TOPIX30 2 / 37

Size: px
Start display at page:

Download "TOPIX30 2 / 37"

Transcription

1 W707 1 / 37

2 TOPIX30 2 / 37

3 1 2 TOPIX30 3 / 37

4 x Time 4 / 37

5 t {X t } t i.i.d. t 5 / 37

6 Definition ( ) {X t } t. t 1,..., t N X t1,..., X tn 6 / 37

7 Definition ( ) {X t } t t 1,..., t N, h X t1,..., X tn X t1 +h,..., X tn +h 7 / 37

8 z Index (X t = 0.7X t + 0.1ϵ t, AR(1) ) 8 / 37

9 x z Index Index ( ) 8 / 37

10 : µ t := E[X t ] ( t) µ t t µ = µ t : γ(t, s) := Cov(X t, X s ) = E[(X t µ t )(X s µ s )] γ(t, s) t s γ(h) = γ(t, t + h) 9 / 37

11 ( ) Definition ( ) {X t } t µ t γ(t, s) t s 10 / 37

12 11 / 37

13 : m <- decompose(co2) # co2 timeseries plot(m) # Decomposition of additive time series random seasonal trend observed Time 12 / 37

14 (stl) stl decompose stllc <- stl(co2, "periodic") plot(stllc) remainder trend seasonal data time 13 / 37

15 xsmooth <- kernapply(x,kernel("daniell", 10)) # Daniell x Time 14 / 37

16 : ρ(t, s) := γ(t, s) γ(t, t)γ(s, s). t s acf(stllc$time.series[,"remainder"]) CO2 Series stllc$time.series[, "remainder"] ACF Lag 15 / 37

17 acf(stllc$time.series[,"remainder"], type = "covariance") Series stllc$time.series[, "remainder"] ACF (cov) Lag 16 / 37

18 AR 3 17 / 37

19 AR 3 AR X t = p ϕ i X t i + ϵ t. i=1 ϵ t N(0, σ 2 ) (i.i.d.). p AR 17 / 37

20 R AR ar(x, aic = TRUE, order.max = NULL, method = c("yule-walker", "burg", "ols", "mle", "yw"), AR AIC order.max AR method yule-walker 18 / 37

21 Yule-Walker X t = X t 1 ϕ X t p ϕ p + ϵ t X t h X t = X t h X t 1 ϕ X t h X t p ϕ p + X t h ϵ t γ(h) = γ(h 1)ϕ γ(h p)ϕ p. ( ) Yule-Walker : γ(1) γ(0) γ(1) γ(p 1) ϕ 1 γ(2) γ(1) γ(0) γ(p 2) ϕ 2 = γ(p) }{{} γ(p 1) } γ(p 2) {{ γ(0) ϕ p }}{{} γ Γ ϕ γ Γ : ϕ = Γ 1 γ. 19 / 37

22 AR : AIC ar.co2$aic Index > ar.co2 <- ar(stllc$time.series[,"remainder"]) > ar.co2$aic AIC 20 / 37

23 AR(1) X t = ϕ 1 X t 1 + ϵ t AR(1) ϕ 1 ϕ 1 1 AR 21 / 37

24 R Dickey-Fuller > adf.test(ukgas) Augmented Dickey-Fuller Test data: UKgas Dickey-Fuller = , Lag order = 4, p-value = alternative hypothesis: stationary 22 / 37

25 (VAR) X t R d AR (VAR): X t = A 1 X t A p X t p + ϵ t. A i R d d 23 / 37

26 R VAR AR VAR library(vars) varsel <- VARselect(tsx,lag.max=5) # var.topix <- VAR(tsx,p=varsel$selection[1]) #AIC 24 / 37

27 1 2 TOPIX30 25 / 37

28 TOPIX CORE 30 TOPIX CORE (2013/6/ /7/4) ( ) 26 / 37

29 ts(topix30[, 1:10]) & Time Time 27 / 37

30 : R t = log(x t /X t 1 ). 28 / 37

31 Series ts(logrt[, 20]) Series ts(logrt[, 1]) ACF ACF Lag UFJ Lag 29 / 37

32 AR UFJ ufjts <- ts(logrt[,20]) # ar.ufj <- ar(ufjts) #AR 30 / 37

33 AIC ar.ufj$aic :(length(ar.ufj$aic) 1) UFJ AIC 31 / 37

34 AR > ar.ufj$ar #AR [1] / 37

35 AR Normal Q Q Plot Sample Quantiles Theoretical Quantiles 33 / 37

36 > shapiro.test(ar.ufj$resid[5:230]) Shapiro-Wilk normality test data: ar.ufj$resid[5:230] W = , p-value = / 37

37 (R t > 0 R t < 0 ) 3 L1 35 / 37

38 tedata$y Index / 37

39 37 / 37

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾ Kano Lab. Yuchi MATSUOKA December 22, 2016 1 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 2 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 3 / 32 1.1.1 - - - 4 / 32 1.1.2 - - - - - 5 / 32 1.1.3 y t µ t = E(y t ), V

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model 1 EViews 5 2007 7 11 2010 5 17 1 ( ) 3 1.1........................................... 4 1.2................................... 9 2 11 3 14 3.1 Pooled OLS.............................................. 14

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

分布

分布 (normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability

More information

自由集会時系列part2web.key

自由集会時系列part2web.key spurious correlation spurious regression xt=xt-1+n(0,σ^2) yt=yt-1+n(0,σ^2) n=20 type1error(5%)=0.4703 no trend 0 1000 2000 3000 4000 p for r xt=xt-1+n(0,σ^2) random walk random walk variable -5 0 5 variable

More information

IIJ Technical WEEK 2013 - Indexer Bullet によるビッグデータ解析

IIJ Technical WEEK 2013 - Indexer Bullet によるビッグデータ解析 Indexer Bullet IIJ Techweek2013 IIJ Indexer Bullet ibullet u u u u Indexer Bullet RDBMS Indexer Bullet Indexer Bullet http://www.xxx.co.jp/index.html HTML GET/PUT/DELETE http://www.xxx.co.jp/index.html

More information

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63> Gretl OLS omitted variable omitted variable AIC,BIC a) gretl gretl sample file Greene greene8_3 Add Define new variable l_g_percapita=log(g/pop) Pg,Y,Pnc,Puc,Ppt,Pd,Pn,Ps Add logs of selected variables

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

有価証券報告書_手数料及び税金(第18期)

有価証券報告書_手数料及び税金(第18期) (1) (2) (3) () 30 80 50 115 115 39 () 31 2,000 () 29 29 100 0.6 365 131 12 () () 29 100 0.8 () 12 200 (a) (g) (a) 50 2,000,000 (b) 50 1,000 0.0175 (c) 1,000 2,000 0.015 (d) 2,000 3,000 0.01 (e) 3,000 5,000

More information

DAA09

DAA09 > summary(dat.lm1) Call: lm(formula = sales ~ price, data = dat) Residuals: Min 1Q Median 3Q Max -55.719-19.270 4.212 16.143 73.454 Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 237.1326

More information

土壌環境行政の最新動向(環境省 水・大気環境局土壌環境課)

土壌環境行政の最新動向(環境省 水・大気環境局土壌環境課) 201022 1 18801970 19101970 19201960 1970-2 1975 1980 1986 1991 1994 3 1999 20022009 4 5 () () () () ( ( ) () 6 7 Ex Ex Ex 8 25 9 10 11 16619 123 12 13 14 5 18() 15 187 1811 16 17 3,000 2241 18 19 ( 50

More information

syuryoku

syuryoku 248 24622 24 P.5 EX P.212 2 P271 5. P.534 P.690 P.690 P.690 P.690 P.691 P.691 P.691 P.702 P.702 P.702 P.702 1S 30% 3 1S 3% 1S 30% 3 1S 3% P.702 P.702 P.702 P.702 45 60 P.702 P.702 P.704 H17.12.22 H22.4.1

More information

第6回ストックリーグ入賞レポート 部門賞・大学 (PDF)

第6回ストックリーグ入賞レポート 部門賞・大学 (PDF) 3 1 IPO IPO IPO 1 2 3 2 Initial Public Offerings Firms IPO IPO 2 IR 11 2 IPO 2 IPO 3 2004 4 2005 3 173 10 10 IPO 1 2 3 3 IPO IPO IPO 4 1. 2. 3. 4. 5. 6. 7. 8. 1. 2. 3. 4. 5 1 EDINET http://info.edinet.go.jp

More information

2 3

2 3 Sample 2 3 4 5 6 7 8 9 3 18 24 32 34 40 45 55 63 70 77 82 96 118 121 123 131 143 149 158 167 173 187 192 204 217 224 231 17 285 290 292 1 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

More information

こんにちは由美子です

こんにちは由美子です 1 2 . sum Variable Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- var1 13.4923077.3545926.05 1.1 3 3 3 0.71 3 x 3 C 3 = 0.3579 2 1 0.71 2 x 0.29 x 3 C 2 = 0.4386

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: [email protected] 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls

More information

2 1 Introduction

2 1 Introduction 1 24 11 26 1 E-mail: [email protected] 2 1 Introduction 5 1.1...................... 7 2 8 2.1................ 8 2.2....................... 8 2.3............................ 9 3 10 3.1.........................

More information

2 Part A B C A > B > C (0) 90, 69, 61, 68, 6, 77, 75, 20, 41, 34 (1) 8, 56, 16, 50, 43, 66, 44, 77, 55, 48 (2) 92, 74, 56, 81, 84, 86, 1, 27,

2 Part A B C A > B > C (0) 90, 69, 61, 68, 6, 77, 75, 20, 41, 34 (1) 8, 56, 16, 50, 43, 66, 44, 77, 55, 48 (2) 92, 74, 56, 81, 84, 86, 1, 27, / (1) (2) (3) [email protected] (4) (0) (10) 11 (10) (a) (b) (c) (5) - - 11160939-11160939- - 1 2 Part 1. 1. 1. A B C A > B > C (0) 90, 69, 61, 68, 6, 77, 75, 20, 41, 34 (1) 8, 56, 16, 50, 43, 66, 44,

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q9-1 テキスト P166 2)VAR の推定 注 ) 各変数について ADF 検定を行った結果 和文の次数はすべて 1 である 作業手順 4 情報量基準 (AIC) によるラグ次数の選択 VAR Lag Order Selection Criteria Endogenous variables: D(IG9S) D(IP9S) D(CP9S) Exogenous variables: C Date:

More information

McCain & McCleary (1979) The Statistical Analysis of the Simple Interrupted Time-Series Quasi-Experiment

McCain & McCleary (1979) The Statistical Analysis of the Simple Interrupted Time-Series Quasi-Experiment Quasi-Experimenaion Ch.6 005/8/7 ypo rep: The Saisical Analysis of he Simple Inerruped Time-Series Quasi-Experimen INTRODUCTION () THE PROBLEM WITH ORDINAR LEAST SQUARE REGRESSION OLS (Ordinary Leas Square)

More information

ブック 1.indb

ブック 1.indb 20 29 29 18 21 29 10 30 31 10 11 12 30 13 10 30 14 11 30 15 12 16 13 17 14 18 15 19 16 20 17 21 18 10 20 29 82 83 84 85 86 87 88 20 10 89 20 12 11 90 20 13 12 91 20 14 13 92 20 14 14 93 15 15 94 15 16

More information

statstcs statstcum (EBM) 2 () : ( )GDP () : () : POS STEP 1: STEP 2: STEP 3: STEP 4: 3 2

statstcs statstcum (EBM) 2 () : ( )GDP () : () : POS STEP 1: STEP 2: STEP 3: STEP 4: 3 2 (descrptve statstcs) 2010 9 3 1 1 2 2 3 2 3.1............................................. 3 3.2............................................. 3 4 4 4.1........................................ 5 5 6 6 -pvot

More information

時系列解析と自己回帰モデル

時系列解析と自己回帰モデル B L11(2017-07-03 Mon) : Time-stamp: 2017-07-03 Mon 11:04 JST hig,,,.,. http://hig3.net ( ) L11 B(2017) 1 / 28 L10-Q1 Quiz : 1 6 6., x[]={1,1,3,3,3,8}; (. ) 2 x = 0, 1, 2,..., 9 10, 10. u[]={0,2,0,3,0,0,0,0,1,0};

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,. 23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%

More information

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä 2009 8 26 1 2 3 ARMA 4 BN 5 BN 6 (Ω, F, µ) Ω: F Ω σ 1 Ω, ϕ F 2 A, B F = A B, A B, A\B F F µ F 1 µ(ϕ) = 0 2 A F = µ(a) 0 3 A, B F, A B = ϕ = µ(a B) = µ(a) + µ(b) µ(ω) = 1 X : µ X : X x 1,, x n X (Ω) x 1,,

More information

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1 2016 1 12 4 1 2016 1 12, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, 1980 1990.,, 225 1986 4 1990 6, TOPIX,1986 5 1990 2, explosive. 2,.,,,.,, 1986 Q2 1990 Q2,,. :, explosive, recursiveadf,

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

t VaR ( vs 5 t ) t ( ) / 16

t VaR ( vs 5 t ) t ( ) / 16 2016 3 11 ( ) 2016 3 11 1 / 16 t VaR ( vs 5 t ) t ( ) 2016 3 11 2 / 16 () Crouhy (2008) Table: ( ) 2016 3 11 3 / 16 VaR (2010) Table: ( ) 2016 3 11 4 / 16 Tang and Valdez(2006) 5 t Brockmann and Kaklbrener(2010)

More information

最小2乗法

最小2乗法 2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

1 I EViews View Proc Freeze

1 I EViews View Proc Freeze EViews 2017 9 6 1 I EViews 4 1 5 2 10 3 13 4 16 4.1 View.......................................... 17 4.2 Proc.......................................... 22 4.3 Freeze & Name....................................

More information

TS002

TS002 TS002 Stata 12 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 26 mwp-005 svar VAR 33 mwp-007 vec intro VEC 51 mwp-008 vec VEC 80 mwp-063 VAR vargranger Granger 93 mwp-062 varlmar

More information