IIJ Technical WEEK 2013 - Indexer Bullet によるビッグデータ解析



Similar documents
/27 (13 8/24) (9/27) (9/27) / / / /16 12

1965

アンケート2


TOPIX30 2 / 37

D _SR_DENSEI_QX

宅建練馬表478号1_4ol [更新済み].eps

yume_P01-056


校友会16号-ol.indd


Page 1

1 発病のとき



iR-ADV C2230/C2220 製品カタログ

NextWebBtoB_BtoC _suwa.pdf



報告書.PDF

324.pdf

テレビ番組による相互交流

( ) ( ) ( )

untitled

untitled


紀要1444_大扉&目次_初.indd


net-h12_12.doc

B B B B B B

(資料2)第7回資料その1(ヒアリング概要)



<4D F736F F D DEC8BC A95BD90AC E A982BA81698AB A B B4790DF90AB8EBE8AB FC89408A4F816A82CC93AE8CFC82C98AD682B782E9838C837C815B D

, , ,210 9, ,




cover_jinzai_21

untitled

電力技術研究所

untitled

IC IC IC IC IC IC IC IC V IC IC IC euphrates.andrew.ac.jp/ public / web / User / MOM / Syllabus / MOMwebGakuseiSyllabusSansho / UI / MOMwebWS

西川町広報誌NETWORKにしかわ2011年1月号

揃 Lag [hour] Lag [day] 35

¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡

C. S2 X D. E.. (1) X S1 10 S2 X+S1 3 X+S S1S2 X+S1+S2 X S1 X+S S X+S2 X A. S1 2 a. b. c. d. e. 2

101NEO資料

nishi1502_01_24.ai

2


”Лï‰IŠv ŁÐ”RŸ_ٶ

商学 65‐6☆/15.陶

¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡-¡

H indd

Transcription:

Indexer Bullet IIJ Techweek2013 IIJ

Indexer Bullet ibullet u u u u

Indexer Bullet RDBMS Indexer Bullet

Indexer Bullet http://www.xxx.co.jp/index.html HTML GET/PUT/DELETE http://www.xxx.co.jp/index.html OUTLINK GET/PUT/DELETE http://xxxx/outlink.kct Indexer Bullet

Indexer Bullet u Wikipedia u Wikipedia ibullet u l l CompaireAndSwap u

Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so every one claims they are doing it URL: https://twitter.com/replore/status/396636923311058944/photo/1

u u u u u

u u u u u

WorkSpace BigData CachedCopy BigData

WorkSpace Modeling Tool BigData CachedCopy BigData

WorkSpace BigData CachedCopy BigData Sampled Data Sampled Data Sampled Data

WorkSpace BigData CachedCopy BigData Modeling Tool Sampled Data Sampled Data Sampled Data

ibullet u u u u ibullet l

ibullet ibullet http://www.xxx.co.jp/yyy.zzz BigData CachedCopy BigData Modeling Tool http://www.kkk co.jp/aaa/ HTTP Method A Method B Method C

ibullet ibullet http://www.xxx.co.jp/yyy.zzz BigData CachedCopy BigData http://www.kkk co.jp/aaa/ A Modeling Tool a http://www.kkk co.jp/bbb/ B Modeling Tool a b http://www.kkk co.jp/ccc/ C Modeling Tool c a b

ibullet ibulleta http://www.xxx.co.jp/yyy.zzz BigDataA CachedCopy BigDataA ibulletc http://www.kkk co.jp/aaa/ A Modeling Tool ibulletb http://www.xxx.co.jp/yyy.zzz BigDataB CachedCopy BigDataB

WikipediaPVC ibullet u Wikipedia u Wikipedia Wikipedia u Wikipedia Wikipedia Wikipedia Mediawiki u u Excel R

Wikipedia Count Page view statistics for Wikimedia projects u http://dumps.wikimedia.org/other/pagecounts-raw/ Wikimedia 2008 u Project> <PageTitle> HTTP <> <PageSize> u http://www.gryfon.iij-ii.co.jp/ranking.html

Wikipedia Count Project: ja Namespace: 0

Wikipedia Page Data Wikimedia Downloads -- Database dump progress u http://dumps.wikimedia.org/backup-index.html u http://dumps.wikimedia.org/jawiki/ Wikipedia u XML Mediawiki TEXT> l jawiki-<date>-pages-articles.xml.bz2 jawiki-20131005 2013/10/05 u 1,752,890 u 1,411,191 80.5% u : 883,537 50.4%

Wikipedia Wikipedia u u u l u u

Wikipedia u NHK u 20% l CHANGEJIN 15 20% l l or 10 15% l 5 10% l l or 5% l

Wikipedia

Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Drama Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia = Drama Drama Drama Drama

Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia

u u ts() or 168 u decompose(): u Trend seasonalrandom l l

r a t e Time

Decomposition of additive time series seasonal trend observed random 0.0 0.2 0.4 0.05 0.20 0.35 0.0 1.5 3.0 0.5 1.0 2.5 2 4 6 8 10 12 14 Time

Decomposition of additive time series random seasonal trend observed 0.0 1.0 0.05 0.10 0.00 0.10 0.20 0.0 1.0 2 4 6 8 10 12 Time

Decomposition of additive time series random seasonal trend observed 0.00 0.15 0.005 0.010 0.004 0.012 0.00 0.15 2 4 6 8 10 12 Time

Decomposition of additive time series random seasonal trend observed 0.1 0.2 0.5 0.00 0.06 0.00 0.02 0.04 0.3 0.6 2 4 6 8 10 12 Time

Decomposition of additive time series random seasonal trend 0.0 0.2 0.4 0.01 0.02 0.01 0.03 observed 0.0 0.3 0.6 2 4 6 8 10 12 Time

Decomposition of additive time series random seasonal trend observed 0.00 0.15 0.005 0.010 0.00 0.02 0.04 0.00 0.15 2 4 6 8 10 12 14 Time

Indexer Bullet u u l l u ibullet

Wikipedia u l l u l l u l

Wikipedia u u Wikipedia Wikipedia l l l u l l Wikipedia