20 12,, 59 q r 2 2.1 Fig.2 [3] Fig.3 1cm Fig.2 Schematic of experimental apparatus for measuring interfacial thermal resistance. Fig.3 Surface morphol



Similar documents

Fig. 1. Schematic drawing of testing system. 71 ( 1 )


J. Jpn. Inst. Light Met. 65(6): (2015)

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch

渡辺(2309)_渡辺(2309)

技術研究所 研究所報 No.80

Fig. 2 Effect of oxygen partial pressure on interfacial tensions between molten copper and fayalite slag (Fe/Si0 2=1.23) at 1473 K. Fig. s Effect or o

日立金属技報 Vol.34

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

Tetsu-to-Hagane Vol. 87 (2001) No. 5 Table 1. Physical properties of particles. (a) side view (b) front view Fig. 1. Experimental apparatus with semic

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student M

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

1..FEM FEM 3. 4.

Table 1 Properties of Shrink Films on Market Fig. 2 Comparison of Shrinkage curves of PS and PET films. Fig. 3 Schematic diagram of "Variations in bot

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Viscosity of Ternary CaO-SiO2-Mx (F, O)y and CaO-Al2O3-Fe2O3 Melts Toshikazu YASUKOUCHI, Kunihiko NAKASHIMA and Katsumi MORI Synopsis : Effects of add

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

特-4.indd


02[ ]小山・池田(責)岩.indd

Note; a: Pressure sensor, b: Semi-permeable membrane, c: O-ring, d: Support screen, e: Solution, f: Solvent. Fig. 2. Osmometer cell. Fig. 1. Schematic

Photo. 1. Scale banding in roughing mill work roll. Photo. 2. Etched micro-structure of alloyed grain iron roll. Photo. 3. Etched micro-structure of a

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation)

2301/1     目次・広告

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

Evaluation of Anisotropy and Preferred Orientation of Carbon and Graphite Materials Yoshihiro Hishiyama Fig.1 Diffraction condition in Fourier space.

電子部品はんだ接合部の熱疲労寿命解析

パーキンソン病治療ガイドライン2002

27巻3号/FUJSYU03‐107(プログラム)

第101回 日本美容外科学会誌/nbgkp‐01(大扉)

本文27/A(CD-ROM

tnbp59-20_Web:P1/ky108679509610002943

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Table 1. Main specifications of VAD plant. Fig. 2. Typical operating pattern of low alloy steel.

_14.indd

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

T05_Nd-Fe-B磁石.indd

X-Ray Investigation on the Residual Stress of Metallic Materials (On the Residual Stress of Stretched Carbon Steel) by Shuji TAIRA and Yasuo YOSHIOKA

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test



untitled

[ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA

橡

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

Table 1. Shape and smelting properties of chrome ores as delivered. Table 2. Chemical composition of chrome ores (%). Table 3. Chemical composition of

(43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND

** Department of Materials Science and Engineering, University of California, Los Angeles, CA 90025, USA) Preparation of Magnetopulmbite Type Ferrite

16 Dissolution Rate of Alumina into Molten CaO-SiO2--Al2O3-MgO Slags Shoichirou TAIRA, Kunihiko NAKASHIMA and Katsumi MORI Synopsis : Dissolution rate

0801297,繊維学会ファイバ11月号/報文-01-青山

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

S-5.indd

Fig. 1 Sampling positions from the ingot. Table 2 Chemical compositions of base metal (%) Fig. 2 (unit: mm) Shape and size of fatigue test specimen. T

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

perature was about 2.5 Ž higher than that of the control irrespective of wind speed. With increasing wind speeds of more than 1m/s, the leaf temperatu

Clay Minerals in the Amakusa Pottery Stones and Some Features of Their Pottery Clays. Surface Charge of Sericite and Dispersion- Coagulation Propertie

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405

* * 2

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

H17-NIIT研究報告


On the Variation of Oxygen and Alminium in Molten Steel during Pouring Practice T. Obinata et, alii. Spoon position: (A): within 100mm under nozzle (B

Al-Si系粉末合金の超塑性


Numerical Analysis of Transpiration Influence with Reforested Trees on Fluctuation of Groundwater Level in Mu Us Desert, China OHTE, Nobuhito*, KoBASH

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

黒皮生成実験 2 1 実験方法 Fig.1 19 SKH51 S45C SUS310S Table 1 24 mm 30 mm 27 mm 20 mm YAMATO FO h30 Fig.1 50 MPa ml/mm

Fig. 1 Experimental apparatus.

07_学術.indd

013858,繊維学会誌ファイバー1月/報文-02-古金谷

(Shigen to Sozai) Vol.116 p (2000) 石炭灰フライアッシュからのゼオライトのアルカリ水熱合成と生成物の陽イオン交換特性 * 1 1 村山憲弘山川洋亮 2 3 小川和男芝田隼次 Alkali Hydrothermal Synthesis of Zeol

a b Chroma Graphein Chromatography

9) H. SCHMCLZRIED: Z. Elektrochem. 66 (l%1) p ) W. D. KINGERY et al.: J. Am. Chem. Soc., 42 (1959), p ) F. HUND: Z. Phys. Chem., 199 (195

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

obtained for the liniarization, and was found to have a remarkably wider dynamic range (order of approximately 103) than that of conventional screen/f


Fig. 1 Green glass in blank mold.

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

mm mm , ,000 Fig. 1 Locality map of the investigation area NE SW Fi

06_学術_関節単純X線画像における_1c_梅木様.indd

FaCTプロジェクトについて ~FBRサイクルの研究開発計画~

<30345F90BC96EC90E690B65F E706466>

Fig.1 A location map for the continental ultradeep scientific drilling operations.


ゼリーこんにゃくの分析


75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

明海大学歯学雑誌 36‐2/11.黒岩



Netsu Sokutei 19 (4) Thermal Transitions and Stability of Fatty Acid-Containing and Defatted Bovine Serum Albumin (BSA) Michiko Kodama, Shinji

Transcription:

58 *1, *1, * 2 Mechanism of Heat Transfer through Mold Flux in Continuous Casting Mold By Hiroyuki Shibata, Shin-ya Kitamura and Hiromichi Ohta 1 K.C.Mills and A.B.Fox [1] [2] Fig.1 q c q r q t q t = q c + q r (1) q c Fig.1 Schematic of temperature distribution and resistances to heat transfer across mold flux film consisting of crystalline and molten layers. (R FLUX ) (R INT ) *1 *2

20 12,, 59 q r 2 2.1 Fig.2 [3] Fig.3 1cm Fig.2 Schematic of experimental apparatus for measuring interfacial thermal resistance. Fig.3 Surface morphology of solidified mold flux in contact with the mold. Fig.4 Influence of the height of large cells of solidified mold flux on interfacial thermal resistance for 6 kinds of mold flux.

60 64 1,2 Fig.4 36mm 5 10cm 2 W/K 2.2 Fig.5 [4] 800K 4.6 ± 0.5 10 7 m 2 /s 1073K 1000K 800K Fe 2.6% Fig.6 Cuspidine(Ca 4 Si 2 O 7 F 2 ) Carnegieite(NaAlSiO 4 ) Fig.5 Measured thermal diffusivity of crystalline and glassy mold fluxes. Fig.6 X-ray diffraction patterns of mold fluxes: (a) crystallized mold flux and (b) rapidly quenched mold fluxes. 2.3 Pulse laser Pulse laser [5] Fig.7 Fig.8(a) T(l 2) t (a) Upper plate Molten sample Lower plate l l 2 T(l 2+ l) t (b) Micrometer Mullite tube Platinum crucible (upper plate) Molten sample Platinum crucible (lower plate) Infrared detector Fig.7 Schematic diagram of differential three layered laser flash method for measuring thermal diffusivity of a molten powder.

20 12,, 61 Fig.8(b) 8 6 (a) (a) / 10-7 m 2 s -1 4 2 0 6 (b) TiO 2 0.7% TiO 2 2.6% TiO 2 4.9% TiO 2 7.4% TiO 2 9.6% (b) T.Fe 0.4% T.Fe 1.2% T.Fe 2.6% 4 2 0 1350 1400 1450 1500 1550 1600 T / K 1400 1450 1500 1550 1600 Fig.8 (a) Thermal diffusivity values of molten continuous fluxes determined by the differential three layered laser flash method. These values include the contribution of radiative component at high temperature. (b)these values were obtained by precisely excluding the contribution of radiative component at high temperature. 3 3.1 Susa [6] [5, 7 10] E α S E = α + S (2) Fig.9 Fig.10 T 1 ε 1 T 2 ε 2 d α q r = β ( T1 4 T2 4 ) n 2 σ β = 0.75αd + 1 ε 1 + 1 ε 2 1 σ Stephan-Boltzmann (3) (4)

62 64 1,2 Fig.9 Absorption cpefficient of glassy mold fluxes at elevated temperatures compared with those at room temperature. Fig.10 Extinction coefficient of crystalline mold fluxes at elevated temperatures compared with those at room temperature. Fig.11,12 Fig.11 Amount and ratio of heat flux in molten layer of flux film when total flux film thickness is fixed at 1.5mm. Fig.12 Amount and ratio of heat flux in crystalline layer of flux film when total flux film thickness is fixed at 1.5mm. 3.2 [11] ϖ(0 ϖ < 1) ϖ = 0 Fig.13 ϖ 0.4 0.8

20 12,, 63 ϖ 0.955 0.998 8 32% 4 [12] Table 1 Fig.14 Ozawa [9] [14] Table 1 Conditions and physical properties for mold heat flux calculation [13]. Casting Speed(m/min) Position Solidifying steel shell thickness (mm) Interfacial thermal resistance (10 4 m 2 K/W) Thermal conductivity (W/mK) Emissivity Mold surface temperature (K) Solidus temperature of steel (K) Crytallizing temperature of mold flux(k) 2.0(LC2) 1.6(MC2) 30mm below the meniscus 15t 0.5 (t:min) 2.94d cry + 3.52, for 0.3 d cry 1.0 (LC2) 16.4d cry, for 0.4 d cry 0.9 (MC2) d cry:crystalline layer thickness(mm) 31.1(steel shell) 383(copper mold) 0.8(steel shell) 0.4(copper mold) 0.7(crystalline flux) 593 1780(low carbon steel) 1749(medium carbon steel) 1316(LC2) 1436(MC2) Fig.13 Calculated total heat flux for the mold flux layer as a function of scattering albedo. Reported heat flux [13] beyond which cracks occur (upper for LC, lower for MC) d FLUX (mm) Fig.14 Heat flux in mold as a function of total mold flux film thickness.

64 64 1,2 5 1990 [1] K.C.Mills and A.B.Fox: High Temperature Materials and Processes, 22(2003), 291-301. [2], :,92(2006),655-660. [3] H.Shibata,K.Kondo,M.Suzuki and T.Emi:ISIJ Int.,36(1996),S179-S182. [4],,,,, :, 82(1996), 504-508. [5],,,,, :,80(1994),463-468. [6] M.Susa,K.Nagata and K.C.Mills:Ironmaking and Steelmaking, 20(1990), 372-378. [7] M.Susa,K.C.Mills,M.J.Richardson,R.Taylor and D.Stewart:Ironmaking and Steelmaking, 21(1994), 279-286. [8] J-W.Cho,H.Shibata,T.Emi and M.Suzuki:ISIJ Int., 38(1998), 268-275. [9] S.Ozawa,M.Susa,T.Goto,R. (Kojima)Endo and K.C.Mills: ISIJ Int., 46(2006), 413-419. [10] J.Diao,B.Xie,N.Wang,S.He,Y.Li and F.QI: ISIJ Int., 47(2007), 1294-1299. [11],,, :,61(1997),350-357. [12] J-W.Cho,T.Emi,H.Shibata and M.Suzuki:ISIJ Int., 38(1998), 834-842. [13],,,,, :,83(1997),701-706. [14] H.Nakada,M.Susa,Y.Seko,M.Hayashi and K.Nagata: ISIJ Int., 48(2008), 446-453.