2007-Kanai-paper.dvi



Similar documents
, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

25 Removal of the fricative sounds that occur in the electronic stethoscope

7,, i



CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i

ii


2

untitled

i


i


Wide Scanner TWAIN Source ユーザーズガイド

Web Web Web Web Web, i

Takens / / 1989/1/1 2009/9/ /1/1 2009/9/ /1/1 2009/9/30,,, i


n 2 n (Dynamic Programming : DP) (Genetic Algorithm : GA) 2 i

入門ガイド

M41 JP Manual.indd

,,.,.,,.,.,.,.,,.,..,,,, i

<4D F736F F F696E74202D C835B B E B8CDD8AB B83685D>

SC-85X2取説


soturon.dvi

SURF,,., 55%,.,., SURF(Speeded Up Robust Features), 4 (,,, ), SURF.,, 84%, 96%, 28%, 32%.,,,. SURF, i


Web Basic Web SAS-2 Web SAS-2 i

24 Depth scaling of binocular stereopsis by observer s own movements

IT i

28 TCG SURF Card recognition using SURF in TCG play video

2 ( ) i

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

「産業上利用することができる発明」の審査の運用指針(案)

Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Virtual Window System Social Networking

paper.dvi

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o


kut-paper-template.dvi


II

21 Effects of background stimuli by changing speed color matching color stimulus

これわかWord2010_第1部_ indd

パワポカバー入稿用.indd

これでわかるAccess2010

4.1 % 7.5 %

, IT.,.,..,.. i

1 1 tf-idf tf-idf i


音響部品アクセサリ本文(AC06)PDF (Page 16)

平成18年版 男女共同参画白書

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

178 5 I 1 ( ) ( ) ( ) ( ) (1) ( 2 )

I II III 28 29


27 1 NP NP-completeness of Picross 3D without segment-information and that with height of one

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

Web Web ID Web 16 Web Web i

2015 ( 27 ) RFID RF RFID, 2., 3., 4. i

13 RoboCup The Interface System for Learning By Observation Applied to RoboCup Agents Ruck Thawonmas

21 e-learning Development of Real-time Learner Detection System for e-learning

四校_目次~巻頭言.indd

PC PDA SMTP/POP3 1 POP3 SMTP MUA MUA MUA i

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

28 Horizontal angle correction using straight line detection in an equirectangular image

,,,,., C Java,,.,,.,., ,,.,, i


Table 1 Table 2

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e


P2P P2P peer peer P2P peer P2P peer P2P i

III


エクセルカバー入稿用.indd

WebRTC P2P Web Proxy P2P Web Proxy WebRTC WebRTC Web, HTTP, WebRTC, P2P i

2 DS SS (SS+DS) Fig. 2 Separation algorithm for motorcycle sound by combining DS and SS (SS+DS). 3. [3] DS SS 2 SS+DS 1 1 B SS SS 4. NMF 4. 1 (NMF) Y

卒業論文2.dvi

27 VR Effects of the position of viewpoint on self body in VR environment

Web Web Web Web i

kut-paper-template.dvi

Visit Japan Campaign OD OD 18 UNWTO 19 OD JNTO ODUNWTO 1 1

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System


Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

01_.g.r..

ICS-01B-◇◇◇


untitled

FreeSpace.book

DTN DTN DTN DTN i

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

02[ ]小山・池田(責)岩.indd

i

こんにちは由美子です

untitled

AccessflÌfl—−ÇŠš1

58 10

Transcription:

19 Estimation of Sound Source Zone using The Arrival Time Interval 1080351 2008 3 7

S/N 2 2 2 i

Abstract Estimation of Sound Source Zone using The Arrival Time Interval Koichiro Kanai The microphone array can control the directivity and presume the direction where the sound comes. Therefore, it is possible to separate a desired sound and an unnecessary sound from the direction of coming. Hence, the microphone array can improve S/N of the receiving sound. However, when the target of receiving sound moves, the microphone array always should match the direction of the microphone according to the movement. Information of the changing sound source position becomes necessary in order to automate directivity control of the microphone array. In this paper, estimation of sound source zone using two microphones is proposed. The proposed system is used for the correlation of two input signals. If the arrival time interval is estimated, the microphone which is near to the sound source is decided. The proposed system can estimate when two sound source exist at the same time. key words cross-correlation, omni directional microphone, directional microphone, sound source ii

1 1 1.1.................................. 1 1.2...................................... 2 2 3 2.1................................... 3 2.2................................ 3 2.3............................. 4 2.4............................ 4 2.5........................... 4 2.6.............................. 5 3 7 3.1................................... 7 3.2................................. 7 3.3................................... 8 3.4................................... 10 3.5............................. 10 3.6............................ 11 3.7................................... 13 3.8....................... 15 3.9.............. 15 4 20 4.1................................... 20 iii

4.2................. 20 4.3............................ 21 4.4................................... 23 4.5....................... 24 5 30 5.1................................ 30 5.2.................................. 30 31 32 A 33 A.1............................. 33 A.2.............................. 33 A.3.................................. 34 iv

2.1............................ 4 2.2................................... 5 2.3........................ 6 3.1............................. 8 3.2....................... 11 3.3................................ 12 3.4................................ 13 3.5........................ 13 3.6....................... 14 3.7........................ 14 3.8 100mm.......................... 17 3.9 200mm.......................... 17 3.10 300mm.......................... 18 3.11 400mm.......................... 18 3.12.............................. 19 3.13 200mm45deg....................... 19 4.1.................. 21 4.2 (1)...................... 22 4.3 (2)...................... 22 4.4 A............................. 23 4.5 B.............................. 23 4.6 100mm45deg ( 4,410 )......... 26 v

4.7 100mm45deg ( 4,410 )... 27 4.8 100mm ( 4,410 )....... 27 4.9 100mm ( 4,410 ). 28 4.10 200mm45deg ( 4,410 )......... 28 4.11 200mm45deg ( 4,410 )... 29 4.12 200mm ( 4,410 )....... 29 vi

3.1.................................... 10 3.2 200mm.................... 16 3.3 300mm.................... 16 3.4 400mm.................... 16 4.1 100mm45deg..................... 25 4.2 100mm................... 25 4.3 200mm45deg..................... 26 vii

1 1.1 S/N [1] DFT [2] 2 2 1

1.2 1.2 2 5 2 3 4 5 2

2 2.1 10ms 1 2 2.2 340m/s 200mm 44.1KHz 0.2(m) 44100(Hz) = 25.94 (2.1) 340(m/s) 26 3

2.3 speaker microphone 2.1 2.3 2.4 2 2.5 4

2.6 2.6 2.2 44.1kHz 20 10 441,000 10 180 2.3 10 30000 20000 10000 Amplitude 0-10000 -20000-30000 -40000 0 5 10 15 20 Time [sec] 2.2 5

2.6 30000 20000 10000 Amplitude 0-10000 -20000-30000 -40000 0 5 10 15 20 Time [sec] 2.3 6

3 3.1 3.2 2 3.1 1 0 B 0 A 7

3.3 0 2 A minus shift mic A lag plus shift mic B B cross correlation shift length > 0 YES NO A B 3.1 3.3 2 N f = {f 0, f 1,..., f N 1 } g = {g 0, g 1,..., g N 1 } R (fg) R (fg) = < f, g > f g (3.1) 3.1 2 2 8

3.3 2 2 2 f = {f 0, f 1,..., f N 1 } g = {g 0, g 1,..., g N 1 } R (fg) n R (fg) n = 1 N 1 N N 1 i=0 N 1 i=0 f 2 i f i g i+n 1 N N 1 i=0 g 2 i+n (3.2) f g n g n = {g 0+n, g 1+n,..., g N 1+n } (3.3) 2 n R (fg) n = N 1 i=0 f i g i+n N 1 f 2 N 1 i gi 2 i=0 i=0 (3.4) 1 +1 ˆR (fg) n ˆR (fg) n = 1 N 1 N N 1 i=0 N 1 i=0 ˆf 2 i ˆf i ĝ i+n 1 N N 1 i=0 ĝ 2 i = N 1 i=0 N 1 i=0 ˆf i ĝ i+n ˆf i 2 N 1 ĝi 2 i=0 (3.5) 9

3.4 2 3.1 0 3.1 0.0 r 0.2 0.2 < r 0.4 0.4 < r 0.7 0.7 < r 1.0 3.4 3.2 100mm 200mm 300mm 400mm 4 1,200mm 2 3.3 A B 3.5 (A260) 3.2 5 10

3.6 speaker 1200mm A B C D E A-B 100mm A-C 200mm A-D 300mm A-E 400mm 3.2 3.6 3.5 44.1kHz 4,410 8,820 13,230 17,640 4 2 1 (0 n < N 1) h(n) = 0 (otherwise) (3.6) 1/2 11

3.6 A microphone A microphone B B 3.3 A 10 B 2 2 1.0 4,098 2 A B 12

3.7 3.4 30000 20000 10000 Amplitude 0-10000 -20000-30000 -40000 0 5 10 15 20 Time [sec] 3.5 3.7 3.7 x(t) y(t) S 13

3.7 sound source A H(z) y(k) e(k) B - target zone + output 3.6 sound source target zone A H(z) e(k) y(k) B + - output 3.7 A 10 B S = 10log 10 y(t) x(t) [db] (3.7) 0dB 14

3.8 3.8 3.8 3.11 y A B 3.8 100mm 3.9 200mm 100mm 2 3.2 3.4 100mm 4,410 S 0dB 3.9 45 3.12 200mm 3.13 2 15

3.9 3.2 200mm Sample Number 4,410 8,820 13,230 17,640 445,410 19.66 20.51 18.91 19.36 18.16 533,610 19.62 17.91 19.90 19.81 19.16 621,810 19.08 16.27 17.11 16.11 17.13 710,010 18.26 25.26 24.70 25.00 25.60 798,210 20.75 1.17 24.50 24.86 25.04 3.3 300mm Sample Number 4,410 8,820 13,230 17,640 445,410 19.66 18.30 19.49 16.96 18.61 533,610 19.62 20.79 20.69 18.52 19.00 621,810 19.08 17.46 17.11 16.98 16.82 710,010 18.26 24.23 24.63 24.98 24.39 798,210 20.75 4.51 26.68 26.22 26.59 3.4 400mm Sample Number 4,410 8,820 13,230 17,640 445,410 19.66 16.19 15.39 18.71 16.05 533,610 19.62 17.80 16.83 16.63 16.43 621,810 19.08 16.43 16.27 15.47 15.62 710,010 18.26 31.47 31.09 29.82 30.50 798,210 20.75 27.15 24.96 26.61 27.05 16

3.9 60 Shift Length 40 20 0-20 4,410 8,820 13,230 17,640-40 -60 0 4 8 12 16 20 Time [sec] 3.8 100mm 40 4,410 8,820 13,230 17,640 Shift Length 20 0-20 -40 0 4 8 12 16 20 Time [sec] 3.9 200mm 100 200mm 300mm 17

3.9 40 4,410 8,820 13,230 17,640 20 Shift Length 0-20 -40 0 4 8 12 16 20 Time [sec] 3.10 300mm 60 40 4,410 8,820 13,230 17,640 Shift Length 20 0-20 -40-60 0 4 8 12 16 20 Time [sec] 3.11 400mm 18

3.9 mic A mic B (a) mic A mic B 45 (b) 3.12 40 20 4,410 8,820 13,230 17,640 Shift Length 0-20 -40 0 4 8 12 16 20 Time [sec] 3.13 200mm45deg 19

4 4.1 4.2 4.1 B A A B 0 2 20

4.3 A minus shift mic A lag plus shift mic B B shift length cross > 0 correlation plus shift YES shift length A < 0 minus shift YES B 4.1 4.3 44.1kHz A503 4.4 4.5 13,230 2 4,410 70 10 21

4.3 A 1 10 B 1 10 2 A B 10 A 10 20000 10000 Amplitude 0-10000 -20000-30000 0 5 10 15 20 Time [sec] 4.2 (1) 30000 20000 10000 Amplitude 0-10000 -20000-30000 0 5 10 15 20 Time [sec] 4.3 (2) 22

4.4 20000 10000 Amplitude 0-10000 -20000 0 5 10 15 20 Time [sec] 4.4 A 20000 10000 Amplitude 0-10000 -20000 0 5 10 15 20 Time [sec] 4.5 B 4.4 10 23

4.5 4.5 4.1 4.3 4.6 4.12 4,410 shift B B shift A A 10 10 A B 0 0 200 300 400mm 45 300 400mm 4.12 200mm 70 24

4.5 4.1 100mm45deg A B 4,410 (0.10sec) 0.54 0.61 8,820 (0.20sec) 0.45 0.66 13,230 (0.30sec) 0.42 0.68 17,640 (0.40sec) 0.42 0.67 4.2 100mm A B 4,410 (0.10sec) 0.56 0.58 8,820 (0.20sec) 0.45 0.64 13,230 (0.30sec) 0.41 0.67 17,640 (0.40sec) 0.42 0.67 25

4.5 4.3 200mm45deg A B 4,410 (0.10sec) 0.65 0.69 8,820 (0.20sec) 0.59 0.74 13,230 (0.30sec) 0.54 0.77 17,640 (0.40sec) 0.52 0.75 10 10 2 2 15 10 shift B shift A Shift Length 5 0-5 -10-15 0 4 8 12 16 20 Time [sec] 4.6 100mm45deg ( 4,410 ) 26

4.5 1 0.9 shift B shift A Correlation Value 0.8 0.7 0.6 0.5 0.4 0 4 8 12 16 20 Time [sec] 4.7 100mm45deg ( 4,410 ) 20 shift B shift A 10 Shift Length 0-10 -20 0 4 8 12 16 20 Time [sec] 4.8 100mm ( 4,410 ) 27

4.5 1 shift B shift A 0.8 Correlation Value 0.6 0.4 0.2 0 4 8 12 16 20 Time [sec] 4.9 100mm ( 4,410 ) 20 shift B shift A 10 Shift Length 0-10 -20 0 4 8 12 16 20 Time [sec] 4.10 200mm45deg ( 4,410 ) 28

4.5 1 shift B shift A 0.8 Correlation Value 0.6 0.4 0.2 0 0 4 8 12 16 20 Time [sec] 4.11 200mm45deg ( 4,410 ) 80 60 40 Shift Lehgth 20 0-20 -40-60 shift B shift A -80 0 2 4 6 8 10 12 14 16 18 20 Time [sec] 4.12 200mm ( 4,410 ) 29

5 5.1 2 5.2 2 30

2 4 31

[1] 2 (A) vol.j82-a no.6 pp.860-866 Jun 1999 [2] (A) vol.j83-a no.12 pp.1445-1454 Dec 2000 [3] 1995 [4] CQ 2005 32

A A.1 A.2 LMS 2 1967 LMS 1960 Kalman 2 RLS RLS N 1 N 2 LMS N 33

A.3 RLS A.3 NLMS LMS t y(t) d(t) d(t) = h T N x N (t) (A.1) h N = w N x(t) A.1 A.1 h N (t) A.1 x N (t) w N h N (t) x N (t) w N h N (t) w N (t) w N h N (t + 1) h N (t + 1) = h N (t) + {h N (t + 1) h N (t)} = h N (t) + {w N h N (t)} T {h N (t + 1) h N (t)} h N (t + 1) h N (t) h N (t + 1) h N (t) h N (t + 1) h N (t) (A.2) 2 h N (t + 1) h N (t) h N (t + 1) h N (t) = x N(t) x N (t) (A.3) {w N h N (t)} T x N (t) = d(t) y(t) = e(t) (A.4) 34

A.3 A.2 h N (t + 1) = h N (t) + x N(t) x N (t) 2 e(t) (A.5) A.5 h N (t + 1) = h N (t) + α x N(t) x N (t) e(t) 2 (A.6) 35