内未燃ガス温度の高精度測定と自着火反応モデルの評価



Similar documents
レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

untitled

J. Jpn. Inst. Light Met. 65(6): (2015)

研究成果報告書

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

気相反応解析のためのレーザ分光

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ

審査委員会081214_4章まで.ppt

<93C18F578B4C8E965F90F596EE20918F91BC2E6D6364>

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

Journal of the Combustion Society of Japan Vol.51 No.155 (2009) FEATURE Clarification of Engine Combustion and the Evolution デ

S-5.indd

電子部品はんだ接合部の熱疲労寿命解析

Fig. 2 Effect of oxygen partial pressure on interfacial tensions between molten copper and fayalite slag (Fe/Si0 2=1.23) at 1473 K. Fig. s Effect or o

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

藤村氏(論文1).indd

第2章

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:


35TS.indd

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

1..FEM FEM 3. 4.

<95DB8C9288E397C389C88A E696E6462>


渡辺(2309)_渡辺(2309)

perature was about 2.5 Ž higher than that of the control irrespective of wind speed. With increasing wind speeds of more than 1m/s, the leaf temperatu


A Study of Effective Application of CG Multimedia Contents for Help of Understandings of the Working Principles of the Internal Combustion Engine (The


Journal of the Combustion Society of Japan Vol.56 No.177 (2014) ORIGINAL PAPER SI エンジンのクレビスノックの容器実験による基礎研究 ( クレビス内混合気の自己着火

0801297,繊維学会ファイバ11月号/報文-01-青山

ガソリンエンジンシステムにおける未燃炭化水素の生成・排出挙動解析

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

”R„`‚å−w‰IŠv†^›¡‚g‡¾‡¯.ren

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

橡

Reaction Mechanism and Liquefaction Process of Coal Yosuke MAEKAWA

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

塗装深み感の要因解析


2章.doc

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student M

特-7.indd

Fig, 1. Waveform of the short-circuit current peculiar to a metal. Fig. 2. Waveform of arc short-circuit current. 398 T. IEE Japan, Vol. 113-B, No. 4,

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch

教室説明会1113.ppt

JSME-JT

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

P036-P041

Caloric Behavior of Chemical Oscillation Reactions Shuko Fujieda (Received December 16, 1996) Chemical oscillation behavior of Belousov- Zhabotinskii

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

1) T. L. Cottrel, A. J. Matheson, Trans. Farad. Soc., 58, 2336(1962). 2) E. N. Chesnokov, V. N. Panfilov, Teor. Eksp. Khimiya, 17, 699(1981). 3) M. Ko

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of

J. Soc. Cosmet. Chem. Jpn. 7-chome, Edogawa-ku, Tokyo 132, Japan 2.1 J. Soc. Cosmet. Chem. Japan. Vol. 31, No

06_学術.indd

GPGPU

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

090117公聴会_提出版.ppt

Table 1 Properties of parent coals used Ebenezer, Massel Buluck ; Australia, Datong; China Table 2 Properties of Various chars CY char: Captured char


Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

(Shigen to Sozai) Vol.116 p (2000) 石炭灰フライアッシュからのゼオライトのアルカリ水熱合成と生成物の陽イオン交換特性 * 1 1 村山憲弘山川洋亮 2 3 小川和男芝田隼次 Alkali Hydrothermal Synthesis of Zeol

無電解めっきとレーザー照射による有機樹脂板上へのCuマイクロパターン形成

Quantitative Relationship between SAR and Temperature Rise inside Eyeball in a Realistic Human Head Model for 1.5 GHz-Microwave Exposure Kiyofumi Taka

Journal of Japan Institute of Light Metals, Vol. 58, No. 2 (2008), pp

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

空力騒音シミュレータの開発

Fig. 1 Experimental apparatus.

製紙用填料及び顔料の熱分解挙動.PDF

X線分析の進歩36 別刷

06_学術_関節単純X線画像における_1c_梅木様.indd

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

) BPA ECN EPICLON N-600 Fig.2 Fig Fig.4 DCPD EPICLON HP-7200 ECN Fig.5 DCPD ECN DCPD 6-28) Table 1 BPA Fig.4 Chemical str

Fig. 1 Trends of TB incidence rates for all forms and smear-positive pulmonary TB in Kawasaki City and Japan. Incidence=newly notified cases of all fo

倉田.indd

燃焼圧センサ

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

Vol. No. Honda, et al.,

ステンレス鋼用高性能冷間鍛造油の開発

LEGACY 1. LEGACY A: DIMENSION 1. SEDAN MODEL 2.5 L SOHC 2.5 L DOHC turbo Overall length mm (in) 4,730 (186.2) Overall width mm (in) 1,730 (68.1) Overa

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

Microsoft PowerPoint - SeniorMtng_2010_06_14V2.ppt

05_藤田先生_責

Transcription:

15 Analysis of Knock Phenomena (1) Unburned Gas Temperature Measurement by Accurate CARS Thermometry and Validation of a Reduced Chemical Kinetic Model for Auto-ignition Kazuhiro Akihama, Michio Nakano, Shuichi Kubo CARS 100K 20K 150K 40K CARS Cowart 2.5deg. Accurate CARS thermometry was developed in order to measure the unburned gas temperature in an engine. CARS system was modified by using singlelongitudinal-mode pump beam, by eliminating nonresonant components with polarization technique and by improving the spectral resolution of the detection system. This modification greatly improved the accuracy of temperature measurement of the averaged and single-shot CARS from 100K to 20K, from 150K to 40K, respectively. Unburned gas temperature in a single-cylinder engine was measured by accurate CARS thermometry. As a result, it was experimentally proved that the unburned core gas was compressed adiabatically. The temperature difference between the knock and non-knock cycles, and the heat release due to end-gas reactions were measured exactly. The reduced chemical kinetic model for auto-ignition, developed by Cowart et al., was investigated in terms of not only knock onsets but also the unburned gas temperature. The adjustment of the isomerization reaction in their model was required to give agreement between the predicted and observed knock onsets and temperature. However, the model calibrated in this study was not able to represent a steep temperature rise at auto-ignition. Knock onsets on a cycle-by-cycle basis was predicted within the accuracy of 2.5 deg. crank angle using the calibrated model. Finally, the effects of non-uniformity of the unburned gas temperature and the mixture for knock occurrence were discussed. CARS R&D Vol. 31 No. 2 ( 1996. 6 )

16 ( ) ( ) 1000K 1 CARS ( Coherent Anti- Stokes Raman Spectroscopy ) ( 10 5 ) CARS 1000K CARS CARSCARS ( ) CARS Nd:YAG 2 ( 532nm ) 532nm 2330cm 1 607nm 100cm 1 640 1 CARS ( ) CARS CARS Schematic diagram of CARS set-up. R&D Vol. 31 No. 2 ( 1996. 6 )

17 ( ) CARS Fig. 1 CARS CARS Fig. 1 YAG ( 0.003cm 1 ) YAG YAG 50% CARS YAG 15% CARS ( ) ( ) CARS Fig. 1 1/1000 1000K CARS Fig. 1 ( 3.6 Fig. 1 dispersion magnifier ) 4 0.37cm 1 200 1200K 25 200 1200 25K 4 5K CARS (a) (b) CARS CARS (a) Fig. 1 [ (b)] ( Q ) 300 ( CARS R&D Vol. 31 No. 2 ( 1996. 6 )

18 ) 20K 20K CARS 20K 600K σ 2σ 40K Average CARS spectra (300 laser shots). Measured CARS spectra of N2 Q-branch. (a) Spectra before improvements of CARS system. (b) Spectra after improvements of CARS system (Fig. 1). Temperature error for various temperatures and pressures. Histogram of measured temperature by singleshot CARS. R&D Vol. 31 No. 2 ( 1996. 6 )

19 CARS ( TRE-II ) 4 CARS ( 5kHz ) 0.025MPa 50% 25deg.BTDC ( Before Top Dead Center : ) The accuracy of temperature measurement of averaged and single-shot CARS in the temperature range of 300-800K for pressures of 0.1-3.0 MPa. Accuracy Method Before After improvements improvements (Fig. 1) Average (300 shots) ±100K ±20K Single-shot ±150K ±40K Single-shot CARS spectra. TRE-II engine specifications. Type Single cylinder, SOHC 2valve, Oil-less Chamber Pancake type Fuel delivery Port injection Bore 83.0 mm Stroke 85.0 mm Compression ratio 9.2 Schematic of the measurement geometry and location of the CARS measurement point. Operating conditions. Speed 1200 rpm Fuel PRF RON100 (isooctane) Equivalence ratio 1.0 Intake air temperature 33 C Ignition timing 25 deg BTDC Throttle lever Wide open throttle R&D Vol. 31 No. 2 ( 1996. 6 )

20 50%Fig. 1 YAG 300 CARS Fig. 1 300 CARS ( 25deg.BTDC 1.1MPa ) CARS Fig. 8(a) 650K ( Fig. 6 ) ( 1% ) [Fig. 8(b)] 200 639K 48K Fig. 8(b) 650K 10 CARS300 Table 120K 30K 200 7deg.ATDC ( After Top Dead Center : ) ( ) ( 50% ) ( ) ( ) ( ) CARS spectra at 25 deg.btdc. (a) Single-shot. (b) 300 shots average. Histogram of temperature at 25 deg.btdc measured by single-shot CARS. R&D Vol. 31 No. 2 ( 1996. 6 )

21 7deg.ATDC 60K ( 100K ) CARS 5mm 4mm 4mm ( Fig. 7 ) Lyford- Pike Heywood 2mm ( Fig. 10 ) Mean pressure and temperature histories for knocking and non-knocking cycles. γ 1 T = T 0 P γ P 0 T : : γ : (1) T 0 P 0 CARS ( 639K, 1.1MPa ) Fig. 10(1) TDC ( ) TDC (1) Fig. 10 Fig. 9 ( Fig. 5 ) CARS 1% Fig. 9 (1) (2) ( ) (3) TDC R&D Vol. 31 No. 2 ( 1996. 6 )

22 Cowart ( two-stage ignition ) ( hot flame ) ( cool flame ) Table 4 RH 17 19 Reduced γ γ 1 γ : T : P : q : R : (2) (2) 25deg.BTDC CARS ( 639K ) 5.5vol% (2) 1200K 16deg.ATDC (a) Cowart alkylperoxy foward ( Table 43, E 3 = 21.2 kcal )Fig. 12(a) (b) E 3 1 dt T dt = 1 dp P dt + 1 dq RT dt Cowart Fig. 12 ( Table 4 ) R&D Vol. 31 No. 2 ( 1996. 6 )

23 Fig. 12 ( 1100K 5 10 5 K/sec ) Reduced chemical kinetic model. (a) 17 species RH (fuel), O 2 (oxygen), R (alkyl fuel radical), HO 2 (hydro peroxy radical), RO 2 (alkylperoxy radical), ROOH (hydro peroxy alkyl radical), O 2 RO 2 H, OROOH (hydro perozide), OH (hydroxyl radial), H 2 O (water), ORO, C=C (olefin), HOOH (hydrogen peroxide), R'CHO (aldehyde) R''O, R'CO (acyl radical), Epox (epoxide). (b) 19 reactions Arrhenius parameters of equilibrium constants K = A exp( E/RT) and rate constants k ± = A ± exp( E ± /RT) are for isooctane oxidation at 700 < T < 1300 K. (Units : cc, mole, sec, kcal) (*) Cowart et al. (**) This work Reaction H 300 Log A E Log A + E + Log A E 1 RH + O 2 R + HO 2 46.4 1.5 46.0 13.5 46.0 12.0 0.0 2 R + O 2 RO 2 31.0 1.4 27.4 12.0 0.0 13.4 27.4 3 RO 2 ROOH 7.5 0.0 9.8 11.0 20.8 11.0 11.0(*) 7.5 0.0 10.2 11.0 21.2 11.0 11.0(**) 4 ROOH O 2 RO 2 H 31.0 1.9 27.4 11.5 0.0 13.4 27.4 5 O 2 RO 2 H OROOH + OH 26.6 11.3 17.0 6 RH + OH R + H 2 O 23.5 13.3 3.0 7 OROOH OH + ORO 43.0 15.6 43.0 8 R + O 2 HO 2 + C=C 13.5 0.0 13.5 11.5 6.0 11.5 19.5 9 HO 2 + HO 2 HOOH + O 2 38.5 12.3 0.0 10 HOOH + M 2OH + M 51.4 17.1 46.0 11 ORO R'CHO + R"O 8.5 14.0 15.0 12 RO 2 + HO 2 ROOH + O 2 38.5 12.0 0.0 13 ROOH OH + R'CHO + C=C 3.0 14.4 31.0 14 RO 2 + R'CHO ROOH + R'CO 0.6 11.45 8.6 15 HO 2 + R'CHO HOOH + R'CO 0.6 11.7 8.6 16 C=C + HO 2 Epox + OH 0.23 10.95 10.0 17 HO 2 + RH R + HOOH 8.0 0.9 8.0 11.7 16.0 10.8 8.0 18 RO 2 + RH R + ROOH 8.0 1.1 8.0 11.2 16.0 10.1 8.0 19 R + R RH 85.0 13.2 0.0 R&D Vol. 31 No. 2 ( 1996. 6 )

24 Individual-cycle knock occurrence crank angle distribution. 5.3 ( E 3 21.2 kcal ) (2)P 200 2.5deg. Fig. 13 Comparison between the measured temperature by CARS and the calculated temperature by reduced model listed in Table 4. (a) Knocking cycle. (b) Non-knocking cycle. Measured versus predicted knock occurrence crank angles. R&D Vol. 31 No. 2 ( 1996. 6 )

25 Fig. 13 ( 2.5deg. ) ( ) ( ) 1% 0.7deg. 1.8deg. 1.8deg. CARS (1) CARS 100K20K 150K40K (2) CARS (3) 2.5deg. (4) (2) 4 1) Cowart, J. S., et al. : Twenty-Third Symposium (International) on Combustion, (1990), 1055 2) Westbrook, C. K. and Pitz, W. J. : Lawrence Livermore National Laboratory report UCRL-JC-112696, (1993) 3) Cox, R. A. and Cole, J. A. : Combustion and Flame, 60 (1985), 109 4) Lucht, R. P., et al. : Combustion Science and Technology, 55(1987), 41 5), 2 : 9, (1991), 63 6), 2 : (B ), 59-566(1993), 3249 7) Akihama, K. and Asai, T. : Appl. Opt., 29-21(1990), 3143 8), : (B ), 56-521(1990), 200 9) Akihama, K., and Asai, T. : JSME Int. J., Ser. B, 36-2(1993), 364 10), 5 : 10 (1992), 283 11) Lyford-Pike, E. J. and Heywood, J. B. : Int. J. Heat and Mass Transfer, 27-10(1984), 1873 12) Dimpelfeld, P. M. and Foster, D. E. : SAE Tech. Pap. Ser., No.860322, (1986) 13) Hu, H. and Keck, J. : SAE Tech. Pap. Ser., No. 872110, (1987) 14), 2 : 10 (1992), 289 R&D Vol. 31 No. 2 ( 1996. 6 )

26 15) Bäuerle, B., et al. : Twenty-Fifth Symposium (International) on Combustion, (1994), 135 16), 3 : R&D, 31-2 (1996), 27 1959 CARS, LIF 1963 1963 R&D Vol. 31 No. 2 ( 1996. 6 )