水 励 起 高 速 三 次 元 拡 散 強 調 MRIパルスシーケンスの 開 Title 発 とラット 骨 盤 部 への 生 体 応 用 沼 野, 智 一, 本 間, 一 弘, 岩 崎, 信 明, 兵 頭, 行 志, Author(s) 新 田, 尚 隆 Citation 日 本 磁 気 共 鳴 医 学 会 雑 誌, 28(3): 185-195 Issue Date 2008-07-15 URL http://hdl.handle.net/10748/5908 DOI Rights Type Journal Article Textversion author http://www.tmu.ac.jp/ 首 都 大 学 東 京 機 関 リポジトリ
1) Le BD, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401-407 2) Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF, Weinstein PR: Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med 1990;14:330-346 3) Dardzinski BJ, Sotak CH, Fisher M, Hasegawa Y, Li L, Minematsu K: Apparent diffusion coefficient mapping of experimental focal cerebral ischemia using diffusion-weighted echo-planar imaging. Magn Reson Med 1993;30:318-325 4) Nicholas GZ, Ponnada AN: Selective measurement of white matter and gray matter diffusion trace values in normal human brain. Med Phys 1998;25:2237-2241 5) Carlo P, Peter J, Peter JB, Alan B: Diffusion Tensor MR Imaging of Human Brain. Radiology 1996;201:637-648 6) Roland B, Martin A, Stephen L, Michael A, Lara AS, Rupert WP, Rudolf S, Michael EM, Franz F: Diffusion Tensor Imaging Using Single-Shot SENSE-EPI. Magn Reson Med 2002;48:128-136 7) Golay X, Jiang H, van Zijl PC, Mori S: High-resolution isotropic 3D diffusion tensor imaging of the human brain. Magn Reson Med 2002;47:837-843 9) Numano T, Homma K, Hirose T: Diffusion-weighted three-dimensional MP-RAGE MR imaging. Magn Reson Imaging 2005;23:463-468 10) Numano T, Homma K, Iwasaki N, Hyodo K, Nitta N, Hirose T: In vivo isotropic 3D diffusion tensor mapping of the rat brain using diffusion-weighted 3D MP-RAGE MRI. Magn Reson Imaging 2006;24:287-293 11) Haase A: Snapshot FLASH MRI. Applications to T1, T2, and chemical-shift imaging. Magn Reson Med
1990;13:77-89 12) Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M: Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 2004;22:275-282 13) Clore GM, Kimber BJ, Gronenborn AM: The 1-1 hard pulse: A simple and effective method of water resonance suppression in FT 1H NMR. J Magn Reson 1983;54:170-173 14) Sklenar V, Starcuk Z: 1-2-1 pulse train: A new effective method of selective excitation for proton NMR in water. J Magn Reson 1982;50:495-501 15) Meyer CH, Pauly JM, Macovski A, Nishimura DG: Simultaneous spatial and spectral selective excitation. Magn Reson Med 1990;15:287-304 16) Sakuma H, O'Sullivan M, Lucas J, et al: Effect of magnetic susceptibility contrast medium on myocardial signal intensity with fast gradient-recalled echo and spin-echo MR imaging: initial experience in humans. Radiology 1994;190:161-166 18) Mugler III JP, Spraggins TA, Brookeman JR: T2-weighted three-dimensional MP-RAGE MR imaging. J Magn Reson Imaging 1991;1:731-737 19) Lee H, Price RR: Diffusion imaging with the MP-RAGE sequence. J Magn Reson Imaging 1994;4:837-42. 20) Epstein FH, Mugler JP 3rd, Cail WS, Brookeman JR: CSF-suppressed T2-weighted three-dimensional MP-RAGE MR imaging. J Magn Reson Imaging 1995;5:463-469 21) David LT, Gaby SP, Mark FL, David GG, Roger JO: A quantitative method for fast diffusion imaging using magnetization-prepared TurboFLASH. Magn Reson Med 1998;39:950-960
Fig.1 Vector representation of the magnetization behavior during a DEFT sequence. Fig.2 a: Diagram of the 3D MP-RAGE pulse sequence modified for diffusion imaging (3D-DWI). The FatSat-3D-DWl performs the area of a dashed line. b: The WE-3D-DWI is performed by choosing a binominal[1:1 or 1:2:1] pulse of RAGE sequence. Fig.3 Vector representation of the magnetization behavior during a binominal[1:2:1] pulse train. Fig.4 Phantom experiment results of different fat-saturation methods. A solid line is water phantom profile, and a dash line is oil phantom profile. Fig.5 Relation between the density of acetone and measured diffusion coefficient by 3D-DWI, FatSat-3D-DWI and WE-3D-DWI. Fig.6 a: T2-weighted FSE, 3D-DWI and WE-3D-DWI images of the rat pelvis. The fat tissue of WE-3D-DWI images was not displayed by fat-saturation (water-excitation) effect. b: 3D-DWI images obtained with b-value of 0, 1000 s/mm2 and the corresponding map of the calculated ADC-map of rat
pelvis. c: WE-3D-DWI images obtained with b-value of 0, 1000 s/mm2 and the corresponding map of the calculated ADC-map of rat pelvis. Fig.7 a: Collected echo peaks (the first 32 echoes of shooting) versus RAGE-loop (only the readout gradient was applied) of the FatSat-3D-DWI and WE[1-2-1]3D-DWI. b: The contrast which becomes dominant with the acquisition ordering of k-space. An arrow indicates the order of the data with which it is filled up into k-space, and coloring indicates the image contrast that become dominant.