12 The eect of a surrounding light to color discrimination 1010425 2001 2 5
NotePC 8 10cd=m 2 965cd=m 2 1.2 Note-PC Weber L,M,S { i {
Abstract The eect of a surrounding light to color discrimination Ynka Nishimura Recently, we often use a notebook personal computer and a cellular phone at a place where the surrounding is bright as the outdoors. At this time, so that we see a display darkly than the interior of a room, the ways to see it may change by a color of an interface. Here, I investigate how to change color discrimination in such an environment, and I look for a point whereby I should take a color design of an interface into consideration. And, So that color has blackness with surrounding light and its amount depends on a color, I try to investigate to whether or not color discriminartion is aected by blackness. Experimentwas done to changed a color into 8 directions from white, and I measured color discrimination threshold. Experiment methods are as follows: It did of the display divides 4, and the test stimulus was presented on 1 spot out of them at random, and the subject pushes a button that show the place where he saw the stimulus. The size of test stimulus is the visual angle 3 degrees, ane the luminance of test stimulus and background is 10cd=m 2, and the surrounding area light is 965cd=m 2. And, the stimulus presentation times are 12 seconds. The results are as follows: Color discrimination is aggravated by the surrounding area light, and the level of aggravation of color discrimination is almost same any color direction. However, it was not explicable in single color signal restraint to this surrounding light. And there is no eect by the blackness in color discrimination. Therefore a point { ii {
whereby we take a color design into consideration in the interface of notepc has not specially been found. key words color discrimination, surrounding light, color signal, luminance, blackness, Weber law, Noise, LMS-cone { iii {
1 1 1.1.................................. 1 1.1.1................... 1 1.1.2................... 1 1.2...................................... 3 1.2.1........................... 3 1.2.2...................... 3 2 5 2.1.................................. 5 2.2................................... 6 2.3.................................... 8 2.4................................... 8 3 9 3.1................................... 9 3.1.1............................ 10 3.1.2 MH........................ 13 3.1.3 YN........................ 13 3.1.4 TT......................... 13 3.2 L,M,S.............................. 14 3.2.1 MH........................ 14 3.2.2 YN........................ 14 3.2.3 TT......................... 14 { iv {
3.2.4....................... 15 4 18 4.1............................... 18 4.1.1.......................... 18 4.1.2 MH................. 19 4.1.3 YN................. 20 4.1.4 TT................. 21 4.1.5 3........................... 22 4.1.6.......................... 23 4.2............................ 23 5 25 26 27 A Weber 28 A.1 Weber................................... 28 A.2 Noise..................................... 28 B 29 C 30 C.1 MH...................... 31 C.2 YN...................... 32 C.3 TT...................... 33 { v {
1.1.......................... 2 1.2 100%...... 2 1.3 Weber.................................... 4 2.1................................... 5 2.2................................ 6 2.3 u'v'............................. 7 2.4............................... 7 3.1 MH............................ 10 3.2 YN............................. 11 3.3 TT............................. 12 3.4 MH.................... 15 3.5 YN.................... 16 3.6 TT.................... 17 4.1 MH.................. 19 4.2 YN.................. 20 4.3 TT.................. 21 4.4.................. 22 4.5 MH.................................. 23 4.6 YN................................... 23 4.7 TT................................... 23 B.1.................................... 29 { vi {
C.1 MH........................... 31 C.2 YN............................ 32 C.3 TT............................ 33 { vii {
1 1.1 1.1.1 1 1.1.2 1 { 1 {
1.1 1.1 % 1.1 1.2 100% 1.2 100 570nm 400nm,700nm 10 570nm 400nm,700nm { 2 {
1.2 Shinomori et al. 1994 Shinomotri et al. 1997 1.2 1.2.1 1. Weber (1.2.2 ) ( 1.3 ) 2. Noise ( 1.3 ) 3. 1.1.2 1.2.2 1.3 C 2 C C C + Noise C C + Noise = W W (1.1) 2 { 3 {
1.2 A.1 Noise A.2 Noise C 1.1 C C +0 = W C C = W C = W C C C Noise 1.1 C 0+Noise = W C Noise = W C = W Noise = C C 1.3 1.3 Weber { 4 {
2 2.1 40cm 120cm 90cm 100cm 80cm 20cm 90cm 2.1 90cm 290cm 180cm 133.86cm 40cm 24.7 31.5cm 2.1 10.5 10.5cm 120cm 9 10.6cm 2.1 140cm { 5 {
2.2 2.2 3 3 3 0.5 0.5 2.2 10cd=m 2 2.2 3 0.5 2.2 965cd=m 2 2.1 2.1 x y 1 WB 64.59 0.230 0.116 2 WY 64.59 0.415 0.506 3 WR -26.53 0.478 0.261 4 WG -26.53 0.282 0.383 5 WR 19.03 0.542 0.405 6 WG 19.03 0.209 0.290 7 WG -70.97 0.268 0.523 8 WR -70.97 0.378 0.203 { 6 {
2.2 WB WY WR WG x,y White S M,L S ( B u'v' 2.3 u'v' 2.4 400msec 400msec 1200msec 0 0 400 800 1200 msec 2.4 two down-one up u'v' White 0.02 0.035 { 7 {
2.3 u'v' 0.001 Barco monitor CCID 121 & VSG2/3 Cambridge Research Systems 2.3 MH,TT YN TT MH 22 YN 21 Plate,D-15 2.4 1. 2. 3. 4. 5. A 6. 7. 2.2 8. 9. 10. 6. 9. 11. 12. 25 { 8 {
3 3.1 3.1.1 3.1 3.3 ( 3.1 MH 3.2 YN 3.3 TT u'v' u' v' White 3.1 MH -26.53WB YN 2 TT 1 { 9 {
3.1 3.1.1 3.1 MH { 10 {
3.1 3.2 YN { 11 {
3.1 3.3 TT { 12 {
3.1 3.1.2 MH MH 3.1.3 YN YN -70.97WG -26.53WR -70.97WG 3.1.4 TT TT 64.59WB 64.59WY 64.59WB 64.59WY YN MH { 13 {
3.2 L,M,S 3.2 L,M,S L,M,S 3.2.4 L,M,S 3.4 MH 3.5 YN 3.6 TT L,M L-2M S S White 0 3.2.1 MH MH S,L,M 3.2.2 YN YN L,M,S 3.2.3 TT TT MH S,L,M L,M,S S,L,M { 14 {
3.2 L,M,S 3.2.4 3.4 MH { 15 {
3.2 L,M,S 3.5 YN { 16 {
3.2 L,M,S 3.6 TT { 17 {
4 4.1 1 1.2.1 2. Noise 1cd=m 2 L,M,S 4.1 4.3 4.1.1 4.1 MH 4.2 YN 4.3 TT 1cd=m 2 L,M L-2M S S White 0 { 18 {
4.1 4.1.2 MH 4.1 MH L,M S 4.1 MH { 19 {
4.1 4.1.3 YN 4.2 YN YN L,M S YN 64.59WY 64.59WB 64.59WY S 4.2 YN { 20 {
4.1 4.1.4 TT 4.3 TT TT L,M S YN 64.59WY 64.59WB MH 4.3 TT { 21 {
4.1 4.1.5 3 4.4 MH,YN,TT L,M S 4.4 { 22 {
4.2 4.1.6 4.1 1cd=m 2 Noise 4.2 4.5 MH 4.6 YN 4.7 TT 4.5 MH 4.6 YN 4.7 TT MH YN 19.03WG YN TT YN 64.59WY TT { 23 {
4.2 { 24 {
5 Note-PC { 25 {
MH TT 12 13 { 26 {
[1] 1169, 1994 [2] 134, 1990 [3] 17, 1992 [4], 1998 [5], 1975 [6] 14 P575, 2000 [7] Keizo Shinomori, Ynsuhisa Nakano, and Keiji Uchikawa "Inuence of the illuminance and spectral composition of surround elds on spatially induced blackness" (1994.9) [8] Keizo Shinomori, Brooke E. Schefrin, and John S. Werner "Spectral mechanisms of spatially induced blackness: data and quantitative model" 1997.2 { 27 {
A Weber A.1 Weber 1=30 I I+I I I I = A.2 Noise L,M,S false-alarm { 28 {
B 0.8 0.8 0.6 y 0.6 0.4 y 770nm 0.4 700nm 0.2 0.2 0 0 450nm T 0.2 0.4 0.6 0.8 x 0 0 450nm 0.2 0.4 0.6 0.8 x F 1.0 B.1 B.1 S S S S S tritanope T B.1 L,M L,M L,M L,M F S L,M { 29 {
C C.1 MH C.2 YN C.3 TT 1cd=m 2 u'v' u' v' White { 30 {
C.1 MH C.1 MH C.1 MH { 31 {
C.2 YN C.2 YN C.2 YN { 32 {
C.3 TT C.3 TT C.3 TT { 33 {