TOPIX30 2 / 37
|
|
|
- そうすけ やすもと
- 9 years ago
- Views:
Transcription
1 W707 1 / 37
2 TOPIX30 2 / 37
3 1 2 TOPIX30 3 / 37
4 x Time 4 / 37
5 t {X t } t i.i.d. t 5 / 37
6 Definition ( ) {X t } t. t 1,..., t N X t1,..., X tn 6 / 37
7 Definition ( ) {X t } t t 1,..., t N, h X t1,..., X tn X t1 +h,..., X tn +h 7 / 37
8 z Index (X t = 0.7X t + 0.1ϵ t, AR(1) ) 8 / 37
9 x z Index Index ( ) 8 / 37
10 : µ t := E[X t ] ( t) µ t t µ = µ t : γ(t, s) := Cov(X t, X s ) = E[(X t µ t )(X s µ s )] γ(t, s) t s γ(h) = γ(t, t + h) 9 / 37
11 ( ) Definition ( ) {X t } t µ t γ(t, s) t s 10 / 37
12 11 / 37
13 : m <- decompose(co2) # co2 timeseries plot(m) # Decomposition of additive time series random seasonal trend observed Time 12 / 37
14 (stl) stl decompose stllc <- stl(co2, "periodic") plot(stllc) remainder trend seasonal data time 13 / 37
15 xsmooth <- kernapply(x,kernel("daniell", 10)) # Daniell x Time 14 / 37
16 : ρ(t, s) := γ(t, s) γ(t, t)γ(s, s). t s acf(stllc$time.series[,"remainder"]) CO2 Series stllc$time.series[, "remainder"] ACF Lag 15 / 37
17 acf(stllc$time.series[,"remainder"], type = "covariance") Series stllc$time.series[, "remainder"] ACF (cov) Lag 16 / 37
18 AR 3 17 / 37
19 AR 3 AR X t = p ϕ i X t i + ϵ t. i=1 ϵ t N(0, σ 2 ) (i.i.d.). p AR 17 / 37
20 R AR ar(x, aic = TRUE, order.max = NULL, method = c("yule-walker", "burg", "ols", "mle", "yw"), AR AIC order.max AR method yule-walker 18 / 37
21 Yule-Walker X t = X t 1 ϕ X t p ϕ p + ϵ t X t h X t = X t h X t 1 ϕ X t h X t p ϕ p + X t h ϵ t γ(h) = γ(h 1)ϕ γ(h p)ϕ p. ( ) Yule-Walker : γ(1) γ(0) γ(1) γ(p 1) ϕ 1 γ(2) γ(1) γ(0) γ(p 2) ϕ 2 = γ(p) }{{} γ(p 1) } γ(p 2) {{ γ(0) ϕ p }}{{} γ Γ ϕ γ Γ : ϕ = Γ 1 γ. 19 / 37
22 AR : AIC ar.co2$aic Index > ar.co2 <- ar(stllc$time.series[,"remainder"]) > ar.co2$aic AIC 20 / 37
23 AR(1) X t = ϕ 1 X t 1 + ϵ t AR(1) ϕ 1 ϕ 1 1 AR 21 / 37
24 R Dickey-Fuller > adf.test(ukgas) Augmented Dickey-Fuller Test data: UKgas Dickey-Fuller = , Lag order = 4, p-value = alternative hypothesis: stationary 22 / 37
25 (VAR) X t R d AR (VAR): X t = A 1 X t A p X t p + ϵ t. A i R d d 23 / 37
26 R VAR AR VAR library(vars) varsel <- VARselect(tsx,lag.max=5) # var.topix <- VAR(tsx,p=varsel$selection[1]) #AIC 24 / 37
27 1 2 TOPIX30 25 / 37
28 TOPIX CORE 30 TOPIX CORE (2013/6/ /7/4) ( ) 26 / 37
29 ts(topix30[, 1:10]) & Time Time 27 / 37
30 : R t = log(x t /X t 1 ). 28 / 37
31 Series ts(logrt[, 20]) Series ts(logrt[, 1]) ACF ACF Lag UFJ Lag 29 / 37
32 AR UFJ ufjts <- ts(logrt[,20]) # ar.ufj <- ar(ufjts) #AR 30 / 37
33 AIC ar.ufj$aic :(length(ar.ufj$aic) 1) UFJ AIC 31 / 37
34 AR > ar.ufj$ar #AR [1] / 37
35 AR Normal Q Q Plot Sample Quantiles Theoretical Quantiles 33 / 37
36 > shapiro.test(ar.ufj$resid[5:230]) Shapiro-Wilk normality test data: ar.ufj$resid[5:230] W = , p-value = / 37
37 (R t > 0 R t < 0 ) 3 L1 35 / 37
38 tedata$y Index / 37
39 37 / 37
²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾
Kano Lab. Yuchi MATSUOKA December 22, 2016 1 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 2 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 3 / 32 1.1.1 - - - 4 / 32 1.1.2 - - - - - 5 / 32 1.1.3 y t µ t = E(y t ), V
( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1
( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S
4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model
1 EViews 5 2007 7 11 2010 5 17 1 ( ) 3 1.1........................................... 4 1.2................................... 9 2 11 3 14 3.1 Pooled OLS.............................................. 14
y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =
y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w
( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................
分布
(normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability
自由集会時系列part2web.key
spurious correlation spurious regression xt=xt-1+n(0,σ^2) yt=yt-1+n(0,σ^2) n=20 type1error(5%)=0.4703 no trend 0 1000 2000 3000 4000 p for r xt=xt-1+n(0,σ^2) random walk random walk variable -5 0 5 variable
IIJ Technical WEEK 2013 - Indexer Bullet によるビッグデータ解析
Indexer Bullet IIJ Techweek2013 IIJ Indexer Bullet ibullet u u u u Indexer Bullet RDBMS Indexer Bullet Indexer Bullet http://www.xxx.co.jp/index.html HTML GET/PUT/DELETE http://www.xxx.co.jp/index.html
<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>
Gretl OLS omitted variable omitted variable AIC,BIC a) gretl gretl sample file Greene greene8_3 Add Define new variable l_g_percapita=log(g/pop) Pg,Y,Pnc,Puc,Ppt,Pd,Pn,Ps Add logs of selected variables
10:30 12:00 P.G. vs vs vs 2
1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B
有価証券報告書_手数料及び税金(第18期)
(1) (2) (3) () 30 80 50 115 115 39 () 31 2,000 () 29 29 100 0.6 365 131 12 () () 29 100 0.8 () 12 200 (a) (g) (a) 50 2,000,000 (b) 50 1,000 0.0175 (c) 1,000 2,000 0.015 (d) 2,000 3,000 0.01 (e) 3,000 5,000
DAA09
> summary(dat.lm1) Call: lm(formula = sales ~ price, data = dat) Residuals: Min 1Q Median 3Q Max -55.719-19.270 4.212 16.143 73.454 Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 237.1326
土壌環境行政の最新動向(環境省 水・大気環境局土壌環境課)
201022 1 18801970 19101970 19201960 1970-2 1975 1980 1986 1991 1994 3 1999 20022009 4 5 () () () () ( ( ) () 6 7 Ex Ex Ex 8 25 9 10 11 16619 123 12 13 14 5 18() 15 187 1811 16 17 3,000 2241 18 19 ( 50
syuryoku
248 24622 24 P.5 EX P.212 2 P271 5. P.534 P.690 P.690 P.690 P.690 P.691 P.691 P.691 P.702 P.702 P.702 P.702 1S 30% 3 1S 3% 1S 30% 3 1S 3% P.702 P.702 P.702 P.702 45 60 P.702 P.702 P.704 H17.12.22 H22.4.1
第6回ストックリーグ入賞レポート 部門賞・大学 (PDF)
3 1 IPO IPO IPO 1 2 3 2 Initial Public Offerings Firms IPO IPO 2 IR 11 2 IPO 2 IPO 3 2004 4 2005 3 173 10 10 IPO 1 2 3 3 IPO IPO IPO 4 1. 2. 3. 4. 5. 6. 7. 8. 1. 2. 3. 4. 5 1 EDINET http://info.edinet.go.jp
2 3
Sample 2 3 4 5 6 7 8 9 3 18 24 32 34 40 45 55 63 70 77 82 96 118 121 123 131 143 149 158 167 173 187 192 204 217 224 231 17 285 290 292 1 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
こんにちは由美子です
1 2 . sum Variable Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- var1 13.4923077.3545926.05 1.1 3 3 3 0.71 3 x 3 C 3 = 0.3579 2 1 0.71 2 x 0.29 x 3 C 2 = 0.4386
seminar0220a.dvi
1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: [email protected] 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }
Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim
TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls
2 1 Introduction
1 24 11 26 1 E-mail: [email protected] 2 1 Introduction 5 1.1...................... 7 2 8 2.1................ 8 2.2....................... 8 2.3............................ 9 3 10 3.1.........................
2 Part A B C A > B > C (0) 90, 69, 61, 68, 6, 77, 75, 20, 41, 34 (1) 8, 56, 16, 50, 43, 66, 44, 77, 55, 48 (2) 92, 74, 56, 81, 84, 86, 1, 27,
/ (1) (2) (3) [email protected] (4) (0) (10) 11 (10) (a) (b) (c) (5) - - 11160939-11160939- - 1 2 Part 1. 1. 1. A B C A > B > C (0) 90, 69, 61, 68, 6, 77, 75, 20, 41, 34 (1) 8, 56, 16, 50, 43, 66, 44,
Microsoft Word - 計量研修テキスト_第5版).doc
Q9-1 テキスト P166 2)VAR の推定 注 ) 各変数について ADF 検定を行った結果 和文の次数はすべて 1 である 作業手順 4 情報量基準 (AIC) によるラグ次数の選択 VAR Lag Order Selection Criteria Endogenous variables: D(IG9S) D(IP9S) D(CP9S) Exogenous variables: C Date:
McCain & McCleary (1979) The Statistical Analysis of the Simple Interrupted Time-Series Quasi-Experiment
Quasi-Experimenaion Ch.6 005/8/7 ypo rep: The Saisical Analysis of he Simple Inerruped Time-Series Quasi-Experimen INTRODUCTION () THE PROBLEM WITH ORDINAR LEAST SQUARE REGRESSION OLS (Ordinary Leas Square)
ブック 1.indb
20 29 29 18 21 29 10 30 31 10 11 12 30 13 10 30 14 11 30 15 12 16 13 17 14 18 15 19 16 20 17 21 18 10 20 29 82 83 84 85 86 87 88 20 10 89 20 12 11 90 20 13 12 91 20 14 13 92 20 14 14 93 15 15 94 15 16
statstcs statstcum (EBM) 2 () : ( )GDP () : () : POS STEP 1: STEP 2: STEP 3: STEP 4: 3 2
(descrptve statstcs) 2010 9 3 1 1 2 2 3 2 3.1............................................. 3 3.2............................................. 3 4 4 4.1........................................ 5 5 6 6 -pvot
時系列解析と自己回帰モデル
B L11(2017-07-03 Mon) : Time-stamp: 2017-07-03 Mon 11:04 JST hig,,,.,. http://hig3.net ( ) L11 B(2017) 1 / 28 L10-Q1 Quiz : 1 6 6., x[]={1,1,3,3,3,8}; (. ) 2 x = 0, 1, 2,..., 9 10, 10. u[]={0,2,0,3,0,0,0,0,1,0};
統計学のポイント整理
.. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!
ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.
23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%
…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä
2009 8 26 1 2 3 ARMA 4 BN 5 BN 6 (Ω, F, µ) Ω: F Ω σ 1 Ω, ϕ F 2 A, B F = A B, A B, A\B F F µ F 1 µ(ϕ) = 0 2 A F = µ(a) 0 3 A, B F, A B = ϕ = µ(a B) = µ(a) + µ(b) µ(ω) = 1 X : µ X : X x 1,, x n X (Ω) x 1,,
, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1
2016 1 12 4 1 2016 1 12, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, 1980 1990.,, 225 1986 4 1990 6, TOPIX,1986 5 1990 2, explosive. 2,.,,,.,, 1986 Q2 1990 Q2,,. :, explosive, recursiveadf,
3/4/8:9 { } { } β β β α β α β β
α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3
‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í
Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I
t VaR ( vs 5 t ) t ( ) / 16
2016 3 11 ( ) 2016 3 11 1 / 16 t VaR ( vs 5 t ) t ( ) 2016 3 11 2 / 16 () Crouhy (2008) Table: ( ) 2016 3 11 3 / 16 VaR (2010) Table: ( ) 2016 3 11 4 / 16 Tang and Valdez(2006) 5 t Brockmann and Kaklbrener(2010)
最小2乗法
2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
Microsoft Word - 表紙.docx
黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i
1 I EViews View Proc Freeze
EViews 2017 9 6 1 I EViews 4 1 5 2 10 3 13 4 16 4.1 View.......................................... 17 4.2 Proc.......................................... 22 4.3 Freeze & Name....................................
TS002
TS002 Stata 12 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 26 mwp-005 svar VAR 33 mwp-007 vec intro VEC 51 mwp-008 vec VEC 80 mwp-063 VAR vargranger Granger 93 mwp-062 varlmar
