JSME-JT



Similar documents
JAXA-SP indd

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

[ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA

SC-85X2取説


<4D F736F F F696E74202D C835B B E B8CDD8AB B83685D>

(報告書まとめ 2004/03/  )

空間多次元 Navier-Stokes 方程式に対する無反射境界条件

Flow Around a Circular Cylinder with Tangential Blowing near a Plane Boundary (2nd Report, A Study on Unsteady Characteristics) Shimpei OKAYASU, Kotar

teionkogaku43_527

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

III


IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

II

これわかWord2010_第1部_ indd

パワポカバー入稿用.indd

これでわかるAccess2010

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

untitled

i

2

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

平成18年版 男女共同参画白書

活用ガイド (ソフトウェア編)

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

J. Jpn. Inst. Light Met. 65(6): (2015)

工学的な設計のための流れと熱の数値シミュレーション


untitled

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

空力騒音シミュレータの開発

エクセルカバー入稿用.indd

01_.g.r..

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

放水の物理的火災抑制効果に着目した地域住民の消火活動モデル


IPSJ SIG Technical Report Vol.2014-ARC-213 No.24 Vol.2014-HPC-147 No /12/10 GPU 1,a) 1,b) 1,c) 1,d) GPU GPU Structure Of Array Array Of


,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

g µν g µν G µν = 8πG c 4 T µν (1) G µν T µν G c µ ν 0 3 (1) T µν T µν (1) G µν g µν 2 (1) g µν 1 1 描

活用ガイド (ソフトウェア編)

2 ( ) i




困ったときのQ&A

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

Fig. 2 Effect of oxygen partial pressure on interfacial tensions between molten copper and fayalite slag (Fe/Si0 2=1.23) at 1473 K. Fig. s Effect or o

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

ii

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai,

四校_目次~巻頭言.indd

i

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

活用ガイド (ソフトウェア編)

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

i

はしがき・目次・事例目次・凡例.indd

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

28 Horizontal angle correction using straight line detection in an equirectangular image

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

橡6.プログラム.doc

Fig. 1 Experimental apparatus.

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

IPSJ SIG Technical Report NetMAS NetMAS NetMAS One-dimensional Pedestrian Model for Fast Evacuation Simulator Shunsuke Soeda, 1 Tomohisa Yam


06_学術.indd

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i

Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki M

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch

パソコン機能ガイド

パソコン機能ガイド

23 A Comparison of Flick and Ring Document Scrolling in Touch-based Mobile Phones

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Experimental and Clinical Studies of Pregnant Hypertension Takashi SHIMAZU Department of Obstetrics and Gynecology, Osaka City University Medical Scho

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l


Javaと.NET

AUTOMATIC MEASUREMENTS OF STREAM FLOW USING FLUVIAL ACOUSTIC TOMOGRAPHY SYSTEM Kiyosi KAWANISI, Arata, KANEKO Noriaki GOHDA and Shinya

<4D F736F F D208F4390B38DC58F49938A8D6595A CA90858D48985F95B F8F43959C82B382EA82BD B5F2E646F6378>

知識ベースCFD

『戦時経済体制の構想と展開』

mbb mb9 xb Fig. 1 Soil-Structure Interaction System.

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

2004年度日本経団連規制改革要望

QXD (Page 1)


Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

(1) 2

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

TF-IDF TDF-IDF TDF-IDF Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Sat

Transcription:

日 本 機 械 学 会 論 文 集 (B 編 ) 77 巻 773 号 (2011-1) 論 文 No.10-0610 Ghost Fluid 1, 2, 2 Application of Multigrid Ghost Fluid Method to the Interaction of Shock Waves with Bubbles in Liquids Kazumichi KOBAYASHI 1, Yoshinori JINBO and Hiroyuki TAKAHIRA 1 Division of Mechanical and Space Engineering, Hokkaido University Kita13 Nishi8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan A new numerical method based on the ghost fluid method was developed for compressible two-phase flows; the idea of adaptive mesh refinement with multigrid was implemented in the method. In the method, interpolation techniques between multiple grids near interfaces were also proposed. The present techniques are effective in diminishing the numerical instability caused by the discontinuity of physical variables across the interfaces. The bubble collapse induced by the interaction of an incident shock with a gas bubble in water was simulated with the present multigrid ghost fluid method. We have succeeded in capturing the fine interface and vortex structure during the collapsing and rebounding stage. The mass conservation is improved with the adaptive mesh refinement combined with the hybrid particle level set method. Also, the interaction of an incident shock wave with a gas bubble near a deformable boundary was simulated successfully with the method in which the motions of three phases, i.e., the gas inside the bubble, the ambient liquid, and the wall material, are taken into consideration. Key Words : Bubble, Shock Wave, Gas-Liquid Two-Phase Flow, Numerical Simulation, Adaptive Mesh Refinement, Multigrid Ghost Fluid Method. 1. (1) (ESWL) (2) Ghost Fluid (3) (4),(5) (4),(5) Lagrange 2010 8 6 1 ( 060-8628 13 8 ) 2 ( 599-8531 1-1) Email: kobakazu@eng.hokudai.ac.jp

(a) r (b) r H z H z W Water Shock Bubble L s L sb W Water Shock Bubble L s L sb L wb R 0 R 0 Wall Fig. 1 Schematic of bubble arrangement. (6),(7) Lagrange Euler () (8) Quirk & Karni (9) Niederhaus (10) Haas & Sturtevant (11) Riemann (12) Takahira (3),(4) ( Ghost Fluid ) ( ( ) ) 2 1 2. 1 (a) ( ) (b) z R 0 (a) W = 16R 0 H = 8R 0 L sb =1.5R 0 L s =6.5R 0 (b) W = 38.2R 0 H = 4R 0 L sb =1.4R 0 L s =25.4R 0 L wb =1.2R 0 ( ) Euler Q t + F r + G = S, (1) z ρ ρu r ρw ρu r Q = ρu r ρw, F = ρu 2 r + p ρu r w, G = ρu r w ρw 2 + p, S = 1 ρu 2 r r ρu r w. (2) E (E + p)u r (E + p)w (E + p)u r t r z ρ u r w r z p E e : E = ρ(e + (u 2 r + w 2 )/2) ( ) ( )

Stiffened Gas (13) p = (γ 1)ρe γπ, (3) γ Π γ = 1.4 Π = 0 Pa γ = 4.4 Π = 6 10 8 Pa γ = 1.459 Π = 112 10 8 Pa Level Set φ (14) Level Set φ t + u φ r r + w φ = 0. (4) z Level Set Level Set (14) φ τ + S(φ 0)( φ 1) = 0, (5) S(φ 0 ) = φ 0 / φ0 2 + δx2 δx ( r = z ) τ φ 0 τ = 0 Hybrid Particle Level Set (HPLS) (15) HPLS 32 Euler 3rd order TVD Runge-Kutta 3rd order ENO-LLF (16) Level Set 3rd order TVD Runge-Kutta 5th order WENO (17) 2 2 Ghost Fluid 2 2 1 Ghost Fluid Ghost Fluid (18) Ghost Fluid Ghost Fluid Ghost Fluid (3),(18) Level Set (Ghost Fluid) φ > 0 1 φ < 0 2 φ > 0 φ < 0 (Ghost Fluid 2) φ < 0 φ > 0 (Ghost Fluid 1) Level Set φ > 0 1 2 φ < 0 2 1 Ghost Fluid Takahira (3) Ghost Fluid Fast Marching (19) Riemann (12) (3) (4) 2 2 2 Ghost Fluid 2(a) Layer 1 Layer 1 Layer 2 Layer 1 Layer 2 Layer 1 1 Layer 2 4 Layer 1 r 1 = z 1 Layer 2 r 2 = z 2 = 0.5 r 1 CFL Layer 1 t 1 Layer 2 0.5 t 1 2(b)

(a) Multigrid Layer 1 r z Layer 2 (b) n step (t=t n) Layer 1 Layer 2 n step (t=t n) Time integration B. C. B. C. Time integration n+1/2 step (t=t n+ t/2) Time integration n+1 step n (t=t + t) Interpolation of physical variables n+1 step n (t=t + t) Fig. 2 Sequence of computations in two layers. 1. t n Layer 1 t n+1 Layer 1 2. Layer 1 t n+1 Layer 1 Layer 2 Layer 2 t n+1/2 3. 2 t n+1 Layer 2 4. Layer 1 Layer 2 Layer 2 Layer 1 Layer 1 5. 1 4 Layer 1 Layer 2 Layer 2 Layer 1 3 4 Ghost Fluid φ > 0 1 φ < 0 2 Layer 2 ( 3 (i, j),(i + 1, j),(i, j + 1),(i + 1, j + 1)) Layer 1 (I,J) 1. Ghost Fluid (Ghost Fluid) ( 10 ) Ghost Fluid (i, j) (i, j + 1) 2 Ghost Fluid 2 (i + 1, j) (i + 1, j + 1) 1 Ghost Fluid 1 Layer 2 ( 1 2) 2. Layer 1 (I,J) Layer 2 (I,J) Layer 1 (I,J) A I,J Layer 2 4 a i, j, a i+1, j, a i, j+1, a i+1, j+1 A I,J = (a i, j + a i+1, j + a i, j+1 + a i+1, j+1 )/4, (6)

(1) Fluid 1 Fluid 2 (2) (3) Fluid 1 Fluid 1 φ > 0 φ < 0 φ > 0 (i, j+1) (i+1, j+1) (i, j+1) (i+1, j+1) Fluid 2 φ < 0 (I, J) (I, J) (i, j) (i+1, j) Interface φ = 0 (i, j) Fluid 2 (i+1, j) Interface φ = 0 (i, j+1) (i+1, j+1) (I, J) (i, j) (i+1, j) Fig. 3 Interpolation from Layer 2 to Layer 1 with ghost fluids. (1) Fluid 1 φ > 0 (I, J+1) Fluid 2 φ < 0 (I+1, J+1) (2) Fluid 1 (I, J+1) (I+1, J+1) (i, j+1) (i+1, j+1) (i, j) (i+1, j) (3) Fluid 1 φ > 0 (i, j+1) Fluid 2 φ < 0 (i+1, j+1) (I, J) (I+1, J) Interface φ = 0 (I, J) (I, J+1) (I+1, J) Fluid 2 (I+1, J+1) (i, j) (i+1, j) Interface φ = 0 (i, j+1) (i+1, j+1) (i, j) (i+1, j) (I, J) (I+1, J) Fig. 4 Interpolation from Layer 1 to Layer 2 with ghost fluids. 3. Layer 1 (I,J) φ (I,J) φ < 0 2 4 Layer 1 Layer 2 Ghost Fluid Layer 1 Layer 1 A Layer 2 (i, j) a i, j a i, j = (9A I,J + 3(A I+1,J + A I,J+1 ) + A I+1,J+1 )/16, (7) Layer 2 (i, j) φ Ghost Fluid 2 2 3 Adaptive Mesh Refinement ( AMR ) (9),(10) Layer 2 Layer 1

(a) Layer i (b) Layer 6 r Hi Hi+1 z L L i,i+1 Layer i+1 W i+1 R L i,i+1 H6 L L B6 Bubble R L B6 W i W 6 Fig. 5 Schematic of multiple computational layers. (i) t/t 0 = 0.0000 (ii) t/t 0 = 0.2240 (iii) t/t 0 = 0.8000 (iv) t/t 0 = 0.9760 (v) t/t 0 = 1.088 (vi) t/t 0 = 1.142 (vii) t/t 0 = 1.158 (viii) t/t 0 = 1.264 (ix) t/t 0 = 1.600 Thin gas layer Fig. 6 Schlieren images for the bubble collapse in Case 5. 5(b) Layer 6 z [z L B 60 z 6 z R B + 40 z 6] r [0, 0.9R 0 ] ( z 6 Layer 6 ) z L B ( ) zr B ( ) z Layer 6 z R B Layer 6 zr 6 LR B6 = zr 6 zr B z L B Layer 6 zl 6 LL B6 = zl B zl 6 Layer 6 ( 5(b) ) 1. LB6 R < 44 z 6 Layer 6 z R 6 4 z 6 LB6 R 44 z 6 48 z 6 2. LB6 L > 36 z 6 Layer 6 z L 6 4 z 6 LB6 L 32 z 6 36 z 6 Layer 6 Layer i (i = 3,4,5) Layer i + 1 Li,i+1 R Layer i Layer i+1 Li,i+1 L LR i,i+1 = 24 z i 28 z i Li,i+1 L = 36 z i 38 z i (i = 3), 32 z i 36 z i (i = 4,5)

2.0 Table 1 Grid spacing z i and increment of time t i for Fig. 1(a). z i ti Wi Hi Layer 1 0.08 8.0 10 4 16 8 Layer 2 0.04 4.0 10 4 10 3.2 Layer 3 0.02 2.0 10 4 6 2 Layer 4 0.01 1.0 10 4 3 1.5 Layer 5 0.005 5.0 10 5 2.5 1.2 Layer 6 0.0025 2.5 10 5 - - 2.0 1.0 layer 4 layer 5 layer 6 1.0 0 0 7.0 8.0 9.0 10.0 7.0 8.0 9.0 10.0 (i) t/t 0 = 0.7648 (ii) t/t 0 = 1.056 2.0 2.0 1.0 1.0 0 0 7.0 8.0 9.0 10.0 7.0 8.0 9.0 10.0 (iii) t/t 0 = 1.142 (iv) t/t 0 = 1.400 Fig. 7 Adaptive mesh for the bubble collapse in Case 5. 3 1 3. R 0 1.0 mm p s =10 8 Pa p 0 =1.013 10 5 Pa Rankine-Hugoniot 1.2 kg/m 3 998.6 kg/m 3 5 1 Layer i W i (Wi = W i /R 0 ) H i (Hi = H i /R 0 ) Layer 1 Layer 1 r1 (= r 1/R 0 ) = z 1 (= z 1/R 0 ) = 0.08 t1 = ( t 1/t 0 ) = 8.0 10 4 t 0 t 0 = R 0 / p/ρ s p = p s p 0 ρ s Layer 2 5 () 1 5(b) Layer 6 r 0.8R 0 5 Case Case 1: Layer 3 Case 2: Layer 1 3 Case 3: Layer 1 4 Case 4: Layer 1 5 Case 5: Layer 1 6 Case 3 5 HPLS (Case 5-WOP (Without Particles) )

(i) t/t 0 = 0.9920 Case 1 (ii) t/t 0 = 1.088 (iii) t/t 0 = 1.152 (iv) t/t 0 = 1.184 (v) t/t 0 = 1.232 Case 2 Case 3 Case 4 Case 5 Case 5 - WOP Fig. 8 Comparison of bubble shapes for Cases 1 5. Case 5 () 6 7 6 ( 6(ii)) ( 6(iii)) ( 6(iv)) ( 6(v)) 6(vi) ( 6(vii)-(ix)) ( 7 8 ) 7 8 9(a) 9(b) Γ R R = (3V /4π) (1/3) V = H(φ)dV Heaviside H 0 for φ < 0, (liquid phase), H(φ) = (8) 1 for φ > 0, (gas phase).

(a) R/R 0 Case 2 Case 3 Case 4 Case 5 Case 5 - WOP t/t 0 Case 2 Case 3 Case 4 Case 5 Case 5 - WOP (b) Γ t/t 0 Fig. 9 Time histories of (a) equivalent bubble radii and (b) circulation inside the bubble. baroclinic vorticity () 8 Case 5-WOP Case 1 5 Case 1 Case 2 Case 2 Case 1 1/16 9(a) 9(b) HPLS Case 5-WOP 8 Level Set Case 10 Case 2 5 () 11 HPLS Case 3 5 δm δm = M M 0 M M = ρh(φ)dv M 0 8 11 HPLS

δm/m 0 Case 2 Case 3 Case 4 Case 5 Case 5 - WOP t/t 0 Fig. 10 Comparison of relative error of mass. δm/m 0 Case 3 - WOP Case 4 - WOP Case 5 - WOP t/t 0 Fig. 11 Comparison of relative error of mass (Cases 3 5 without HPLS). HPLS ( 10) HPLS Case 5 Case 4 Case 5 12 Case 5 HPLS 32 16 8 Case 5 8 HPLS HPLS 3 2 1(b) Ghost Fluid 1703 kg/m 3 3098 m/s 3.2 (4), (5) 13 2 L 12 /R 0 = 20 L 23 /R 0 = 4 Layer 1 t/t 0 = 0.688 Layer 2 t/t 0 = 0.86 Layer 3

8 particles per cell 16 particles per cell δm/m 0 32 particles per cell Fig. 12 Influence of the number of marker particles per cell on mass conservation for Case 5. t/t 0 Layer 1 Water Wall Layer 2 r H 1 H 3 H 2 Layer 3 z Bubble L 12 L 23 W 3 W 2 W 1 Fig. 13 Multiple computational layers across a deformable wall boundary. Table 2 Grid spacing z i and increment of time t i for Fig. 1(b). z i ti Wi Hi Layer 1 0.02 t1 = 8.288 10 4 38.2 4 Layer 2 0.01 0.5 t 1 16 2 Layer 3 0.005 0.25 t 1 9 1.5 13 Layer 2 Layer 3 Layer 1 Layer 2 Layer 2 Layer 3 Ghost Fluid 14 R 0 1.0 mm p s =10 8 Pa p 0 =1.013 10 5 Pa 6 (4),(5) 4. Ghost Fluid ( Ghost Fluid ) Ghost Fluid

(i) t/t 0 = 0.0000 (ii) t/t 0 = 0.7460 (iii) t/t 0 = 0.9946 (iv) t/t 0 = 1.094 (v) t/t 0 = 1.160 (vi) t/t 0 = 1.326 (vii) t/t 0 = 1.492 (viii) t/t 0 = 1.724 (ix) t/t 0 = 1.956 Fig. 14 Successive bubble shapes for the shock-bubble interaction near a deformable wall. Level Set Hybrid Particle Level Set Ghost Fluid (No. 21360086) (1) Futakawa, M., Kogawa, H., Hasegawa, S., Naoe, T., Ida, M., Haga, K., Wakui, T., Tanaka, N., Matsumoto, Y. and Ikeda, Y., Mitigation Technologies for Damage Induced by Pressure Waves in High-Power Mercury Spallation Neutron Sources (II) (Bubbling Effect to Reduce Pressure Wave), Journal of Nuclear Science and Technology, Vol. 45, No. 10 (2008), pp. 1041-1048. (2) Kodama, T. and Takayama, K., Dynamic Behavior of Bubbles During Extracorporeal Shock-Wave Lithotripsy, Ultrasound in Medicine & Biology, Vol. 24, No. 5 (1998), pp. 723-738. (3),, Ghost Fluid ( 2 ), B, Vol. 72, No. 723 (2006), pp. 2643-2651. (4) Takahira, H. and Matsuno, T. and Shuto K., Numerical investigations of shock-bubble interactions in mercury, Fluid Dynamics Research, Vol. 40, Nos. 7-8 (2008), pp. 510-520. (5) Takahira, H., Kobayashi, K. and Matsuno, T., Direct Numerical Simulations of Interaction of Strong Shock Waves with Nonspherical Gas Bubbles near Glass Boundaries in Mercury, International Journal of Emerging Multidisciplinary Fluid Science, Vol. 1, No. 2 (2009), pp. 85-99. (6) Unverdi, S. O. and Tryggvason, G., A Front-Tracking Method for Viscous, Incompressible, Multi-fluid Flows, Journal of Computational Physics, Vol. 100 (1992), pp. 25-37.

(7) Zhang, Y. L., Yeo, K. S. and Wang, C., 3D Jet Impact and Toroidal Bubbles, Journal of Computational Physics, Vol. 166 (2001), pp. 336-360. (8) Hyman, J. M. and Li, S., Interactive and Dynamic Control of Adaptive Mesh Refinement with Nested Hierarchical Grids, Los Alamos National Laboratory Report (LA-UR-98-5462), (1998). (9) Quirk, J. J. and Karni, S., On the Dynamics of a Shock-Bubble Interaction, Journal of Fluid Mechanics, Vol. 318 (1996), pp. 129-163. (10) Niederhaus, J. H. J., Greenough, J. A., Oakley, J. G., Ranjan, D., Anderson, M. H. and Bonazza, R., A Computational Parameter Study for the Three-Dimensional Shock-Bubble Interaction, Journal of Fluid Mechanics, Vol. 594 (2008), pp. 85-124. (11) Haas, J.-F. and Sturtevant, B., Interaction of Weak Shock Waves with Cylindrical and Spherical Gas Inhomogeneities, Journal of Fluid Mechanics, Vol. 181 (1987), pp. 41-76. (12) Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics, (1997), Springer. (13) Saurel, R. and Abgrall, R., A Simple Method for Compressible Multifluid Flows, SIAM Journal on Scientific Computing, Vol. 21 (1999), pp. 1115-1145. (14) Sussman, M., Peter, S. and Osher, S., A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, Journal of Computational Physics, Vol. 114 (1994), pp. 146-159. (15) Enright, D., Fedkiw, R., Ferziger, J. and Mitchell I., A Hybrid Particle Level Set Method for Improved Interface Capturing, Journal of Computational Physics, Vol. 183 (2002), pp. 83-116. (16) Shu, C.-W. and Osher, S., Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes II, Journal of Computational Physics, Vol. 83 (1989), pp. 32-78. (17) Jiang, G.-S. and Peng, D., Weighted ENO Schemes for Hamilton-Jacobi Equations, SIAM Journal on Scientific Computing, Vol. 21 (2000), pp. 2126-2143. (18) Fedkiw, R., Aslam, T. and Xu, S., The Ghost Fluid Method for Deflagration and Detonation Discontinuities, Journal of Computational Physics, Vol. 154 (1999), pp. 393-427. (19) Adalsteinsson, D. and Sethian, J. A., The Fast Construction of Extension Velocities in Level Set Methods, Journal of Computational Physics, Vol. 148 (1999), pp. 2-22.